COMPOSITIO MATHEMATICA

J. E. CARROLL H. KISILEVSKY Initial layers of Z_l-extensions of complex quadratic fields

Compositio Mathematica, tome 32, nº 2 (1976), p. 157-168 <http://www.numdam.org/item?id=CM_1976__32_2_157_0>

© Foundation Compositio Mathematica, 1976, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

INITIAL LAYERS OF Z₁-EXTENSIONS OF COMPLEX QUADRATIC FIELDS

J. E. Carroll and H. Kisilevsky*

Introduction

If F is a number field and l a prime, a \mathbb{Z}_l -extension, K, of F is a normal extension with Galois group topologically isomorphic to the additive l-adic integers. For example, the extension $\mathbb{Q}_{\infty}^l/\mathbb{Q}$ is a \mathbb{Z}_l -extension, where \mathbb{Q}_{∞}^l is the subfield of $\mathbb{Q}(\mu_{l_{\infty}})$ the cyclotomic field of all l power roots of unity which is fixed by an automorphism of order l-1. For any number field F, the \mathbb{Z}_l -extension $F \cdot \mathbb{Q}_{\infty}^l/F$ is called the cyclotomic \mathbb{Z}_l -extension of F. If L is the composite of all \mathbb{Z}_l -extensions of F, then Gal $(L/F) \approx \mathbb{Z}_l^a$ for an integer a. It is known that $r_2 + 1 \leq a \leq d$ where r_2 is the number of complex embeddings of F and d = [F : Q] (see [6]), and Leopoldt's conjecture is equivalent to $a = r_2 + 1$.

In this article, we consider the case that F is a complex quadratic field. We try to find a canonical \mathbb{Z}_l -extension, K_2 , of F, disjoint from the cyclotomic \mathbb{Z}_l -extension, K_1 , of F such that $L = K_1K_2$ (c.f. [4], [8]). We determine the initial layers of K_2 in some cases by considering the torsion subgroup, T, of the Galois group of the maximal abelian *l*-ramified, i.e., unramified at all primes not dividing *l*, pro-*l* extension of F.

For an abelian group A, and a prime l, we denote by A(l) the *l*-power torsion subgroup of A, and by A_l the subgroup of elements of A of exponent l.

I

Let F/\mathbb{Q} be normal and let *l* be a prime number. Let *M* be the maximal normal extension of *F* such that the Galois group, G = Gal(M/F) is an abelian pro-*l* group and such that M/F is *l*-ramified. Then *M* is a normal

^{*} Supported in part by NSF Grant GP-40871.

extension of \mathbb{Q} and Gal (F/\mathbb{Q}) acts on G by conjugation. We shall consider the structure of G as a \mathbb{Z}_l -module and as a Gal (F/\mathbb{Q}) -module.

LEMMA (1): If $[F:\mathbb{Q}] < \infty$, then G is a finitely generated \mathbb{Z}_{l} -module.

PROOF: It suffices to show that G/lG is finite [9, §6]. Now G/lG is a quotient of the Galois group over $F(\zeta)$ of the composite of all cyclic, degree l, l-ramified extensions of $F(\zeta)$, where ζ is a primitive lth root of 1. Thus, it is enough to show that $F(\zeta)$ has only finitely many cyclic l-ramified extensions of degree l. By Kummer theory, all such extensions are of the form $F(\zeta, \alpha^{1/l}), \alpha \in F(\zeta)$. But $F(\zeta, \alpha^{1/l})/F(\zeta)$ is l-ramified if and only if the principal ideal $(\alpha) = \mathfrak{AB}^l$ where \mathfrak{A} is a product of primes dividing l. Let A be the set of all such α . Then we have an exact sequence,

$$0 \to U_s/U_s^l \to A/F(\zeta)^{*l} \to (C_s)_l \to 0 \qquad \alpha \to \text{class of } \mathfrak{B}$$

where S is the set of primes of $F(\zeta)$ dividing l, U_S is the group of S-units in $F(\zeta)$, and $(C_S)_l$ is the group of elements of exponent l in the S-class group of $F(\zeta)$. But C_S is finite and, by the S-unit theorem, U_S is finitely generated. Hence $A/F(\zeta)^{*l}$ is finite.

COROLLARY (2): $G \approx T \oplus \mathbb{Z}_l^a$ where T is a finite abelian l-group.

PROOF: G is a finitely generated module over \mathbb{Z}_{l} , which is a p.i.d.

We now restrict our attention to F complex quadratic. By the validity of Leopoldt's conjecture in this case, a = 2. Let τ denote complex conjugation on M. Then τ generates Gal (F/\mathbb{Q}) and so acts on G. The torsion subgroup, T, of G is stabilized by τ so the fixed field, L, of T is normal over \mathbb{Q} , and τ acts on Gal $(L/F) \approx \mathbb{Z}_l \oplus \mathbb{Z}_l$. It is easy to see that L is the composite of all \mathbb{Z}_l -extensions of F. In particular, if K_1 is the cyclotomic \mathbb{Z}_l -extension of F, then $K_1 \subset L$. We consider the question of finding a complement, K_2 , to K_1 , i.e. a \mathbb{Z}_l -extension, K_2/F , such that $K_1 \cap K_2 = F$ and K_2/\mathbb{Q} is normal.

THEOREM (3): If l is odd or if l = 2 and all quadratic subextensions of L/F are normal over \mathbb{Q} , then there is a unique complement, K_2 , to K_1 . Furthermore, if we write

$$\operatorname{Gal}(L/F) = H_1 \oplus H_2$$
 where $H_i = \operatorname{Gal}(L/K_i) \approx \mathbb{Z}_i$

then τ inverts the elements of H_1 and acts trivially on H_2 .

PROOF: We have an exact sequence

(1)
$$0 \to H_1 \to \operatorname{Gal}(L/F) \to \mathbb{Z}_l \to 0$$

which implies that $H_1 \approx \mathbb{Z}_l$. Let a be a generator of Gal (L/F) modulo H_1 . Since K_1/\mathbb{Q} is normal abelian, H_1 is a τ submodule and $a^{\tau} = a + h'_1$ for some $h'_1 \in H_1$. Now τ has order 2, so either inverts H_1 or acts trivially. But if τ acted trivially we would have $a = a^{\tau^2} = a + 2h'_1$ so $h'_1 = 0$ and $a^{\tau} = a$. This would imply that L/Q was abelian and that if L were the subfield of L fixed by τ , then L/Q would be l-ramified abelian with Gal $(L'/\mathbb{Q}) \approx \mathbb{Z}_l \oplus \mathbb{Z}_l$ contradicting the Kronecker-Weber theorem. Therefore, τ inverts H_1 . Now if $h'_1 \in 2H_1$ and we let $h_2 = a + h'_1/2$, then $h'_2 = h_2$ so we can take H_2 to be the \mathbb{Z}_l -module generated by h_2 . But $H_1 = 2H_1$ for l odd. For l = 2, the sequence (1) implies that $h'_1 \in 2H_1$ if and only if $h'_1 \in 2$ Gal (L/F) since \mathbb{Z}_2 has no torsion. But all quadratic subfields of L/F are normal over \mathbb{Q} if and only if

$$a^{\tau} \equiv a \mod 2 \operatorname{Gal}(L/F).$$

To show uniqueness, it is enough to show that any cyclic submodule of Gal (L/F) which is invariant under τ lies in H_1 or H_2 . This follows from the following lemma.

LEMMA (4): The \mathbb{Z}_l -submodules of $H_1 \oplus H_2$ invariant by τ are of the form $l^{m_1}H_1 \oplus l^{m_2}H_2$ for l odd, and of the form $2^{m_1}H_1 \oplus 2^{m_2}H_2$ or $\langle 2^{m_1}H_1 \oplus 2^{m_2}H_2, 2^{m_1-1}h_1 + 2^{m_2-2}h_2 \rangle$ where h_i is a generator of H_i as a \mathbb{Z}_2 -module for l = 2.

PROOF: Let H be invariant under τ . If $a_1h_1 + a_2h_2 \in H$, $a_i \in \mathbb{Z}_l$ then $(1+\tau)(a_1h_1 + a_2h_2) = 2a_2h_2 \in H$, $(1-\tau)(a_1h_1 + a_2h_2) = 2a_1h_1 \in H$. If l is odd we get $a_ih_i \in H$ so H is the direct sum of its projections onto the H_i . If l = 2 we see $2^{m_1}H_1 \oplus 2^{m_2}H_2 \subset H \subset 2^{m_1-1}H_1 \oplus 2^{m_2-1}H_2$ for some m_1, m_2 and, noting that $\langle 2^{m_1}H_1 \oplus 2^{m_2}H_2, 2^{m_1-1}h_1 + 2^{m_2-1}h_2 \rangle$ is in fact invariant under τ , we are done.

Remarks:

(i) If *l* is odd, then $H_1 = (1 - \tau) \text{ Gal}(L/F)$, $H_2 = (1 + \tau) \text{ Gal}(L/F)$.

(ii) By $[2, \S 3]$, if $F = \mathbb{Q}(\sqrt{-d})$ where at least one odd prime dividing d is not congruent to ± 1 modulo 8, then all quadratic subextensions of L/F are normal over \mathbb{Q} . This condition is not necessary, however, since, e.g., $\mathbb{Q}(\sqrt{-p})$, $p \equiv 9(16)$ also has this property. From now on we assume that all quadratic subextensions of L are normal over \mathbb{Q} .

THEOREM (5): If l is odd, then $G \approx T \oplus H_1 \oplus H_2$ where T is a finite abelian l-group, and τ inverts the elements of T and of H_1 and acts trivially on H_2 .

PROOF: By Corollary 2, $G \approx T \oplus H_1 \oplus H_2$ as \mathbb{Z}_l -modules, where T is invariant under τ . Choose $a_1, a_2 \in G$ such that $a_i + T$ generates H_i . Then $a_1^{\tau} = -a_1 + t_1, a_2^{\tau} = a_2 + t_2, t_i \in T$. Applying τ again we have

$$a_1 = a_1^{\tau^2} = a_1 - t_1 + t_1^{\tau}, \qquad a_2 = a_2^{\tau^2} = a_2 + t_2 + t_2^{\tau}.$$

Thus $t_1^{\tau} = t_1$, $t_2^{\tau} = -t_2$. Let $h_1 = a_1 - t_1/2$, $h_2 = a_2 + t_2/2$. Then $h_1^{\tau} = -h_1$, $h_2^{\tau} = h_2$. It follows that we can write $G = T \oplus H_1 \oplus H_2$ where H_i is now taken to be the cyclic module generated by h_i . Now write $T = (1 + \tau)T \oplus (1 - \tau)T$, so that τ acts trivially on the first factor and inverts the second. Let K' be the subfield of M fixed by $(1 - \tau)T \oplus H_1$. Then K'/F is an abelian l-ramified pro-l extension such that τ acts trivially on Gal (K'/F). Hence K'/Q is abelian and so if K'' is the subfield of K' fixed by τ , then K''/Q is an abelian l-ramified pro-l extension with

$$\operatorname{Gal}(K''/\mathbb{Q}) \approx \mathbb{Z}_{l} \oplus (1+\tau)T.$$

By the Kronecker-Weber theorem, $(1+\tau)T = 0$. Thus τ inverts all elements of T.

REMARK: When l = 2 an analogous decomposition into the direct sum of τ -modules is not generally possible. If all odd primes dividing the discriminant of F are congruent to ± 1 modulo 8, for example, such a decomposition can not occur even if the conditions of Theorem 3 are satisfied.

II

We next consider the finite group T

THEOREM (6): Let S be the set of primes dividing l in F; $U_{\mathfrak{p}}$ the group of units in the completion $F_{\mathfrak{p}}$ of F at \mathfrak{p} ; \overline{U} the closure of the group of units, U, of F in $\prod_{\mathfrak{p}\in S} U_{\mathfrak{p}}$; and let C be the class group of F. Then we have an exact sequence

$$0 \to ((\prod_{\mathfrak{p} \in S} U_{\mathfrak{p}})/\overline{U})(l) \to T \to C(l).$$

PROOF (c.f. [2]): By class field theory, $\operatorname{Gal}(M/F) \approx J/\overline{F^*J^S}(l)$ where J is the idèle group of F and J^S is the subgroup, $J^S = \prod_{p \in S} \{1\} \times \prod_{p \notin S} U_p$. The map

$$J \to C,$$
 $(x_p) \to \text{class of } \prod p^{\nu_p(x_p)}$

is continuous and F^*J^S lies in the kernel, so we obtain a continuous surjection $J/\overline{F^*J^S} \to C$. The kernel of this map is naturally isomorphic to $(\prod_{\mathfrak{p}\in S} U_{\mathfrak{p}})/\overline{U}$, and we obtain the desired sequence by taking *l*-power torsion.

We note that since F is complex quadratic, U is finite, so $U = \overline{U}$.

COROLLARY (7): If l is odd then $T \to C(l)$ is injective unless l = 3 and $F = \mathbb{Q}(\sqrt{-3m}), m \equiv 1(3), m \neq 1$. In this case $((\prod_{p \in S} U_p)/U)(3)$ has order 3.

PROOF: If l > 3, then U_p contains no primitive *l*th root of 1 as $[F_p:F] \leq 2$. Since U consists of roots of 1, the quotient has no element of order *l*. If l = 3, then U_p contains a primitive cube root of 1 exactly when $F = \mathbb{Q}(\sqrt{-3m})$, $m \equiv 1(3)$ but no ninth root of 1, and U contains no cube root of 1 unless m = 1. Since there is only one prime in S,

$$((\prod_{\mathfrak{p}\in S} U_{\mathfrak{p}})/U)(3)$$

has order 3. if $m \neq 1$ (and is trivial for m = 1).

COROLLARY (8): If l = 2, $T \to C(2)$ is injective unless $F = \mathbb{Q}(\sqrt{-d})$ and $d \equiv \pm 1(8)$. If $d \equiv \pm 1(8)$ we have an exact sequence

 $0 \rightarrow Z/2Z \rightarrow T \rightarrow \text{image } T \rightarrow 0$

which splits if $d \equiv -1(8)$ and does not split if $d \equiv 1(8)$.

PROOF: See $[2, \S 2]$. We can also bound T from below in terms of C(l).

PROPOSITION (9): If \overline{F} is the l-Hilbert class field of F then Gal $(\overline{F}/\overline{F} \cap L)$ is a quotient of T.

PROOF: We have $\overline{F}L \subseteq M$, so $\operatorname{Gal}(\overline{F}L/L) \approx \operatorname{Gal}(\overline{F}/\overline{F} \cap L)$ is a quotient of $\operatorname{Gal}(M/L) = T$.

We are indebted to the referee for pointing out that it is usually (not always) true that $T = \text{Gal}(\overline{F}L/L)$ and that $M = \overline{F}L$.

By lemma 4 the maximal subfield of L whose Galois group over F is acted on by inversion by τ is K_2 for l odd, and $K_2(\sqrt{2})$ for l = 2. Since Gal (\overline{F}/F) is inverted by τ , $\overline{F} \cap L$ lies in these subfields.

COROLLARY (10): Let l^n be the exponent of C(l). Then $|C(l)|/l^n$ divides |T| if l is odd and $|C(2)|/2^{n+1}$ divides |T|

PROOF: Gal $(\overline{F} \cap K_2/F)$ is a quotient of C(l) and Gal (K_2/F) for l odd or of C(2) and Gal $(K_2(\sqrt{2})/F)$ for l = 2.

Ш

The following result is useful in restricting the possible candidates for the initial layers of K_2

THEOREM (11): Let $p \neq l$ be a prime number such that a unique prime \mathfrak{p} of F divides it. Then K_2 is the unique \mathbb{Z}_l -extension of F in which \mathfrak{p} splits completely.

PROOF: Let H be the decomposition group of p in Gal (L/F). Since $p^{t} = p$, H is normal in Gal (L/Q). But since p does not ramify in L, H is a cyclic \mathbb{Z}_{l} -submodule of Gal (L/F). Hence, by the proof of Theorem 3, $H \subset H_{1}$ or H_{2} . But if $H \subset H_{1}$, then p would split completely in K_{1} , which is not the case [3, § II]. Thus $H \subset H_{2}$, and p splits completely in K_{2} . Any two cyclic \mathbb{Z}_{l} -submodules of Gal (L/F) intersect trivially or in one of the modules so the subgroups fixing any two distinct \mathbb{Z}_{l} -extension besides K_{2} , p would split completely in L, and so in K_{1} , which is not possible.

The following theorem tells us that if K is a sufficiently large cyclic *l*-ramified *l*-extension of F normal over \mathbb{Q} , then K must have a sizeable intersection with K_1 or K_2 . If τ inverts Gal (K/F), then, the intersection must be with K_2 .

THEOREM (12): Let $l^r T = 0$. Suppose K/F is a cyclic l-ramified extension of degree l^n with n > r if l is odd and n > r+1 if l = 2, and that K/\mathbb{Q} is normal. Then the subextension of K/F of degree l^{n-r} if l is odd and l^{n-r-1} if l = 2 lies either in K_1 or K_2 . **PROOF:** As we noted in the proof of Theorem 5, $G \approx T \oplus H_1 \oplus H_2$ as \mathbb{Z}_l -modules (and even as τ modules for l odd). Let H be the subgroup of G fixing K. We consider the case l odd. Since H is normal, by Lemma 4 the projection of H into $H_1 \oplus H_2$ must be of the form $l^{m_1}H_1 \oplus l^{m_2}H_2$. By the cyclicity of G/H, either m_1 or m_2 is 0. Say $m_1 = 0$. Also $l^r H = 0 \oplus l^r H_1 \oplus l^{m_2+r} H_2 \subset H$. Since $|G/H| = l^n$ we see that, $m_2 + r \ge n$. Thus we see that $H \subset T \oplus H_1 \oplus l^{n-r} H_2$ or if $m_2 = 0, T \oplus l^{n-r} H_1 \oplus H_2$, i.e. the subextension of degree l^{n-r} of either K_1 or K_2 is contained in K. The proof for l = 2 is similar.

IV. We now compute a few examples

Example 1

Let l = 2, $F = \mathbb{Q}(\sqrt{-p})$, where $p \equiv 5 \pmod{8}$. Then C(2) is cyclic, and $\tilde{\mathfrak{p}}_2$ is not a square in C, where \mathfrak{p}_2 is the prime of F dividing 2, and $\tilde{\mathfrak{p}}_2$ is the class of \mathfrak{p}_2 in C, (see the proof of Lemma 13). Thus $\tilde{\mathfrak{p}}_2$ generates C(2) and $C_s(2) = 0$.

It is not hard to prove that we have an exact sequence similar to that of Theorem 6,

$$0 \to ((\prod_{\mathfrak{p} \in S} F_{\mathfrak{p}})/U_S)(l) \to T \to C_S(l)$$

which in this case reduces to T = 0 since -1, 2, and -2 are non-squares in $F_p = \mathbb{Q}_2(\sqrt{3})$. Let ε be a fundamental unit of $\mathbb{Q}(\sqrt{p})$ and let $K = F(i, \alpha)$, where $\alpha^4 = 2\varepsilon$. We claim that K/F is cyclic of degree 8, 2-ramified, and that K/\mathbb{Q} is normal and non-abelian. First, K/\mathbb{Q} is normal, for any automorphism of K sends α to a fourth root of 2ε or $2\varepsilon'$ where ε' is the conjugate of ε . But $N_{O(\sqrt{p})/\mathbb{Q}}(\varepsilon) = -1$ since $p \equiv 1(4)$, and so

$$(2\varepsilon')(2\varepsilon) = -4 = (1-i)^4.$$

Thus $(1-i)/\alpha$ is a fourth root of $2\varepsilon'$ in K. Next, Gal (K/F) is cyclic of degree 8, for if $\sigma \in \text{Gal}(K/F)$ is non-trivial on F(i) then $\sigma\varepsilon = \varepsilon'$ so $\sigma\alpha = i^j(1-i)/\alpha$ for some *j*. Applying σ again we see that $\sigma^2\alpha = i(-1)^j\alpha$, so σ^2 has order 4 in Gal (K/F), and hence, σ generates Gal (K/F). It is obvious that K/F is 2-ramified and K/\mathbb{Q} is not abelian since $\mathbb{Q}(^4\sqrt{2\varepsilon})/\mathbb{Q}$ is not normal. By Theorem 12, the quartic subextension, *E*, of K/F lies in K_2 . Also by applying Lemma 4 the only cyclic 2-ramified degree 8 extensions of *F* containing *E* which are normal over \mathbb{Q} are *K* and $F(i, \beta)$ where $\beta^4 = -2\varepsilon$. Since $-4 = N_{Q(\sqrt{p})/Q}(2\varepsilon) \equiv (2\varepsilon)^2 \pmod{q}$, where q divides *p* in $Q(\sqrt{p})$, it follows that 2ε is a square in $\mathbb{Q}_p(\sqrt{p}) = \mathbb{Q}_p(\sqrt{-p})$.

Since -1 is a square but not a fourth power in $\mathbb{Q}_p(\sqrt{p})$, exactly one of 2ε , -2ε is a fourth power in $\mathbb{Q}_p(\sqrt{p})$, and so p splits completely in exactly one of $K = F(i, \alpha)$ and $F(i, \beta)$, where p is the prime of F dividing p. By Theorem 11, this field is the 8th degree subfield of K_2 .

REMARK: Since F(i) is the 2-Hilbert class field of F, F(i) has odd class number and no unramified abelian 2-extension. As F(i) has a single prime containing 2, it follows, [7], that all subfields of K_2 have odd class number, and hence, the Iwasawa invariants of K_2/F are trivial.

Example 2

Let l = 2. We assume that d has at least one odd prime divisor $\neq \pm 1(8)$. This will insure that all 2-ramified quadratic extension of F are of the form $F(\sqrt{m})$ or $F(\sqrt{2m})$ where m|d (m may be negative) [2, § 3]. In this case we claim that if 2T = 0, then there will be a unique 2-ramified quadratic extension of F in which all the odd prime divisors of d split completely. Theorem 11 then tells us that this must be the quadratic subextension of K_2 . We require a lemma.

LEMMA (13): Let $\delta = 0$ or 1 and let m|d, m > 0. Suppose for every odd p|d, the prime $\mathfrak{p}|p$ in F splits in $k = F(\sqrt{-2^{\delta}m})$. Then k has a quadratic 2-ramified extension K such that K/\mathbb{Q} is normal and K/F is cyclic (in fact K/\mathbb{Q} is dihedral).

PROOF: Let $F_1 = \mathbb{Q}(\sqrt{-2^{\delta}m})$, $F_2 = \mathbb{Q}(\sqrt{2^{\delta}d/m})$. The hypotheses of this lemma imply that all odd p dividing m split from \mathbb{Q} to F_2 and all odd p dividing d/m split from \mathbb{Q} to F_1 . We may suppose that if 2 divides $2^{\delta} d/m$, then 2 does not remain prime in F_1 . If it did, then we would have $\delta = 0$, $-m \equiv 5(8)$, and 2|d. But by the splitting of p|d, we see that (-m/p) = 1 for p|(d/m) and ((d/m)/p) = 1 for p|m, so $(-m, d/m)_p = 1$ for all odd p where $(.)_p$ denotes the rational Hilbert 2-symbol at p. By reciprocity, $1 = (-m, d/m)_2 = (-m, 2)_2$, and we have a contradiction. Now, for each $p|(2^{\delta}d/m)$ choose a prime p|p in F_1 and let $\mathfrak{A} = \prod_{p|(2^{\delta}d/m)} \mathfrak{P}$. Then, since all $p|(2^{\delta}d/m)$ split or ramify in F_1 , we have $N_{F_1/Q}\mathfrak{A} = 2^{\delta}d/m$. There is an isomorphism

$$C/C^2 \simeq \prod_{p|\mathscr{D}} \{\pm 1\}$$
 $\mathfrak{B} \to (\dots (N_{E/Q}\mathfrak{B}, \mathscr{D})_p \dots)$

where C is the class group of a complex quadratic field, E, of discriminant \mathscr{D} , and $\prod' \{\pm 1\}$ is a subgroup of $\prod \{\pm 1\}$, [5, § 26, 29]. Using this isomorphism on $E = \mathbb{Q}(\sqrt{-2^{\delta}m})$ we see that \mathfrak{A} is a square in the class group

of *E*. Hence, there is an element, β , of *E* such that $(\beta) = \mathfrak{AB}^2$ for some ideal \mathfrak{B} . Let $K = k(\sqrt{\beta})$; clearly K/F is 2-ramified. Let $N_{E/Q}\mathfrak{B} = b$. Since $\sqrt{\beta}\sqrt{\beta} = \sqrt{N_{E/Q}\beta}$ where $\overline{\beta}$ is the conjugate of β , *K* is normal if it contains $\sqrt{N_{E/Q}\beta} = b\sqrt{2^{\delta}d/m}$, which it does. Let $\sigma \in \text{Gal}(K/F)$ which is not trivial on *k*.

$$\sigma(\sqrt{\beta})\sigma(\sqrt{\beta}) = \sigma(b\sqrt{2^{\delta}d/m}) = -b\sqrt{2^{\delta}d/m} = -\sqrt{\beta}\sqrt{\beta} \quad \text{and} \quad \sigma\beta = \overline{\beta}.$$

Thus $\sigma^2(\sqrt{\beta}) = \pm \sigma(\sqrt{\beta}) = -\sqrt{\beta}$ and σ has order 4 implying that K/F is cyclic. Also since $Q(\sqrt{\beta})/Q$ is not normal, K/\mathbb{Q} is not abelian and so is dihedral.

To use this lemma we note that the hypothesis that some odd prime divisor of d is not congruent to $\pm 1(8)$ implies that it does not split in $F(\sqrt{2})$, the quadratic subfield of K_1 , and hence, does not split in the third quadratic subfield of L. If all the odd prime divisors of d split in two 2-ramified quadratic extensions of F, then one of these extensions would be disjoint from L. But by the lemma we would have a degree 4 cyclic 2-ramified extension, F' of F disjoint from L. Hence Gal $(F'L/L) \approx \mathbb{Z}/4\mathbb{Z}$ would be a quotient of T, contradicting the fact that 2T = 0.

Example 3 (c.f. $[1, \S III]$)

Let l = 3 and suppose F has class number prime to 3. From the sequence of Theorem 5 we see that $T \simeq \mathbb{Z}/3\mathbb{Z}$ if $d \equiv 3(9)$, $d \neq 3$, and T = 0 otherwise as F_q , $q \in S$, contains cube roots of 1 only when $d \equiv 3(9)$. We divide into cases:

Case (i): $d \neq 3(\mathfrak{P})$: Since T = 0, Theorem 12 tells us that any cubic 3-ramified extension of F normal and non-abelian over \mathbb{Q} must lie in K_2 . Let $k = F(\rho)$ where ρ is a primitive cube root of 1, and let ε be a fundamental unit of $\mathbb{Q}(\sqrt{3d})$. First we claim that $k(\alpha)/k$ where $\alpha^3 = \varepsilon$ is 3-ramified, $k(\alpha)/\mathbb{Q}$ is normal, and $k(\alpha)/F$ is abelian. It is obvious that $k(\alpha)/k$ is 3-ramified. If σ is an automorphism of $k(\alpha)$ then

$$(\alpha\sigma(\alpha))^3 = \varepsilon\sigma(\varepsilon) = \pm 1$$

or ε^2 so $\alpha\sigma(\alpha) = \pm \rho^i$ or $\pm \rho^i \alpha^2$ and $\sigma(\alpha) \in k(\alpha)$. Hence $k(\alpha)/\mathbb{Q}$ is normal. Let σ be a lifting of order 2 of the generator of Gal (k/F) to $k(\alpha)$ and let $\lambda \in \text{Gal}(k(\alpha)/k)$, $\lambda(\alpha) = \rho\alpha$. As above, $\alpha\sigma(\alpha) = \pm \rho^i$, but

$$\alpha\sigma(\alpha) = \sigma(\alpha\sigma(\alpha)) = \pm \rho^{-i},$$

so i = 0. From this, it follows that $\sigma \lambda = \lambda \sigma$. Thus Gal $(k(\alpha)/F)$ is cyclic, and so $\langle \sigma \rangle$ is a characteristic subgroup. Hence its fixed field, E, is normal over \mathbb{Q} . Also E/\mathbb{Q} is not abelian, or $k(\alpha)/\mathbb{Q}$ would be, so Gal $(E/\mathbb{Q}) \approx S_3$. Finally, we claim that $E = F(\alpha + \sigma(\alpha))$. Clearly, $F(\alpha + \sigma(\alpha)) \subseteq E$ but α satisfies the polynomial $x^2 - (\alpha + \sigma(\alpha))x \pm 1$ so $[k(\alpha) : F(\alpha + \sigma(\alpha))] \leq 2$.

Case (ii): $d \equiv 3 \pmod{9}$: We know by earlier remarks in Case (i) and by Lemma 4 that there are two disjoint 3-ramified cubic extensions of F which are dihedral over \mathbb{Q} . Exactly one of the four cyclic subfields of their composite over F lies in K_2 . The computation in Case (i) is valid for $d \equiv 3 \pmod{9}$ so that $F(\alpha + \sigma(\alpha))/F$ is such an extension, where $\alpha^3 = \varepsilon$ is the fundamental unit in $\mathbb{Q}(\sqrt{3d})$, and σ is a lifting of order 2 of the non-trivial automorphism in Gal $(F(\sqrt{-3})/F)$. Since $d \equiv 3 \pmod{9}$, the principal ideal (3) = qq' is a product of distinct primes in $\mathbb{Q}(\sqrt{3d})$. Let $(\beta) = q^m$, where m is the order of q in the class group of $Q(\sqrt{3d})$. Since the class number of F is prime to 3, a theorem of Scholz, [10], implies that the class number of $\mathbb{Q}(\sqrt{3d})$ is not divisible by 3, and hence $3 \not\mid m$. Let $\gamma^3 = 3^i \beta$, where i = 1 or 2 and $i \equiv m \pmod{3}$. A proof entirely analogous to Case (i) shows that $F(\gamma + \sigma(\gamma))/F$ is a 3-ramified cubic extension of F which has S_3 as Galois group over Q. We must next determine which field lies in K_2 (it is clear that $F(\alpha + \sigma(\alpha)) \neq F(\gamma + \sigma(\gamma))$) as $(\gamma \alpha)^3$ and $(\gamma \alpha^2)^3$ are non-cubes in $k = F(\sqrt{-3})$). For this we must consider the extensions of $k = F(\sqrt{-3})$.

PROPOSITION (14): Let $F_1 = \mathbb{Q}(\sqrt{d_1})$, $F_2 = \mathbb{Q}(\sqrt{d_2})$, $F_3 = \mathbb{Q}(\sqrt{d_1d_2})$, and $k = F_1F_2$. Suppose *l* is an odd prime, and let M_i (respectively *M*) be the maximal abelian *l*-ramified *l*-extension of F_i (respectively *k*). If T_i (respectively *T*) is the *l*-torsion subgroup of Gal (M_i/F_i) (respectively Gal (M/k)), then $T \simeq T_1 \oplus T_2 \oplus T_3$ and $M = kM_1M_2M_3$.

PROOF: Let σ generate Gal (k/F_1) and τ generate Gal (k/F_2) and extend these to $\sigma, \tau \in \text{Gal}(M/\mathbb{Q})$, automorphisms of order 2. If G = Gal(M/k), we can decompose G as a $\langle \sigma, \tau \rangle$ module, so that $G = G_{++} \oplus G_{+-} \oplus G_{-+}G_{--}$, where e.g. G_{+-} is the subgroup of G fixed by σ and inverted by τ (i.e. $G_{+-} = (1+\sigma)(1-\tau)G$). The fixed field E_1 of $G_{-+} \oplus G_{--} = (1-\sigma)G$ is a normal extension of \mathbb{Q} , and is the maximal subextension of M which is abelian over F_1 . Hence the subfield of E_1 fixed by σ is contained in M_1 and so equal to M_1 . We proceed similarly for M_2 and M_3 , and since

$$(G_{-+} \oplus G_{--}) \cap (G_{+-} \oplus G_{--}) \cap (G_{-+} \oplus G_{+-}) = 0,$$

we see that $M = kM_1M_2M_3$. Also the field fixed by $\langle \sigma, \tau \rangle$ and $G_{+-} \oplus G_{-+} \oplus G_{--}$ is an *l*-ramified abelian *l*-extension of Q, and so must be the cyclotomic \mathbb{Z}_l -extension of Q. Thus G_{++} is torsion free, and since T_1 is the torsion subgroup of $G_{++} \oplus G_{+-}$, etc., we deduce that $T \simeq T_1 \oplus T_2 \oplus T_3$.

We apply this proposition for $F_1 = F = \mathbb{Q}(\sqrt{-d})$, $d \equiv 3 \pmod{9}$, and $F_2 = \mathbb{Q}(\sqrt{3d})$. As we remarked in the beginning of this example, *T*, has order 3. By the same method one sees that $T_3 = 0$, and T_2 is the 3-torsion subgroup $(U_3 \times U_3)/\langle \pm 1, \varepsilon \rangle$, where U_3 is the group of units in \mathbb{Q}_3 .

In order that $T_2 \neq 0$, we must have ε a cube in \mathbb{Q}_3 . However if $\varepsilon \in \mathbb{Q}_3^3$, then $k(\alpha)/k$ would be unramified, and 3 would divide the class number of k. It is well-known that the 3-primary subgroup of the class group of k is isomorphic to the product of the 3-primary subgroups of the class groups of F and F_2 , both of which are trivial. Thus $T \approx T_1$ has order 3. Furthermore, as in Theorem 6, T is isomorphic to the 3-torsion subgroup of J_k/k^*J^S . We choose as representative, the idèle $x = (\rho, 1, ...)$ of J_k with a cube root of 1, ρ , in the q_0 place, and 1 elsewhere, where q_0 is a prime of k dividing q' in $\mathbb{Q}(\sqrt{3d})$. We now use a Kummer pairing to find the subfield of $k(\alpha, \gamma)$ which lies in a \mathbb{Z}_3 -extension of k, namely $k(\alpha^s \gamma^t)$, s, t = 0, 1, 2, lies in a \mathbb{Z}_3 -extension of k if and only if the Hilbert 3-symbol $(\varepsilon^s(3^i\beta)^t, \rho)_{q_0} = 1$, (see [1, § III], [2, § 3]).

Now $\varepsilon \equiv \pm 1 \pmod{q'}$, but $\varepsilon \not\equiv \pm 1 \pmod{q'^2}$ since otherwise $\varepsilon^2 \in k_{q_0}^3$ and as mentioned above $k(\alpha)/k$ would be unramified. Thus $\varepsilon \equiv -2$ or 4 (mod q'2) and since units congruent to 1 mod q'^2 are cubes in $k_{q_0}, (\rho, \varepsilon)_{q_0} = (\rho, -2)_{q_0}^{\pm 1}$. We compute this symbol using reciprocity in the field $\mathbb{Q}(\rho)$, noting that $k_{q_0} = \mathbb{Q}_3(\rho)$. We have $\prod_{q} (\rho, -2)_q = 1$ where q runs over all primes of $\mathbb{Q}(\rho)$. Since all the symbols are tame except for q_3 where $q_3|3$, all but $(\rho, -2)_{q_3}$ and $(\rho, -2)_{q_2}$ are trivial where $q_2|2$. Since $(\rho, -2)_{q_2} = \rho$, it follows that $(\rho, -2)_{q_0} = (\rho, -2)_{q_3} = \rho^2 \neq 1$. Hence $k(\alpha)$ is not contained in a \mathbb{Z}_3 -extension of k. Reciprocity also shows that $(\rho, 3)_{q_0} = 1$ so that $(\rho, 3^i\beta)_{q_0} = (\rho, \beta)_{q_0} = 1$ if and only if $\beta = \pm 1$ (mod q'²). We can alter β by powers of ε to achieve this. Thus $k(\gamma)$ lies in a \mathbb{Z}_3 -extension of k. Since σ acts trivially on Gal $(k(\gamma)/k), k(\gamma) \subset kM$, by the proof of Proposition 14. Hence $F(\gamma + \sigma(\gamma)) \subset k(\gamma) \subset kL$, so $F(\gamma + \sigma(\gamma)) \subset L$. But $F(\gamma + \sigma(\gamma))/\mathbb{Q}$ is normal dihedral, so $F(\gamma + \sigma(\gamma)) \subset K_2$. e.g. if $F_1 = \mathbb{Q}(\sqrt{-21})$, then $F_2 = \mathbb{Q}(\sqrt{7})$, and $\varepsilon = 8 + 3\sqrt{7}$. Take $q = (2 + \sqrt{7})$, so $\sqrt{7} \equiv 5 \pmod{q^2}$ and $-\varepsilon(2 + \sqrt{7}) \equiv 1 \pmod{q^2}$. Thus if $\gamma^3 = -3\epsilon(2+\sqrt{7})$ then $F_1(\gamma+\sigma(\gamma))$ begins the normal, non-abelian \mathbb{Z}_3 -extension of *F*.

REFERENCES

- [1] CANDIOTTI, ALAN: Thesis, Harvard University, 1973.
- [2] CARROLL, J. E.: On Determining the Quadratic Subfields of Z₂-extensions of Complex Quadratic Fields. Compositio Mathematica, 30 (1975) 259-271.
- [3] COATES, JOHN: On K₂ and some Classical Conjectures in Algebraic Number Theory. Annals of Math. 95 (1972) 99–116.
- [4] GREENBERG, R.: On the Iwasawa Invariants of Totally Real Number Fields (to appear).
- [5] HASSE, H.: Zahlentheorie, Akademie-Verlag, 1949.
- [6] IWASAWA, K.: On Z₁-extensions of Algebraic Number Fields. Annals of Math., series 2 (1973) (98) 187-326.
- [7] IWASAWA, K.: A Note on the Class Numbers of Algebraic Number Fields. Abh. Math. Sem. Univ. Hamburg, 20 (1956) 257-58.
- [8] MAZUR, B.: private correspondence.
- [9] SERRE, J. P.: Classes des Corps Cyclotomiques. Seminaire Bourbaki, Dec. 1958.
- [10] SCHOLZ, A.: Idealklassen und Einheiten in Kubischen Körper. Monatsh. Math. Phys. 30 (1933) 211–222.

(Oblatum 27-X-1974 & 22-VIII-1975)

California Institute of Technology Pasadena, California 91125