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INITIAL LAYERS OF Z-EXTENSIONS OF
COMPLEX QUADRATIC FIELDS

J. E. Carroll and H. Kisilevsky*

Introduction

If F is a number field and [ a prime, a Z,-extension, K, of F is a normal
extension with Galois group topologically isomorphic to the additive
l-adic integers. For example, the extension Q' /Q is a Z,-extension,
where Q' is the subfield of Q(y,,) the cyclotomic field of all I power
roots of unity which is fixed by an automorphism of order /— 1. For any
number field F, the Z-extension F-Q'/F is called the cyclotomic
Z~extension of F. If L is the composite of all Z,-extensions of F, then
Gal (L/F) =~ Z} for an integer a. It is known that r,+1 < a < d where
r, is the number of complex embeddings of F and d = [F : Q] (see [6]),
and Leopoldt’s conjecture is equivalent to a = r, + 1.

In this article, we consider the case that F is a complex quadratic field.
We try to find a canonical Z;-extension, K,, of F, disjoint from the
cyclotomic Z-extension, K,, of F such that L = KK, (c.f. [4], [8]).
We determine the initial layers of K, in some cases by considering the
torsion subgroup, T, of the Galois group of the maximal abelian I-
ramified, i.e., unramified at all primes not dividing l, pro-/ extension of F.

For an abelian group 4, and a prime [, we denote by A(l) the I-power
torsion subgroup of A4, and by A, the subgroup of elements of A of
exponent /.

I
Let F/Q be normal and let [ be a prime number. Let M be the maximal
normal extension of F such that the Galois group, G = Gal (M/F) is an

abelian pro-I group and such that M/F is I-ramified. Then M is a normal
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extension of Q@ and Gal (F/Q) acts on G by conjugation. We shall consider
the structure of G as a Z;-module and as a Gal (F/Q)-module.

Lemma (1) If [F: Q] < o, then G is a finitely generated Z;-module.

Proor: It suffices to show that G/IG is finite [9, §6]. Now G/IG is a
quotient of the Galois group over F({) of the composite of all cyclic,
degree [, I-ramified extensions of F({), where { is a primitive Ith root of 1.
Thus, it is enough to show that F({) has only finitely many cyclic I-
ramified extensions of degree I. By Kummer theory, all such extensions
are of the form F({, «'"), a € F({). But F((, a")/F() is I-ramified if and
only if the principal ideal (x) = AUB' where A is a product of primes
dividing . Let 4 be the set of all such a. Then we have an exact sequence,

0 - Ug/UL - A/F(O)* - (Cs),» 0  a—class of B

where S is the set of primes of F({) dividing I, Uy is the group of S-units
in F({), and (Cg), is the group of elements of exponent [ in the S-class
group of F({). But Cg is finite and, by the S-unit theorem, Uy is finitely
generated. Hence 4/F({)*' is finite.

COROLLARY (2): G = T @ Z§ where T is a finite abelian l-group.
ProOOF: G is a finitely generated module over Z,, which is a p.i.d.

We now restrict our attention to F complex quadratic. By the validity
of Leopoldt’s conjecture in this case, a = 2. Let t denote complex
conjugation on M. Then 7 generates Gal (F/Q) and so acts on G. The
torsion subgroup, T, of G is stabilized by t so the fixed field, L, of Tis
normal over Q, and 1 acts on Gal(L/F) = Z, @ Z,. It is easy to see that
L is the composite of all Z,-extensions of F. In particular, if K, is the
cyclotomic Z-extension of F, then K; = L. We consider the question
of finding a complement, K,, to Ky, i.e. a Z;-extension, K,/F, such that
K, n K, = F and K,/Q is normal.

THEOREM (3): If 1 is odd or if | = 2 and all quadratic subextensions of
L/F are normal over Q, then there is a unique complement, K,, to K;.
Furthermore, if we write

Gal(L/F)=H, ® H, where H;= Gal(L/K)) ~ Z,

then 7 inverts the elements of H, and acts trivially on H,.
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Proor: We have an exact sequence
1) 0->H,->Gal(L/F)» 7Z,-0

which implies that H; & Z,. Let a be a generator of Gal (L/F) modulo H,.
Since K,/Q is normal abelian, H, is a T submodule and a* = a+h; for
some k) € H,. Now t has order 2, so either inverts H; or acts trivially.
But if t acted trivially we would have a = a* = a+2h] so hj = 0 and
a’ = a. This would imply that L/Q was abelian and that if L were the
subfield of L fixed by 7, then I//Q would be [-ramified abelian with
Gal (L/Q) = Z, ® Z;, contradicting the Kronecker-Weber theorem.
Therefore, T inverts H,. Now if h; € 2H, and we let h, = a+h}/2, then
h% = h, so we can take H, to be the Z,-module generated by h,. But
H, = 2H, for I odd. For | = 2, the sequence (1) implies that k) € 2H,
if and only if h € 2 Gal (L/F) since Z, has no torsion. But all quadratic
subfields of L/F are normal over Q if and only if

a’ = a modulo 2 Gal (L/F).

To show uniqueness, it is enough to show that any cyclic submodule of
Gal (L/F) which is invariant under 7 lies in H, or H,. This follows from
the following lemma.

LemMMA (4): The Z;-submodules of H, @® H, invariant by t are of the
form I™H, ® I"™H, for | odd, and of the form 2™H, ® 2™H, or
(2™H, @ 2™H,, 2™~ *h, +2™"2h,) where h; is a generator of H; as
a Z,-module for | = 2.

Proor: Let H be invariant under t. If a,h, +a,h, € H, a,€ Z, then
(I +r)a hy +azh,) = 2a,h, € H, (1 —1)a h, +ayh,) = 2a,h e H. If 1 is
odd we get a;h; € H so H is the direct sum of its projections onto the H;.
If | =2 we see 2™H, ® 2™H, c H < 2™ 'H, @ 2™~ 'H, for some
my, m, and, noting that (2™H, @ 2™H,, 2™~ *h, +2™1},> is in fact
invariant under 1, we are done.

REMARKS:
(1) If I is odd, then H, = (1 —1) Gal (L/F), H, = (1+7) Gal (L/F).

(i) By [2,§3], if F = Q(/—d) where at least one odd prime dividing
d is not congruent to +1 modulo 8, then all quadratic subextensions of
L/F are normal over Q. This condition is not necessary, however, since,
e.g., Q(/—p), p = 9(16) also has this property. From now on we assume
that all quadratic subextensions of L are normal over Q.
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THEOREM (5): If lis odd, then G~ T @ H, @ H, where T is a finite
abelian l-group, and t inverts the elements of T and of H, and acts trivially
on H,.

PrOOF: By Corollary 2, G * T @ H, @ H, as Z,-modules, where T
is invariant under t. Choose a4, a, € G such that a;, + T generates H,. Then
al = —a,;+ty, a5 = a,+1t,, t;€ T Applying 7 again we have

2 2
a; =aj =a,—t +t3, a, =a5 = a,+t,+15.

Thus ¢} =t,, t,=—t, Let h, =a,—t,/2, h,=a,+t,/2. Then
h, = —h,, h = h,. It follows that we can writte G=T® H, ® H,
where H; is now taken to be the cyclic module generated by h;. Now
write T = (1+1)T @ (1—1)T, so that 7 acts trivially on the first factor
and inverts the second. Let K’ be the subfield of M fixed by (1—-7)T @ H,.
Then K'/F is an abelian [-ramified pro-l extension such that t acts
trivially on Gal (K'/F). Hence K'/Q is abelian and so if K" is the subfield
of K' fixed by 7, then K"/Q is an abelian I-ramified pro-I extension with

Gal(K"/Q) = Z, ® (1 +7)T.

By the Kronecker-Weber theorem, (1+41t)T = 0. Thus t inverts all
elements of T.

REMARK: When | = 2 an analogous decomposition into the direct sum
of T-modules is not generally possible. If all odd primes dividing the
discriminant of F are congruent to + 1 modulo 8, for example, such a
decomposition can not occur even if the conditions of Theorem 3 are
satisfied.

1I
We next consider the finite group T
THEOREM (6): Let S be the set of primes dividing | in F; U, the group
of units in the completion F,, of F at p; U the closure of the group of units,

U, of F in [ [,esU,; and let C be the class group of F. Then we have an
exact sequence

0- ([TU)ON) - T - C).

peS
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PRrOOF (c.f. [2]): By class field theory, Gal (M/F) = J/F *J5(I) where J
is the idéle group of F and JS is the subgroup, JS = [[,es{1} X [ [esUs-
The map

J-C, (x,) — class of np”p(xp)

is continuous and F*JS lies in the kernel, so we obtain a continuous
surjection J/F*JS — C. The kernel of this map is naturally isomorphic
t0 (] [,esU,)/U, and we obtain the desired sequence by taking I-power
torsion.

We note that since F is complex quadratic, U is finite, so U = U.

COROLLARY (7): If | is odd then T — C(]) is injective unless | = 3 and
F=Q@G/=3m), m=13), m# 1. In this case ((J],esU,)/U)3) has

order 3.

Proor: If 1> 3, then U, contains no primitive Ith root of 1 as
[F, : F] £ 2. Since U consists of roots of 1, the quotient has no element
of order I. If | = 3, then U, contains a primitive cube root of 1 exactly
when F = Q(,/ —3m), m = 1(3) but no ninth root of 1, and U contains
no cube root of 1 unless m = 1. Since there is only one prime in S,

(TT U)U)3)

pesS
has order 3. if m #+ 1 (and is trivial for m = 1).

COROLLARY (8): If | =2, T — C(2) is injective unless F = Q(/ —d)
and d = +1(8). If d = +1(8) we have an exact sequence

0-Z/2Z—>T—>image T -0
which splits if d = —1(8) and does not split if d = 1(8).

Proor: See [2, § 2]
We can also bound T from below in terms of C(J).

PropoSITION (9): If F isthel-Hilbert class field of F then Gal (F/F n L)
is a quotient of T.

ProoF: We have FL = M, so Gal(FL/L)~ Gal(F/[FnL) is a
quotient of Gal (M/L) = T.
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We are indebted to the referee for pointing out that it is usually
(not always) true that T = Gal (FL/L) and that M = FL.

By lemma 4 the maximal subfield of L whose Galois group over F is
acted on by inversion by 7 is K, for | odd, and Kz(ﬁ) for [ = 2. Since
Gal (F/F) is inverted by 1, F n L lies in these subfields.

COROLLARY (10): Let I" be the exponent of C(I). Then |C(l)|/I" divides
|T| if 1is odd and |C(2)|/2"** divides |T)|

Proor: Gal (F n K,/F)is a quotient of C(l) and Gal (K,/F) for l odd or
of C(2) and Gal (Kz(ﬁ)/F) for [ = 2.

11

The following result is useful in restricting the possible candidates for
the initial layers of K,

THEOREM (11): Let p # [ be a prime number such that a unique prime p of
F divides it. Then K, is the unique Z,-extension of F in which p splits
completely.

Proor: Let H be the decomposition group of p in Gal (L/F). Since
p° = p, H is normal in Gal (L/Q). But since p does not ramify in L, H is
a cyclic Z,-submodule of Gal (L/F). Hence, by the proof of Theorem 3,
H < H, or H,. But if H = H,, then p would split completely in K|,
which is not the case [3, §II]. Thus H = H,, and p splits completely
in K,. Any two cyclic Z,-submodules of Gal (L/F) intersect trivially or
in one of the modules so the subgroups fixing any two distinct Z;-
extensions are disjoint. Thus if p split completely in any Z,-extension
besides K,, p would split completely in L, and so in K;, which is not
possible.

The following theorem tells us that if K is a sufficiently large cyclic
l-ramified [-extension of F normal over @, then K must have a sizeable
intersection with K, or K,. If 7 inverts Gal (K/F), then, the intersection
must be with K,.

THEOREM (12): Let I'T = 0. Suppose K/F is a cyclic I-ramified extension
of degree I"with n > rif lisodd and n > r+1if | = 2, and that K/Q is
normal. Then the subextension of K/F of degree I""" if l is odd and I" ™"~ !
if | = 2 lies either in K, or K,.
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Proor: As we noted in the proof of Theorem 5, G~ T ® H, ® H,
as Z;-modules (and even as t modules for [ odd). Let H be the subgroup
of G fixing K. We consider the case [ odd. Since H is normal, by Lemma 4
the projection of H into H, @ H, must be of the form I H,; @ I"H,.
By the cyclicity of G/H, either m; or m, is 0. Say m; = 0. Also
'H=0@ I'H, ® I™*"H, = H.Since|G/H| = I"we see that,m,+r = n.
Thusweseethat Hc T® H, @ " "H,yorifm, =0, T®I"""H, ® H,,
i.e. the subextension of degree I"™" of either K, or K, is contained in K.
The proof for | = 2 is similar.

IV. We now compute a few examples

Example 1

Let [ =2, F = Q(/—p), where p = 5 (mod 8). Then C(2) is cyclic,
and P, is not a square in C, where p, is the prime of F dividing 2, and
P, is the class of p, in C, (see the proof of Lemma 13). Thus §, generates
C(2) and C4(2) = 0.

It is not hard to prove that we have an exact sequence similar to that
of Theorem 6,

0-(( n Fp)/US)(l) - T - Cy))

peS

which in this case reduces to T = 0 since — 1, 2, and —2 are non-squares
in F, = Q,(,/3). Let ¢ be a fundamental unit of Q(/p)andlet K = F(i, o),
where a* = 2¢. We claim that K/F is cyclic of degree 8, 2-ramified, and
that K/Q is normal and non-abelian. First, K/Q is normal, for any
automorphism of K sends « to a fourth root of 2¢ or 2¢’ where ¢ is the
conjugate of &. But Ny 5,a(e) = —1 since p = 1(4), and so

(e)26) = —4 = (1—i)*.

Thus (1 —i)/a is a fourth root of 2¢’ in K. Next, Gal (K/F) is cyclic of
degree 8, for if o€ Gal(K/F) is non-trivial on F(i) then ge = ¢ so
o = #¥(1 —i)/a for some j. Applying o again we see that o2x = i(— 1),
so o2 has order 4 in Gal (K/F), and hence, ¢ generates Gal (K/F). It is
obvious that K/F is 2-ramified and K/Q is not abelian since Q(*,/2¢)/Q
is not normal. By Theorem 12, the quartic subextension, E, of K/F lies
in K,. Also by applying Lemma 4 the only cyclic 2-ramified degree 8
extensions of F containing E which are normal over Q are K and F(i, f)
where B* = —2e Since —4 = Ny voo(28) = (2¢)*(mod q), where q
divides p in Q(,/p), it follows that 2¢ is a square in @,(/p) = Q,(,/—p).
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Since — 1 is a square but not a fourth power in Q,(,/p), exactly one of
2¢, —2e is a fourth power in Q,(/p), and so p splits completely in exactly
one of K = F(i,a) and F(i, B), where p is the prime of F dividing p. By
Theorem 11, this field is the 8th degree subfield of K.

REMARK: Since F(i) is the 2-Hilbert class field of F, F(i) has odd class
number and no unramified abelian 2-extension. As F(i) has a single prime
containing 2, it follows, [ 7], that all subfields of K, have odd class number,
and hence, the Iwasawa invariants of K,/F are trivial.

Example 2

Let! = 2. Weassume that d has at least one odd prime divisor # + 1(8).
This will insure that all 2-ramified quadratic extension of F are of the
form F(,/m) or F(,/2m) where m|d (m may be negative) [2, § 3]. In this
case we claim that if 27 = 0, then there will be a unique 2-ramified
quadratic extension of F in which all the odd prime divisors of d split
completely. Theorem 11 then tells us that this must be the quadratic
subextension of K,. We require a lemma.

LemMa (13): Let 6 =0 or 1 and let m|d, m > 0. Suppose for every
odd pld, the prime p|p in F splits in k = F(\/—2%m). Then k has a quadratic
2-ramified extension K such that K/Q is normal and K/F is cyclic (in fact
K/Q is dihedral).

Proor: Let F, = Q(/—2%m), F, = Q(/2%d/m). The hypotheses of
this lemma imply that all odd p dividing m split from @Q to F, and all
odd p dividing d/m split from Q to F;. We may suppose that if 2 divides
2% d/m, then 2 does not remain prime in F,. If it did, then we would have
0 =0, —m = 5(8), and 2|d. But by the splitting of p|d, we see that
(=m/p) = 1 for pl(d/m) and ((d/m)/p) = 1 for plm, so (—m, d/m), =1
for all odd p where (,), denotes the rational Hilbert 2-symbol at p. By
reciprocity, 1 = (—m, d/m), = (—m, 2),, and we have a contradiction.
Now, for each p|(2°d/m) choose a prime p|p in F; and let A = [ [, 254mP-
Then, since all p|(2°d/m) split or ramify in F, we have Ng U = 2°d/m.
There is an isomorphism

/5T {£1}] Bo(..NgB.9),..)

pl2

where C is the class group of a complex quadratic field, E, of discriminant
9, and [['{+1} is a subgroup of [ [{£1}, [5, § 26, 29]. Using this iso-
morphism on E = Q(,/—2°m) we see that A is a square in the class group
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of E. Hence, there is an element, B, of E such that (8) = AB? for some
ideal B. Let K = k(,/B); clearly K/F is 2-ramified. Let Ng;®B = b.
Since /B/B = \/Ng,oB where f is the conjugate of §, K is normal if it
contains /Ng,B = by/2°d/m, which it does. Let ¢ € Gal (K/F) which
is not trivial on k.

o(/B)o(/B) = o(by/2%d/m) = —b/2%d/m = —/B/F and of = p.

Thus 6%(\/B) = +0(/B) = —/B and ¢ has order 4 implying that K/F
is cyclic. Also since Q(\/B)/Q is not normal, K/Q is not abelian and so
is dihedral.

To use this lemma we note that the hypothesis that some odd prime
divisor of d is not congruent to + 1(8) implies that it does not split in
F(,/2), the quadratic subfield of K, and hence, does not split in the third
quadratic subfield of L. If all the odd prime divisors of d split in two
2-ramified quadratic extensions of F, then one of these extensions would
be disjoint from L. But by the lemma we would have a degree 4 cyclic
2-ramified extension, F’ of F disjoint from L. Hence Gal (F'L/L) ~ Z/4Z
would be a quotient of T, contradicting the fact that 2T = 0.

Example 3 (cf. [1, § IIT])

Let | =3 and suppose F has class number prime to 3. From the
sequence of Theorem 5 we see that T ~ Z/37 if d = 3(9), d + 3, and
T = 0 otherwise as F,, q € S, contains cube roots of 1 only when d = 3(9).
We divide into cases:

Case (i): d # 3(°): Since T = 0, Theorem 12 tells us that any cubic
3-ramified extension of F normal and non-abelian over Q must lie in K.
Let k = F(p) where p is a primitive cube root of 1, and let ¢ be a funda-
mental unit of CD(\/?J). First we claim that k(o)/k where o = ¢ is
3-ramified, k(z)/Q is normal, and k(x)/F is abelian. It is obvious that
k(o)/k is 3-ramified. If ¢ is an automorphism of k() then

(ao(@)® = ea(e) = +1
or &2 50 ao(x) = +p' or +p'a? and () € k(). Hence k(x)/Q is normal.
Let o be a lifting of order 2 of the generator of Gal (k/F) to k(x) and let
A€ Gal (k(o)/k), A(x) = po.. As above, aa(a) = +p', but

ao(@) = o(ao(@) = £p7,
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so i = 0. From this, it follows that A = Ac. Thus Gal (k(x)/F) is cyclic,
and so {¢) is a characteristic subgroup. Hence its fixed field, E, is normal
over Q. Also E/Q is not abelian, or k(x)/Q would be, so Gal (E/Q) =~ S;.
Finally, we claim that E = F(a+o(a)). Clearly, F(a+0d(x)) = E but «
satisfies the polynomial x?—(x+a(a)x+1 so [k(®) : Fla+o(w)] < 2.

Case (ii): d = 3(mod 9): We know by earlier remarks in Case (i)
and by Lemma 4 that there are two disjoint 3-ramified cubic extensions
of F which are dihedral over Q. Exactly one of the four cyclic subfields
of their composite over F lies in K,. The computation in Case (i) is valid
for d = 3(mod 9) so that F(a+o(a))/F is such an extension, where
o’ = ¢ is the fundamental unit in Q(,/3d), and o is a lifting of order 2
of the non-trivial automorphism in Gal (F(,/ — 3)/F). Since d = 3(mod 9),
the principal ideal (3) = qq' is a product of distinct primes in Q(,/34).
Let (f) = q™, where m is the order of q in the class group of Q(\/gfl).
Since the class number of F is prime to 3, a theorem of Scholz, [10],
implies that the class number of Q(/3d) is not divisible by 3, and hence
3 fm. Let y3 = 38, where i = 1 or 2 and i = m(mod 3). A proof entirely
analogous to Case (i) shows that F(y+o(y))/F is a 3-ramified cubic
extension of F which has S; as Galois group over Q. We must next
determine which field lies in K, (it is clear that F(x+o(x)) # F(y+0(p))
as (y2)® and (ya?)* are non-cubes in k = F(,/—3)). For this we must
consider the extensions of k = F(,/—3).

PROPOSITION (14): Let F, = Q(\/d,), F, = Q(/d,), F; = Q(\/d,d,),
and k = FF,. Suppose l is an odd prime, and let M, (respectively M) be the
maximal abelian l-ramified l-extension of F, (respectively k). If T,
(respectively T) is the I-torsion subgroup of Gal(M,/F;) (respectively
Gal(M/k)), then T~ T, ® T, ® T, and M = kM, M ,M,.

Proor: Let ¢ generate Gal(k/F,;) and t generate Gal(k/F,) and
extend these to o,7eGal(M/Q), automorphisms of order 2. If
G = Gal (M/k), we can decompose G as a <o, ) module, so that
G=G,,DG,_®G_,.G__, where eg. G, _ is the subgroup of G
fixed by ¢ and inverted by 7 (ie. G, - = (1+0)(1 —7)G). The fixed field
E, of G_, ®G__ = (1-0)G is a normal extension of @, and is the
maximal subextension of M which is abelian over F;. Hence the subfield
of E, fixed by ¢ is contained in M, and so equal to M,. We proceed
similarly for M, and M, and since

(G—+ @G——)Q(G+— @G__)ﬁ(G_+ ®G+——)=0’
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we see that M = kM ,M,M;. Also the field fixed by (o, 1) and
G,_®G_, ®G__ is an l-ramified abelian l-extension of Q, and so
must be the cyclotomic Z-extension of Q. Thus G, is torsion free,
and since T is the torsion subgroup of G, . @ G, _, etc., we deduce that
T~T,®T, DT

We apply this proposition for F; = F = Q(,/—d), d = 3(mod 9), and
F, = Q(/3d). As we remarked in the beginning of this example, T,
has order 3. By the same method one sees that T; = 0, and T, is the
3-torsion subgroup (U; x U;)/{ £ 1, ¢, where U, is the group of units
in Q.

In order that T, # 0, we must have ¢ a cube in Q5. However if ¢ € Q3,
then k(x)/k would be unramified, and 3 would divide the class number
of k. It is well-known that the 3-primary subgroup of the class group of k
is isomorphic to the product of the 3-primary subgroups of the class
groups of F and F,, both of which are trivial. Thus T &~ T, has order 3.
Furthermore, as in Theorem 6, T is isomorphic to the 3-torsion subgroup
of J,/k*J5. We choose as representative, the idéle x = (p, 1,...) of J,
with a cube root of 1, p, in the g, place, and 1 elsewhere, where q, is a
prime of k dividing q" in Q(,/3d). We now use a Kummer pairing to find
the subfield of k(x, y) which lies in a Z;-extension of k, namely k(o®y"),
s, t = 0,1, 2, lies in a Z;-extension of k if and only if the Hilbert 3-symbol
(eG'BY, p)g, = 1, (see [1, §IIT], [2, § 3]).

Now ¢ = +1(mod '), but ¢ # +1(mod q') since otherwise &* € k2,
and as mentioned above k(a)/k would be unramified. Thus ¢ = —2
or 4 (mod q'2) and since units congruent to 1 mod q'2 are cubes in
Koo (0, €)q = (p, —2)E!. We compute this symbol using reciprocity in
the field Q(p), noting that k,, = Qs(p). We have [, (p, —2), = 1 where
q runs over all primes of Q(p). Since all the symbols are tame except for
q; where q;/3, all but (p, —2),, and (p, —2),, are trivial where q,|2.
Since (p, —2),, = p, it follows that (p, —2),, = (p, —2),, = p*> # L.
Hence k() is not contained in a Z ;-extension of k. Reciprocity also shows
that (p, 3),, = 1 so that (p,3'B),, = (0, B)s, = 1 if and only if f = +1
(mod ¢'?). We can alter B by powers of ¢ to achieve this. Thus k(y) lies
in a Zs-extension of k. Since o acts trivially on Gal (k(y)/k), k(y) < kM,
by the proof of Proposition 14. Hence F(y+a(y)) < k(y) = kL, so
F(y+a(y)) = L. But F(y+6(y))/Q is normal dihedral, so F(y+a(y)) = K,.

eg if F; =Q(/—21), then F, = Q(/7), and & = 8+3,/7. Take
q=(2+4/7), s0 /7 =5 (mod ¢'?) and —&(2+./7) = 1 (mod q'?). Thus
if y3 = —33(2+\/7) then F,(y+o(y)) begins the normal, non-abelian
Zs-extension of F.



168 J. E. Carroll and H. Kisilevsky [12]
REFERENCES

[1] CanDIOTTI, ALAN: Thesis, Harvard University, 1973.
[2] CaArroLL,J. E.: On Determining the Quadratic Subfields of Z,-extensions of Complex
Quadratic Fields. Compositio Mathematica, 30 (1975) 259-271.
[3] Coartss, JoHN: On K, and some Classical Conjectures in Algebraic Number Theory.
Annals of Math. 95 (1972) 99-116.
[4] GREENBERG, R.: On the Iwasawa Invariants of Totally Real Number Fields (to appear).
[5] HassE, H.:Zahlentheorie, Akademie-Verlag, 1949.
[6] Iwasawa, K.: On Z-extensions of Algebraic Number Fields. Annals of Math.,
series 2 (1973) (98) 187-326.
[7] Iwasawa, K.: A Note on the Class Numbers of Algebraic Number Fields. 4bh. Math.
Sem. Univ. Hamburg, 20 (1956) 257-58.
[8] Mazugr, B.: private correspondence.
[9] SERRE, J. P.: Classes des Corps Cyclotomiques. Seminaire Bourbaki, Dec. 1958.
[10] ScHoLz, A.:Idealklassen und Einheiten in Kubischen K érper. Monatsh. Math. Phys.
30 (1933) 211-222.

(Oblatum 27-X-1974 & 22-VIII-1975) California Institute
of Technology
Pasadena, California 91125



