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Introduction

If F is a number field and 1 a prime, a Zl-extension, K, of F is a normal
extension with Galois group topologically isomorphic to the additive
1-adic integers. For example, the extension Ql~/Q is a Zl-extension,
where 0’ cc is the subfield of Q(03BCl~) the cyclotomic field of all power
roots of unity which is fixed by an automorphism of order l-1. For any
number field F, the Zl-extension F · Ql~/F is called the cyclotomic
ZI-extension of F. If L is the composite of all Zl-extensions of F, then
Gal (L/F) ~ Zal for an integer a. It is known that r2 + 1 ~ a ~ d where
r2 is the number of complex embeddings of F and d = [F : Q] (see [6]),
and Leopoldt’s conjecture is equivalent to a = r2 + 1.

In this article, we consider the case that F is a complex quadratic field.
We try to find a canonical Zl-extension, K2, of F, disjoint from the
cyclotomic Zl-extension, K1, of F such that L = K1K2 (c.f. [4], [8]).
We determine the initial layers of K2 in some cases by considering the
torsion subgroup, T, of the Galois group of the maximal abelian 1-

ramified, i.e., unramified at all primes not dividing l, pro-1 extension of F.
For an abelian group A, and a prime 1, we denote by A(l) the 1-power

torsion subgroup of A, and by A1 the subgroup of elements of A of
exponent 1.

1

Let F/Q be normal and let 1 be a prime number. Let M be the maximal
normal extension of F such that the Galois group, G = Gal (M/F) is an
abelian pro-1 group and such that M/F is l-ramified. Then M is a normal

* Supported in part by NSF Grant GP-40871.
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extension of Q and Gal (F/Q) acts on G by conjugation. We shall consider
the structure of G as a Zl-module and as a Gal (F/Q)-module.

LEMMA (1): l,f’ [F : Q]  oo, then G is a finitely generated Zl-module.

PROOF: It suffices to show that GIIG is finite [9, §6]. Now G11G is a
quotient of the Galois group over F(03B6) of the composite of all cyclic,
degree 1, 1-ramified extensions of F((), where 03B6 is a primitive lth root of 1.
Thus, it is enough to show that F(C) has only finitely many cyclic 1-

ramified extensions of degree 1. By Kummer theory, all such extensions
are of the form F(03B6, 03B11/l), a E F(03B6). But F((, 03B11/l)/F(03B6) is 1-ramified if and
only if the principal ideal (a) = l where 8l is a product of primes
dividing 1. Let A be the set of all such a. Then we have an exact sequence,

where S is the set of primes of F(03B6) dividing 1, Us is the group of S-units
in F(C), and (CS), is the group of elements of exponent 1 in the S-class

group of F(03B6). But Cs is finite and, by the S-unit theorem, US is finitely
generated. Hence A/ F( ()*’ is finite.

COROLLARY (2): G z T E9 ZÎ where T is a finite abelian l-group.

PROOF : G is a finitely generated module over Zi, which is a p.i.d.

We now restrict our attention to F complex quadratic. By the validity
of Leopoldt’s conjecture in this case, a = 2. Let T denote complex
conjugation on M. Then i generates Gal (F/Q) and so acts on G. The
torsion subgroup, T, of G is stabilized by c so the fixed field, L, of T is
normal over Q, and i acts on Gal (L/F) ,: ?Lz ED ?L,. It is easy to see that
L is the composite of all ?L,-extensions of F. In particular, if Ki is the
cyclotomic Zi-extension of F, then K1 c L. We consider the question
of finding a complement, K2, to Ki, i.e. a Zl-extension, K2/F, such that
Ki n K2 = F and K2/Q is normal.

THEOREM (3): If 1 is odd or if 1 = 2 and all quadratic subextensions of
L/F are normal over (1), then there is a unique complement, K2, to K1.
Furthermore, if we write

then i inverts the elements of Hl and acts trivially on H2.
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PROOF : We have an exact sequence

which implies that H1 ~ Zl. Let a be a generator of Gal (L/F) modulo H1.
Since K1/Q is normal abelian, Hl is a i submQdule and a’ = a + h1 for
some h’ E H1. Now i has order 2, so either inverts Ni or acts trivially.
But if i acted trivially we would have a = a03C42 = a + 2h’1 so h i = 0 and
a03C4 = a. This would imply that L/Q was abelian and that if E were the
subfield of L fixed by 03C4, then L/Q would be 1-ramified abelian with
Gal (L/Q) z Z, E9 Zl contradicting the Kronecker-Weber theorem.

Therefore, i inverts H1. Now if h’ E 2H 1 and we let h2 = a + h’1/2, then
h2 = h2 so we can take H2 to be the Zi-module generated by h2. But
H 1 = 2H1 for 1 odd. For 1 = 2, the sequence (1) implies that h 1 E 2H 1
if and only if h’ E 2 Gal (L/F) since Z2 has no torsion. But all quadratic
subfields of L/F are normal over Q if and only if

To show uniqueness, it is enough to show that any cyclic submodule of
Gal (L/F) which is invariant under r lies in Hl or H2. This follows from
the following lemma.

LEMMA (4): The Zl-submodules of Hl EB H2 invariant by i are of the
form lm1H1 EB 1m2H2 for 1 odd, and of the form 2m1H1 EB 2m2H2 or
2m1H1 ~ 2m2H2, 2m1-1 hl + 2m2 - 2h2&#x3E; where hi is a generator of Hi as
a Z2-module for 1 = 2.

PROOF : Let H be invariant under i. If alhl + a2h2 E H, ai E Zl then
(1 + 03C4)(a1h1 + a2h2) = 2a2h2 E H, (1 -,r)(alh, + a2h2) = 2a1h1 E H. If 1 is

odd we get aihi E H so H is the direct sum of its projections onto the Hi.
If 1 = 2 we see 2"’’Hi ~ 2m2H2 cHe 2m1-1H1 EB 2m2-1H2 for some
ml, m2 and, noting that 2m1H1 ~ 2m2H2, 2m1-1h1 +2m2-1h2) is in fact
invariant under i, we are done.

REMARKS: 

(i) If 1 is odd, then H 1 = (1 - 03C4) Gal (L/F), H2 = (1 + 1) Gal (L/F).
(ii) By [2, § 3], if F = Q(-d) where at least one odd prime dividing
d is not congruent to ± 1 modulo 8, then all quadratic subextensions of
L/F are normal over Q. This condition is not necessary, however, since,
e.g., Q(-p), p --- 9(16) also has this property. From now on we assume
that all quadratic subextensions of L are normal over Q.
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THEOREM (5): If 1 is odd, then G : T E9 Hl E9 H2 where T is a finite
abelian l-group, andr inverts the elements of T and of H1 and acts trivially
on H2.

PROOF : By Corollary 2, G ~ T E9 H1 E9 H2 as Zl-modules, where T
is invariant underr. Choose a,, a2 E G such that ai + T generates Hi. Then

ai - - al + tl, a03C42 = a2 + t2, ti E T. Applying i again we have

Thus t’ 1 = tl, t2 = - t2. Let h1 = a1 - t1/2, h2 = a2 + t2/2. Then

h03C41 = -hi, h2 = h2. It follows that we can write G = T 0 H1 ~ H2
where Hi is now taken to be the cyclic module generated by hi. Now
write T = (1 + 03C4)T ~ (1-03C4)T, so that i acts trivially on the first factor
and inverts the second. Let K’ be the subfield of M fixed by ( 1- 1) T ~ H1.
Then K’/F is an abelian 1-ramified pro-1 extension such that i acts
trivially on Gal (K’/F). Hence K’/Q is abelian and so if K" is the subfield
of K’ fixed by i, then K"/Q is an abelian 1-ramified pro-l extension with

By the Kronecker-Weber theorem, (1 + 03C4)T = 0. Thus i inverts all

elements of T.

REMARK: When 1 = 2 an analogous decomposition into the direct sum
of i-modules is not generally possible. If all odd primes dividing the
discriminant of F are congruent to ± 1 modulo 8, for example, such a
decomposition can not occur even if the conditions of Theorem 3 are
satisfied.

II 

We next consider the finite group T

THEOREM (6): Let S be the set of primes dividing 1 in F; U p the group
of units in the completion F p of F at p; -0 the closure of the group of units,
U, of F in nPESUp; and let C be the class group of F. Then we have an
exact sequence
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PROOF (c.f. [2]): By class field theory, Gal (M/F) z J/F*JS(l) where J
is the idèle group of F and J’ is the subgroup, J’ = 03A0~S{1}  03A0~SUp.
The map

is continuous and F*JS lies in the kernel, so we obtain a continuous

surjection J/PÎ - C. The kernel of this map is naturally isomorphic
to (03A0p~SUp)/U, and we obtain the desired sequence by taking 1-power
torsion.

We note that since F is complex quadratic, U is finite, so U = U.

COROLLARY (7): If 1 is odd then T ~ C(p is injective unless 1 = 3 and

F = Q(-3m), m = 1(3), m ~ 1. I n this case ((03A0p~SUp)/U)(3) has

order 3.

PROOF: If 1 &#x3E; 3, then Up contains no primitive lth root of 1 as

[Fp : F] ~ 2. Since U consists of roots of 1, the quotient has no element
of order 1. If 1 = 3, then Up contains a primitive cube root of 1 exactly
when F = Q(- 3m), m --- 1(3) but no ninth root of 1, and U contains
no cube root of 1 unless m = 1. Since there is only one prime in S,

has order 3. if m =1= 1 (and is trivial for m = 1).

COROLLARY (8): If 1 = 2, T - C(2) is injective unless F = Q( d)
and d ~ ± 1(8). If d == ± 1(8) we have an exact sequence

which splits if d = -1(8) and does not split if d = 1(8).

PROOF: See [2, § 2].
We can also bound T from below in terms of C(l).

PROPOSITION (9) : If F is the l-Hilbert class field of F then Gal (F/F n L)
is a quotient of T.

PROOF : We have FL ~ M, so Gal (FL/L) ~ Gal (F/F ~ L) is a

quotient of Gal (M/L) = T.
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We are indebted to the referee for pointing out that it is usually
(not always) true that T = Gal (FL/L) and that M = FL.
By lemma 4 the maximal subfield of L whose Galois group over F is

acted on by inversion by i is K2 for 1 odd, and K2(2) for 1 = 2. Since
Gal (F/F) is inverted by i, F n L lies in these subfields.

COROLLARY (10): Let ln be the exponent of C(l). Then |C(l)|/ln divides
1 TI if 1 is odd and |C(2)|/2n+1 divides |T|

PROOF : Gal (F n K2/F) is a quotient of C(l) and Gal (K21F) for 1 odd or
of C(2) and Gal (K2(2)/F) for 1 = 2.

III

The following result is useful in restricting the possible candidates for
the initial layers of K2

THEOREM (11) : Let p ~ 1 be a prime number such that a unique prime p of
F divides it. Then K2 is the unique Zrextension of F in which p splits
completely.

PROOF : Let H be the decomposition group of p in Gal (L/F). Since
p03C4 = p, H is normal in Gal (L/Q). But since p does not ramify in L, H is
a cyclic Zl-submodule of Gal (L/F). Hence, by the proof of Theorem 3,
H c H 1 or H2. But if H c H1, then p would split completely in K 1,
which is not the case [3, § II]. Thus H c H2, and p splits completely
in K2. Any two cyclic Zi-submodules of Gal (L/F) intersect trivially or
in one of the modules so the subgroups fixing any two distinct Zl-
extensions are disjoint. Thus if p split completely in any Zrextension
besides K2, p would split completely in L, and so in K1, which is not
possible.
The following theorem tells us that if K is a sufficiently large cyclic

1-ramified 1-extension of F normal over Q, then K must have a sizeable
intersection with K1 or K2. If T inverts Gal (K/F), then, the intersection
must be with K2.

THEOREM (12): Let zrT = 0. Suppose K/F is a cyclic l-ramified extension
of degree ln with n &#x3E; r if 1 is odd and n &#x3E; r + 1 if l = 2, and that K/Q is
normal. Then the subextension of K/F of degree ln-r if 1 is odd and ln - r -1
if l = 2 lies either in K 1 or K2.
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PROOF : As we noted in the proof of Theorem 5, G : T E8 H1 E8 H2
as Z,-modules (and even as 03C4 modules for 1 odd). Let H be the subgroup
of G fixing K. We consider the case 1 odd. Since H is normal, by Lemma 4
the projection of H into Ni E8 H2 must be of the form lm1H1 ~ 1m2H2.
By the cyclicity of G/H, either ml or m2 is 0. Say ml = 0. Also
lrH = 0 ~ lrH1 ~ lm2 + rH2 c H. Since 1 GIHI = ln we see that, m2 + r ~ n.
Thus we see that H c T C H 1 ~ ln - rH2 or if M2 = 0, T C ln-rH 1 e H2,
i.e. the subextension of degree ln - r of either K 1 or K2 is contained in K.
The proof for 1 = 2 is similar.

IV. We now compute a few examples

Example 1
Let 1 = 2, F = Q(-p), where p = 5 (mod 8). Then C(2) is cyclic,

and 2 is not a square in C, where p2 is the prime of F dividing 2, and
2 is the class of p2 in C, (see the proof of Lemma 13). Thus 2 generates
C(2) and Cs(2) = 0.

It is not hard to prove that we have an exact sequence similar to that
of Theorem 6,

which in this case reduces to T = 0 since -1, 2, and - 2 are non-squares
in Fp = Q2(3). Let e be a fundamental unit of 0(.,..,[p) and let K = F(i, a),
where a4 - 2e. We claim that K/F is cyclic of degree 8, 2-ramified, and
that K/Q is normal and non-abelian. First, K/Q is normal, for any
automorphism of K sends a to a fourth root of 2e or 2s’ where,6’ is the
conjugate of e. But NQ(p)/Q(03B5) = - 1 since p == 1(4), and so

Thus (1- i)/03B1 is a fourth root of 2e’ in K. Next, Gal (K/F) is cyclic of
degree 8, for if 03C3 c- Gal (K/F) is non-trivial on F(i) then a8 = e’ so

uot = i’( 1- i)/03B1 for some j. Applying u again we see that 62a = i(-1)j03B1,
so a2 has order 4 in Gal (K/F), and hence, 6 generates Gal (K/F). It is
obvious that K/F is 2-ramified and K/Q is not abelian since Q(4203B5)/Q
is not normal. By Theorem 12, the quartic subextension, E, of K/F lies
in K2. Also by applying Lemma 4 the only cyclic 2-ramified degree 8
extensions of F containing E which are normal over Q are K and F(i, 03B2)
where 03B24 = -203B5. Since -4 = NQ(p/Q(203B5) ~ (203B5)2(mod q), where q
divides p in Q(p), it follows that 2e is a square in Qp(p) = Qp(-p).
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Since - 1 is a square but not a fourth power in Qp(p), exactly one of
2e, - 2e is a fourth power in Qp(p), and so V splits completely in exactly
one of K = F(i, a) and F(i, j8), where p is the prime of F dividing p. By
Theorem 11, this field is the 8th degree subfield of K2.

REMARK: Since F(i) is the 2-Hilbert class field of F, F(i) has odd class
number and no unramified abelian 2-extension. As F(i) has a single prime
containing 2, it follows, [7], that all subfields of K2 have odd class number,
and hence, the Iwasawa invariants of K2/F are trivial.

Example 2
Let 1 = 2. We assume that d has at least one odd prime divisor =1= :I:: 1(8).

This will insure that all 2-ramified quadratic extension of F are of the
form F(m) or F(2m) where m|d (m may be negative) [2, § 3]. In this
case we claim that if 2T = 0, then there will be a unique 2-ramified
quadratic extension of F in which all the odd prime divisors of d split
completely. Theorem 11 then tells us that this must be the quadratic
subextension of K2. We require a lemma.

LEMMA (13): Let ô = 0 or 1 and let mld, m &#x3E; 0. Suppose for every
odd p|d, the prime vlp in F splits in k = F(-203B4m). Then k has a quadratic
2-ramified extension K such that K/Q is normal and K/F is cyclic (in fact
KIO is dihedral).

PROOF : Let F1 = Q(-203B4m), F2 = Q(203B4d/m). The hypotheses of
this lemma imply that all odd p dividing m split from Q to F2 and all
odd p dividing d/m split from Q to F1. We may suppose that if 2 divides
2a d/m, then 2 does not remain prime in F1. If it dld, then we would have
03B4 = 0, - m ~ 5(8), and 2|d. But by the splitting of p|d, we see that
( - m/p) = 1 for p|(d/m) and ((d/m)/p) = 1 for p1m, so ( - m, d/m)p = 1
for all odd p where (,)p denotes the rational Hilbert 2-symbol at p. By
reciprocity, 1 = ( - m, d/m)2 = ( - m, 2)2, and we have a contradiction.
Now, for each p1(203B4d/m) choose a prime vlp in F1 and let 9Î = Opl(2Õd/m)V.
Then, since all p|(203B4d/m) split or ramify in Fl, we have NF1/Q = 2ad/m.
There is an isomorphism

where C is the class group of a complex quadratic field, E, of discriminant
D, and 03A0’{±1} is a subgroup of 03A0{±1}, [5, § 26, 29]. Using this iso-
morphism on E = Q(-203B4m) we see that q is a square in the class group
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of E. Hence, there is an element, 03B2, of E such that (03B2) = 2 for some
ideal B. Let K = k(03B2); clearly K/F is 2-ramified. Let NE/Q = b.
Since 03B203B2 = NE/Q03B2 where 03B2 is the conjugate of 03B2, K is normal if it
contains NE/Q03B2 = b203B4d/m, which it does. Let 6 E Gal (K/F) which
is not trivial on k.

Thus U 2 and 6 has order 4 implying that K/F
is cyclic. Also since Q(03B2)/Q is not normal, KIO is not abelian and so
is dihedral.

To use this lemma we note that the hypothesis that some odd prime
divisor of d is not congruent to ib 1(8) implies that it does not split in

F(2), the quadratic subfield of K1, and hence, does not split in the third
quadratic subfield of L. If all the odd prime divisors of d split in two
2-ramified quadratic extensions of F, then one of these extensions would
be disjoint from L. But by the lemma we would have a degree 4 cyclic
2-ramified extension, F’ of F disjoint from L. Hence Gal (F’L/L) ~ Z/4Z
would be a quotient of T, contradicting the fact that 2T = 0.

Example 3 (c.f. [1, § III])
Let 1 = 3 and suppose F has class number prime to 3. From the

sequence of Theorem 5 we see that T ~ Z/3Z if d ~ 3(9), d + 3, and
T = 0 otherwise as F,, q E S, contains cube roots of 1 only when d == 3(9).
We divide into cases:

Case (i) : d ~ 3(9): Since T = 0, Theorem 12 tells us that any cubic
3-ramified extension of F normal and non-abelian over Q must lie in K2.
Let k = F(p) where p is a primitive cube root of 1, and let 8 be a funda-
mental unit of Q(3d). First we claim that k(03B1)/k where 03B13 = e is

3-ramified, k(03B1)/Q is normal, and k(03B1)/F is abelian. It is obvious that

k(03B1)/k is 3-ramified. If u is an automorphism of k(03B1) then

or e2 so 03B103C3(03B1) = ± 03C1i or ± 03C1i03B12 and 03C3(03B1) E k(03B1). Hence k(03B1)/Q is normal.
Let 6 be a lifting of order 2 of the generator of Gal (k/F) to k(a) and let
03BB c- Gal (k(03B1)/k), 03BB(03B1) = 03C103B1. As above, 03B103C3(03B1) = ± 03C1i, but
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so i = 0. From this, it follows that a,1 = 03BB03C3. Thus Gal (k(a)/F) is cyclic,
and so 03C3&#x3E; is a characteristic subgroup. Hence its fixed field, E, is normal
over Q. Also E/Q is not abelian, or k(03B1)/Q would be, so Gal (E/Q) z S3.
Finally, we claim that E = F(a + u(oc». Clearly, F(a + 03C3(03B1)) ~ E but a
satisfies the polynomial x2 - (a + a(a))x::1: 1 so [k(03B1) : F(a + 03C3(03B1))] ~ 2.

Case (ii): d --- 3(mod 9): We know by earlier remarks in Case (i)
and by Lemma 4 that there are two disjoint 3-ramified cubic extensions
of F which are dihedral over Q. Exactly one of the four cyclic subfields
of their composite over F lies in K2. The computation in Case (i) is valid
for d ~ 3(mod 9) so that F(a + u(ot»IF is such an extension, where
a3 = 8 is the fundamental unit in CD (J3d), and u is a lifting of order 2
of the non-trivial automorphism in Gal (F(-3)/F). Since d --- 3(mod 9),
the principal ideal (3) = qq’ is a product of distinct primes in Q(3d).
Let (03B2) = qm, where m is the order of q in the class group of Q(3d).
Since the class number of F is prime to 3, a theorem of Scholz, [10],
implies that the class number of Q(3d) is not divisible by 3, and hence
3  m. Let y3 - 3’p, where i = 1 or 2 and i --- m(mod 3). A proof entirely
analogous to Case (i) shows that F(03B3 + 03C3(03B3))/F is a 3-ramified cubic

extension of F which has S3 as Galois group over Q. We must next
determine which field lies in K2 (it is clear that F(03B1 + 03C3(03B1)) ~ F(y + 03C3(03B3))
as (03B303B1)3 and (ya2)3 are non-cubes in k = F(-3)). For this we must
consider the extensions of k = F(-3).

PROPOSITION (14): Let F1 = Q(d1), F2 = Q(d2), F3 - Q(d1d2),
and k = F1F2. Suppose 1 is an odd prime, and let Mi (respectively M) be the
maximal abelian l-ramified 1-extension of Fi (respectively k). If T
(respectively T) is the 1-torsion subgroup of Gal (MilFi) (respectively
Gal (M/k)), then T ~ T1 ~ T2 ~ T3 and M = kM1M2M3’

PROOF: Let 6 generate Gal(k/F1) and T generate Gal (k/F2) and
extend these to 03C3, 03C4 ~ Gal (M/Q), automorphisms of order 2. If

G = Gal (M/k), we can decompose G as a 03C3, T) module, so that

G = G + + (9 G + - Et) G- +G- -, where e.g. G+ - is the subgroup of G
fixed by 6 and inverted by i (i.e. G+ - = (1 + 6)(1- i)G). The fixed field
E1 of G - + Et) G - - = (1- 6)G is a normal extension of Q, and is the
maximal subextension of M which is abelian over F1. Hence the subfield
of El fixed by 6 is contained in M, and so equal to M,. We proceed
similarly for M2 and M3, and since
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we see that M = kMiM2M3. Also the held fixed by 03C3, 03C4&#x3E; and

G + - (D G - + ~ G - - is an 1-ramified abelian 1-extension of Q, and so
must be the cyclotomic Zl-extension of Q. Thus G+ + is torsion free,
and since Tl is the torsion subgroup of G+ + ~ G+ -, etc., we deduce that
T ~ T1 ~ T2 ~ T3.
We apply this proposition for F1 = F = Q( d), d --- 3(mod 9), and

F2 = Q(3d). As we remarked in the beginning of this example, T,
has order 3. By the same method one sees that T3 = 0, and T2 is the
3-torsion subgroup (U3 x U3)/± 1, 8), where U3 is the group of units
in 0. 3.

In order that T2 =1= 0, we must have 8 a cube in Q3. However if 03B5 ~ Q33,
then k(03B1)/k would be unramified, and 3 would divide the class number
of k. It is well-known that the 3-primary subgroup of the class group of k
is isomorphic to the product of the 3-primary subgroups of the class
groups of F and F2, both of which are trivial. Thus T ~ Tl has order 3.
Furthermore, as in Theorem 6, T is isomorphic to the 3-torsion subgroup
of Jk/k*JS. We choose as representative, the idèle x = (p, 1,...) of Jk
with a cube root of 1, p, in the qo place, and 1 elsewhere, where qo is a
prime of k dividing q’ in Q(3d). We now use a Kummer pairing to find
the subfield of k(a, y) which lies in a Z3-extension of k, namely k(asyt),
s, t = 0, 1, 2, lies in a Z3-extension of k if and only if the Hilbert 3-symbol
(8S(3if3Y, p)qO = 1, (see [1, § III], [2, § 3]).
Now e ~ 1 (mod q’), but e 1(mod q’2) since otherwise g2 E k3

and as mentioned above k(03B1)/k would be unramified. Thus 8 --- - 2

or 4 (mod q’2) and since units congruent to 1 mod q,2 are cubes in
kao, (p, 03B5)q0 = (p, - 2):0 1. We compute this symbol using reciprocity in
the field Q(03C1), noting that kao = Q3(03C1). We have nq (03C1, -2)q = 1 where
q runs over all primes of Q(p). Since all the symbols are tame except for
q 3 where q3|3, all but (03C1, - 2)q3 and (p, - 2)a2 are trivial where q212.
Siflce (p, - 2)12 = p, it follows that (p, - 2)q. = (p, - 2)a3 = 03C12 ~ 1.

Hence k(a) is not contained in a Z3-extension of k. Reciprocity also shows
that (p, 3),o = 1 so that (p, 3i03B2)q0 = (p, f3)qO = 1 if and only if 03B2 = ± 1
(mod q’2). We can alter 03B2 by powers of 8 to achieve this. Thus k(y) lies
in a Z3-extension of k. Since 6 acts trivially on Gal (k(y)/k), k(y) ce kM,
by the proof of Proposition 14. Hence F(03B3 + 03C3(03B3)) c k(y) c kL, so

F(y + u(y» c L. But F(y + a(y»/U is normal dihedral, so F(y + 03C3(03B3)) c K2.
e.g. if F1 = Q(-21), then F2 = 0. (J7), and 8 = 8+3J7. Take

q = (2 + 7), so 7 ~ 5 (mod q’2) and - 03B5(2 + 7) ~ 1 (mod q’2). Thus
if 03B33 = 303B5(2+7) then F1(03B3+03C3(03B3)) begins the normal, non-abelian
Z3-extension of F.
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