Compositio Mathematica

J. E. CARROLL H. Kisilevsky
Initial layers of Z_{l}-extensions of complex quadratic fields

Compositio Mathematica, tome 32, no 2 (1976), p. 157-168
http://www.numdam.org/item?id=CM_1976__32_2_157_0
© Foundation Compositio Mathematica, 1976, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

INITIAL LAYERS OF $\boldsymbol{Z}_{\boldsymbol{l}}$-EXTENSIONS OF COMPLEX QUADRATIC FIELDS

J. E. Carroll and H. Kisilevsky*

Introduction

If F is a number field and l a prime, a \mathbb{Z}_{l}-extension, K, of F is a normal extension with Galois group topologically isomorphic to the additive l-adic integers. For example, the extension $\mathbb{Q}_{\infty}^{l} / \mathbb{Q}$ is a \mathbb{Z}_{l}-extension, where \mathbb{Q}_{∞}^{l} is the subfield of $\mathbb{Q}\left(\mu_{l \infty}\right)$ the cyclotomic field of all l power roots of unity which is fixed by an automorphism of order $l-1$. For any number field F, the \mathbb{Z}_{l}-extension $F \cdot \mathbb{Q}_{\infty}^{l} / F$ is called the cyclotomic \mathbb{Z}_{l}-extension of F. If L is the composite of all \mathbb{Z}_{l}-extensions of F, then $\operatorname{Gal}(L / F) \approx \mathbb{Z}_{l}^{a}$ for an integer a. It is known that $r_{2}+1 \leqq a \leqq d$ where r_{2} is the number of complex embeddings of F and $d=[F: Q]$ (see [6]), and Leopoldt's conjecture is equivalent to $a=r_{2}+1$.

In this article, we consider the case that F is a complex quadratic field. We try to find a canonical \mathbb{Z}_{l}-extension, K_{2}, of F, disjoint from the cyclotomic \mathbb{Z}_{l}-extension, K_{1}, of F such that $L=K_{1} K_{2}$ (c.f. [4], [8]). We determine the initial layers of K_{2} in some cases by considering the torsion subgroup, T, of the Galois group of the maximal abelian l ramified, i.e., unramified at all primes not dividing l, pro- l extension of F.

For an abelian group A, and a prime l, we denote by $A(l)$ the l-power torsion subgroup of A, and by A_{l} the subgroup of elements of A of exponent l.

I

Let F / \mathbb{Q} be normal and let l be a prime number. Let M be the maximal normal extension of F such that the Galois group, $G=\operatorname{Gal}(M / F)$ is an abelian pro-l group and such that M / F is l-ramified. Then M is a normal

[^0]extension of \mathbb{Q} and $\operatorname{Gal}(F / \mathbb{Q})$ acts on G by conjugation. We shall consider the structure of G as a \mathbb{Z}_{l}-module and as a $\operatorname{Gal}(F / \mathbb{Q})$-module.

Lemma (1): If $[F: \mathbb{Q}]<\infty$, then G is a finitely generated \mathbb{Z}_{l}-module.
Proof: It suffices to show that $G / l G$ is finite $[9, \S 6]$. Now $G / l G$ is a quotient of the Galois group over $F(\zeta)$ of the composite of all cyclic, degree l, l-ramified extensions of $F(\zeta)$, where ζ is a primitive l th root of 1 . Thus, it is enough to show that $F(\zeta)$ has only finitely many cyclic l ramified extensions of degree l. By Kummer theory, all such extensions are of the form $F\left(\zeta, \alpha^{1 / l}\right), \alpha \in F(\zeta)$. But $F\left(\zeta, \alpha^{1 / l}\right) / F(\zeta)$ is l-ramified if and only if the principal ideal $(\alpha)=\mathfrak{A B}^{l}$ where \mathfrak{A} is a product of primes dividing l. Let A be the set of all such α. Then we have an exact sequence,

$$
0 \rightarrow U_{S} / U_{S}^{l} \rightarrow A / F(\zeta)^{* l} \rightarrow\left(C_{S}\right)_{l} \rightarrow 0 \quad \alpha \rightarrow \text { class of } \mathfrak{B}
$$

where S is the set of primes of $F(\zeta)$ dividing l, U_{S} is the group of S-units in $F(\zeta)$, and $\left(C_{S}\right)_{l}$ is the group of elements of exponent l in the S-class group of $F(\zeta)$. But C_{S} is finite and, by the S-unit theorem, U_{S} is finitely generated. Hence $A / F(\zeta)^{* l}$ is finite.

Corollary (2): $G \approx T \oplus \mathbb{Z}_{l}^{a}$ where T is a finite abelian l-group.

Proof: G is a finitely generated module over \mathbb{Z}_{l}, which is a p.i.d.
We now restrict our attention to F complex quadratic. By the validity of Leopoldt's conjecture in this case, $a=2$. Let τ denote complex conjugation on M. Then τ generates $\operatorname{Gal}(F / \mathbb{Q})$ and so acts on G. The torsion subgroup, T, of G is stabilized by τ so the fixed field, L, of T is normal over \mathbb{Q}, and τ acts on $\operatorname{Gal}(L / F) \approx \mathbb{Z}_{l} \oplus \mathbb{Z}_{l}$. It is easy to see that L is the composite of all \mathbb{Z}_{l}-extensions of F. In particular, if K_{1} is the cyclotomic \mathbb{Z}_{l}-extension of F, then $K_{1} \subset L$. We consider the question of finding a complement, K_{2}, to K_{1}, i.e. a \mathbb{Z}_{l}-extension, K_{2} / F, such that $K_{1} \cap K_{2}=F$ and K_{2} / \mathbb{Q} is normal.

Theorem (3): If l is odd or if $l=2$ and all quadratic subextensions of L / F are normal over \mathbb{Q}, then there is a unique complement, K_{2}, to K_{1}. Furthermore, if we write

$$
\operatorname{Gal}(L / F)=H_{1} \oplus H_{2} \quad \text { where } \quad H_{i}=\operatorname{Gal}\left(L / K_{i}\right) \approx \mathbb{Z}_{l}
$$

then τ inverts the elements of H_{1} and acts trivially on H_{2}.

Proof: We have an exact sequence

$$
\begin{equation*}
0 \rightarrow H_{1} \rightarrow \operatorname{Gal}(L / F) \rightarrow \mathbb{Z}_{l} \rightarrow 0 \tag{1}
\end{equation*}
$$

which implies that $H_{1} \approx \mathbb{Z}_{l}$. Let a be a generator of $\operatorname{Gal}(L / F)$ modulo H_{1}. Since K_{1} / \mathbb{Q} is normal abelian, H_{1} is a τ submodule and $a^{\tau}=a+h_{1}^{\prime}$ for some $h_{1}^{\prime} \in H_{1}$. Now τ has order 2 , so either inverts H_{1} or acts trivially. But if τ acted trivially we would have $a=a^{\tau^{2}}=a+2 h_{1}^{\prime}$ so $h_{1}^{\prime}=0$ and $a^{\tau}=a$. This would imply that L / Q was abelian and that if L were the subfield of L fixed by τ, then L / Q would be l-ramified abelian with $\operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right) \approx \mathbb{Z}_{l} \oplus \mathbb{Z}_{l}$ contradicting the Kronecker-Weber theorem. Therefore, τ inverts H_{1}. Now if $h_{1}^{\prime} \in 2 H_{1}$ and we let $h_{2}=a+h_{1}^{\prime} / 2$, then $\mathrm{h}_{2}^{\tau}=h_{2}$ so we can take H_{2} to be the \mathbb{Z}_{l}-module generated by h_{2}. But $H_{1}=2 H_{1}$ for l odd. For $l=2$, the sequence (1) implies that $h_{1}^{\prime} \in 2 H_{1}$ if and only if $h_{1}^{\prime} \in 2 \mathrm{Gal}(L / F)$ since \mathbb{Z}_{2} has no torsion. But all quadratic subfields of L / F are normal over \mathbb{Q} if and only if

$$
a^{\tau} \equiv \mathrm{a} \text { modulo } 2 \mathrm{Gal}(L / F) .
$$

To show uniqueness, it is enough to show that any cyclic submodule of $\operatorname{Gal}(L / F)$ which is invariant under τ lies in H_{1} or H_{2}. This follows from the following lemma.

Lemma (4): The \mathbb{Z}_{l}-submodules of $H_{1} \oplus H_{2}$ invariant by τ are of the form $l^{m_{1}} H_{1} \oplus l^{m_{2}} H_{2}$ for l odd, and of the form $2^{m_{1}} H_{1} \oplus 2^{m_{2}} H_{2}$ or $\left\langle 2^{m_{1}} H_{1} \oplus 2^{m_{2}} H_{2}, 2^{m_{1}-1} h_{1}+2^{m_{2}-2} h_{2}\right\rangle$ where h_{i} is a generator of H_{i} as $a \mathbb{Z}_{2}$-module for $l=2$.

Proof: Let H be invariant under τ. If $a_{1} h_{1}+a_{2} h_{2} \in H, a_{i} \in \mathbb{Z}_{l}$ then $(1+\tau)\left(a_{1} h_{1}+a_{2} h_{2}\right)=2 a_{2} h_{2} \in H,(1-\tau)\left(a_{1} h_{1}+a_{2} h_{2}\right)=2 a_{1} h_{1} \in H$. If l is odd we get $a_{i} h_{i} \in H$ so H is the direct sum of its projections onto the H_{i}. If $l=2$ we see $2^{m_{1}} H_{1} \oplus 2^{m_{2}} H_{2} \subset H \subset 2^{m_{1}-1} H_{1} \oplus 2^{m_{2}-1} H_{2}$ for some m_{1}, m_{2} and, noting that $\left\langle 2^{m_{1}} H_{1} \oplus 2^{m_{2}} H_{2}, 2^{m_{1}-1} h_{1}+2^{m_{2}-1} h_{2}\right\rangle$ is in fact invariant under τ, we are done.

Remarks:

(i) If l is odd, then $H_{1}=(1-\tau) \operatorname{Gal}(L / F), H_{2}=(1+\tau) \mathrm{Gal}(L / F)$.
(ii) By $[2, \S 3]$, if $F=\mathbb{Q}(\sqrt{-d})$ where at least one odd prime dividing d is not congruent to ± 1 modulo 8 , then all quadratic subextensions of L / F are normal over \mathbb{Q}. This condition is not necessary, however, since, e.g., $\mathbb{Q}(\sqrt{-p}), p \equiv 9(16)$ also has this property. From now on we assume that all quadratic subextensions of L are normal over \mathbb{Q}.

Theorem (5): If l is odd, then $G \approx T \oplus H_{1} \oplus H_{2}$ where T is a finite abelian l-group, and τ inverts the elements of T and of H_{1} and acts trivially on H_{2}.

Proof: By Corollary 2, $G \approx T \oplus H_{1} \oplus H_{2}$ as \mathbb{Z}_{l}-modules, where T is invariant under τ. Choose $a_{1}, a_{2} \in G$ such that $a_{i}+T$ generates H_{i}. Then $a_{1}^{\tau}=-a_{1}+t_{1}, a_{2}^{\tau}=a_{2}+t_{2}, t_{i} \in T$. Applying τ again we have

$$
a_{1}=a_{1}^{\tau^{2}}=a_{1}-t_{1}+t_{1}^{\tau}, \quad a_{2}=a_{2}^{\tau^{2}}=a_{2}+t_{2}+t_{2}^{\tau}
$$

Thus $t_{1}^{\tau}=t_{1}, \quad t_{2}^{\tau}=-t_{2}$. Let $h_{1}=a_{1}-t_{1} / 2, \quad h_{2}=a_{2}+t_{2} / 2$. Then $h_{1}^{\tau}=-h_{1}, h_{2}^{\tau}=h_{2}$. It follows that we can write $G=T \oplus H_{1} \oplus H_{2}$ where H_{i} is now taken to be the cyclic module generated by h_{i}. Now write $T=(1+\tau) T \oplus(1-\tau) T$, so that τ acts trivially on the first factor and inverts the second. Let K^{\prime} be the subfield of M fixed by $(1-\tau) T \oplus H_{1}$. Then K^{\prime} / F is an abelian l-ramified pro-l extension such that τ acts trivially on $\mathrm{Gal}\left(K^{\prime} / F\right)$. Hence K^{\prime} / Q is abelian and so if $K^{\prime \prime}$ is the subfield of K^{\prime} fixed by τ, then $K^{\prime \prime} / Q$ is an abelian l-ramified pro- l extension with

$$
\operatorname{Gal}\left(K^{\prime \prime} / \mathbb{Q}\right) \approx \mathbb{Z}_{l} \oplus(1+\tau) T
$$

By the Kronecker-Weber theorem, $(1+\tau) T=0$. Thus τ inverts all elements of T.

Remark: When $l=2$ an analogous decomposition into the direct sum of τ-modules is not generally possible. If all odd primes dividing the discriminant of F are congruent to ± 1 modulo 8 , for example, such a decomposition can not occur even if the conditions of Theorem 3 are satisfied.

II

We next consider the finite group T

Theorem (6): Let S be the set of primes dividing l in $F ; U_{\mathfrak{p}}$ the group of units in the completion F_{p} of F at $\mathfrak{p} ; \bar{U}$ the closure of the group of units, U, of F in $\prod_{p \in S} U_{p}$; and let C be the class group of F. Then we have an exact sequence

$$
0 \rightarrow\left(\left(\prod_{\mathfrak{p} \in S} U_{\mathfrak{p}}\right) / \bar{U}\right)(l) \rightarrow T \rightarrow C(l) .
$$

Proof (c.f. [2]): By class field theory, $\operatorname{Gal}(M / F) \approx J / \overline{F^{*} J^{S}}(l)$ where J is the idèle group of F and J^{S} is the subgroup, $J^{S}=\prod_{p \in S}\{1\} \times \prod_{p \not p S} U_{p}$. The map

$$
J \rightarrow C, \quad\left(x_{\mathfrak{p}}\right) \rightarrow \text { class of } \prod^{v_{p}\left(x_{\mathfrak{p}}\right)}
$$

is continuous and $F^{*} J^{S}$ lies in the kernel, so we obtain a continuous surjection $J / \overline{F^{*} J^{S}} \rightarrow C$. The kernel of this map is naturally isomorphic to $\left(\prod_{p \in S} U_{\mathfrak{p}}\right) / \bar{U}$, and we obtain the desired sequence by taking l-power torsion.

We note that since F is complex quadratic, U is finite, so $U=\bar{U}$.
Corollary (7): If l is odd then $T \rightarrow C(l)$ is injective unless $l=3$ and $F=\mathbb{Q}(\sqrt{-3 m}), m \equiv 1(3), m \neq 1$. In this case $\left(\left(\prod_{\mathfrak{p} \in S} U_{\mathfrak{p}}\right) / U\right)(3)$ has order 3.

Proof: If $l>3$, then $U_{\mathfrak{p}}$ contains no primitive l th root of 1 as $\left[F_{\mathfrak{p}}: F\right] \leqq 2$. Since U consists of roots of 1 , the quotient has no element of order l. If $l=3$, then $U_{\mathfrak{p}}$ contains a primitive cube root of 1 exactly when $F=\mathbb{Q}(\sqrt{-3 m}), m \equiv 1(3)$ but no ninth root of 1 , and U contains no cube root of 1 unless $m=1$. Since there is only one prime in S,

$$
\left(\left(\prod_{p \in S} U_{\mathfrak{p}}\right) / U\right)(3)
$$

has order 3. if $m \neq 1$ (and is trivial for $m=1$).
Corollary (8): If $l=2, T \rightarrow C(2)$ is injective unless $F=\mathbb{Q}(\sqrt{-d})$ and $d \equiv \pm 1(8)$. If $d \equiv \pm 1(8)$ we have an exact sequence

$$
0 \rightarrow Z / 2 Z \rightarrow T \rightarrow \text { image } T \rightarrow 0
$$

which splits if $d \equiv-1(8)$ and does not split if $d \equiv 1(8)$.
Proof: See [2, § 2].
We can also bound T from below in terms of $C(l)$.
Proposition (9): If \bar{F} is the l-Hilbert class field of F then $\operatorname{Gal}(\bar{F} / \bar{F} \cap L)$ is a quotient of T.

Proof: We have $\bar{F} L \subseteq M$, so $\operatorname{Gal}(\bar{F} L / L) \approx \operatorname{Gal}(\bar{F} / \bar{F} \cap L)$ is a quotient of $\operatorname{Gal}(M / L)=T$.

We are indebted to the referee for pointing out that it is usually (not always) true that $T=\operatorname{Gal}(\bar{F} L / L)$ and that $M=\bar{F} L$.

By lemma 4 the maximal subfield of L whose Galois group over F is acted on by inversion by τ is K_{2} for l odd, and $K_{2}(\sqrt{2})$ for $l=2$. Since $\operatorname{Gal}(\bar{F} / F)$ is inverted by $\tau, \bar{F} \cap L$ lies in these subfields.

Corollary (10): Let l^{n} be the exponent of $C(l)$. Then $|C(l)| / l^{n}$ divides $|T|$ if l is odd and $|C(2)| / 2^{n+1}$ divides $|T|$

Proof: $\operatorname{Gal}\left(\bar{F} \cap K_{2} / F\right)$ is a quotient of $C(l)$ and $\operatorname{Gal}\left(K_{2} / F\right)$ for l odd or of $C(2)$ and $\operatorname{Gal}\left(K_{2}(\sqrt{2}) / F\right)$ for $l=2$.

III

The following result is useful in restricting the possible candidates for the initial layers of K_{2}

Theorem (11): Let $p \neq l$ be a prime number such that a unique prime \mathfrak{p} of F divides it. Then K_{2} is the unique \mathbb{Z}_{l}-extension of F in which \mathfrak{p} splits completely.

Proof: Let H be the decomposition group of \mathfrak{p} in $\operatorname{Gal}(L / F)$. Since $\mathfrak{p}^{\tau}=\mathfrak{p}, H$ is normal in $\operatorname{Gal}(L / Q)$. But since \mathfrak{p} does not ramify in L, H is a cyclic \mathbb{Z}_{l}-submodule of $\operatorname{Gal}(L / F)$. Hence, by the proof of Theorem 3, $H \subset H_{1}$ or H_{2}. But if $H \subset H_{1}$, then \mathfrak{p} would split completely in K_{1}, which is not the case [$3, \S$ II]. Thus $H \subset H_{2}$, and \mathfrak{p} splits completely in K_{2}. Any two cyclic \mathbb{Z}_{l}-submodules of $\mathrm{Gal}(L / F)$ intersect trivially or in one of the modules so the subgroups fixing any two distinct $\mathbb{Z}_{l^{-}}$ extensions are disjoint. Thus if \mathfrak{p} split completely in any \mathbb{Z}_{l}-extension besides K_{2}, \mathfrak{p} would split completely in L, and so in K_{1}, which is not possible.

The following theorem tells us that if K is a sufficiently large cyclic l-ramified l-extension of F normal over \mathbb{Q}, then K must have a sizeable intersection with K_{1} or K_{2}. If τ inverts $\operatorname{Gal}(K / F)$, then, the intersection must be with K_{2}.

Theorem (12): Let $l^{r} T=0$. Suppose K / F is a cyclic l-ramified extension of degree l^{n} with $n>r$ if l is odd and $n>r+1$ if $l=2$, and that K / \mathbb{Q} is normal. Then the subextension of K / F of degree l^{n-r} if l is odd and l^{n-r-1} if $l=2$ lies either in K_{1} or K_{2}.

Proof: As we noted in the proof of Theorem 5, $G \approx T \oplus H_{1} \oplus H_{2}$ as \mathbb{Z}_{l}-modules (and even as τ modules for l odd). Let H be the subgroup of G fixing K. We consider the case l odd. Since H is normal, by Lemma 4 the projection of H into $H_{1} \oplus H_{2}$ must be of the form $l^{m_{1}} H_{1} \oplus l^{m_{2}} H_{2}$. By the cyclicity of G / H, either m_{1} or m_{2} is 0 . Say $m_{1}=0$. Also $l^{r} H=0 \oplus l^{r} H_{1} \oplus l^{m_{2}+r} H_{2} \subset H$. Since $|G / H|=l^{n}$ we see that, $m_{2}+r \geqq n$. Thus we see that $H \subset T \oplus H_{1} \oplus l^{n-r} H_{2}$ or if $m_{2}=0, T \oplus l^{n-r} H_{1} \oplus H_{2}$, i.e. the subextension of degree l^{n-r} of either K_{1} or K_{2} is contained in K. The proof for $l=2$ is similar.

IV. We now compute a few examples

Example 1

Let $l=2, F=\mathbb{Q}(\sqrt{-p})$, where $p \equiv 5(\bmod 8)$. Then $C(2)$ is cyclic, and $\tilde{\mathfrak{p}}_{2}$ is not a square in C, where \mathfrak{p}_{2} is the prime of F dividing 2, and $\tilde{\mathfrak{p}}_{2}$ is the class of \mathfrak{p}_{2} in C, (see the proof of Lemma 13). Thus $\tilde{\mathfrak{p}}_{2}$ generates $C(2)$ and $C_{S}(2)=0$.

It is not hard to prove that we have an exact sequence similar to that of Theorem 6,

$$
0 \rightarrow\left(\left(\prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}\right) / U_{S}\right)(l) \rightarrow T \rightarrow C_{S}(l)
$$

which in this case reduces to $T=0$ since $-1,2$, and -2 are non-squares in $F_{\mathfrak{p}}=\mathbb{Q}_{2}(\sqrt{3})$. Let ε be a fundamental unit of $\mathbb{Q}(\sqrt{p})$ and let $K=F(i, \alpha)$, where $\alpha^{4}=2 \varepsilon$. We claim that K / F is cyclic of degree 8 , 2-ramified, and that K / \mathbb{Q} is normal and non-abelian. First, K / \mathbb{Q} is normal, for any automorphism of K sends α to a fourth root of 2ε or $2 \varepsilon^{\prime}$ where ε^{\prime} is the conjugate of ε. But $N_{Q(\sqrt{p}) / \mathbb{Q}}(\varepsilon)=-1$ since $p \equiv 1(4)$, and so

$$
\left(2 \varepsilon^{\prime}\right)(2 \varepsilon)=-4=(1-i)^{4}
$$

Thus $(1-i) / \alpha$ is a fourth root of $2 \varepsilon^{\prime}$ in K. Next, $\operatorname{Gal}(K / F)$ is cyclic of degree 8 , for if $\sigma \in \operatorname{Gal}(K / F)$ is non-trivial on $F(i)$ then $\sigma \varepsilon=\varepsilon^{\prime}$ so $\sigma \alpha=i^{j}(1-i) / \alpha$ for some j. Applying σ again we see that $\sigma^{2} \alpha=i(-1)^{j} \alpha$, so σ^{2} has order 4 in $\operatorname{Gal}(K / F)$, and hence, σ generates $\operatorname{Gal}(K / F)$. It is obvious that K / F is 2-ramified and K / \mathbb{Q} is not abelian since $\mathbb{Q}(4 \sqrt{2 \varepsilon}) / \mathbb{Q}$ is not normal. By Theorem 12, the quartic subextension, E, of K / F lies in K_{2}. Also by applying Lemma 4 the only cyclic 2-ramified degree 8 extensions of F containing E which are normal over \mathbb{Q} are K and $F(i, \beta)$ where $\beta^{4}=-2 \varepsilon$. Since $-4=N_{Q(\sqrt{p}) / Q}(2 \varepsilon) \equiv(2 \varepsilon)^{2}(\bmod \mathfrak{q})$, where \mathfrak{q} divides p in $Q(\sqrt{p})$, it follows that 2ε is a square in $\mathbb{Q}_{p}(\sqrt{p})=\mathbb{Q}_{p}(\sqrt{-p})$.

Since -1 is a square but not a fourth power in $\mathbb{Q}_{p}(\sqrt{p})$, exactly one of $2 \varepsilon,-2 \varepsilon$ is a fourth power in $\mathbb{Q}_{p}(\sqrt{p})$, and so \mathfrak{p} splits completely in exactly one of $K=F(i, \alpha)$ and $F(i, \beta)$, where \mathfrak{p} is the prime of F dividing p. By Theorem 11, this field is the 8th degree subfield of K_{2}.

Remark: Since $F(i)$ is the 2-Hilbert class field of $F, F(i)$ has odd class number and no unramified abelian 2-extension. As $F(i)$ has a single prime containing 2, it follows, [7], that all subfields of K_{2} have odd class number, and hence, the Iwasawa invariants of K_{2} / F are trivial.

Example 2

Let $l=2$. We assume that d has at least one odd prime divisor $\not \equiv \pm 1(8)$. This will insure that all 2-ramified quadratic extension of F are of the form $F(\sqrt{m})$ or $F(\sqrt{2 m})$ where $m \mid d$ (m may be negative) $[2, \S 3]$. In this case we claim that if $2 T=0$, then there will be a unique 2 -ramified quadratic extension of F in which all the odd prime divisors of d split completely. Theorem 11 then tells us that this must be the quadratic subextension of K_{2}. We require a lemma.

Lemma (13): Let $\delta=0$ or 1 and let $m \mid d, m>0$. Suppose for every odd $p \mid d$, the prime $\mathfrak{p} \mid p$ in F splits in $k=F\left(\sqrt{-2^{\delta} m}\right)$. Then k has a quadratic 2-ramified extension K such that K / \mathbb{Q} is normal and K / F is cyclic (in fact K / \mathbb{Q} is dihedral).

Proof: Let $F_{1}=\mathbb{Q}\left(\sqrt{-2^{\delta} m}\right), F_{2}=\mathbb{Q}\left(\sqrt{2^{\delta} d / m}\right)$. The hypotheses of this lemma imply that all odd p dividing m split from \mathbb{Q} to F_{2} and all odd p dividing d / m split from \mathbb{Q} to F_{1}. We may suppose that if 2 divides $2^{\delta} d / m$, then 2 does not remain prime in F_{1}. If it did, then we would have $\delta=0,-m \equiv 5(8)$, and $2 \mid d$. But by the splitting of $p \mid d$, we see that $(-m / p)=1$ for $p \mid(d / m)$ and $((d / m) / p)=1$ for $p \mid m$, so $(-m, d / m)_{p}=1$ for all odd p where $(,)_{p}$ denotes the rational Hilbert 2 -symbol at p. By reciprocity, $1=(-m, d / m)_{2}=(-m, 2)_{2}$, and we have a contradiction. Now, for each $p \mid\left(2^{\delta} d / m\right)$ choose a prime $\mathfrak{p} \mid p$ in F_{1} and let $\mathfrak{A}=\prod_{p \mid\left(2^{\delta} d / m\right)} \mathfrak{p}$. Then, since all $p \mid\left(2^{\delta} d / m\right)$ split or ramify in F_{1}, we have $N_{F_{1} / Q} \mathfrak{H}=2^{\delta} d / m$. There is an isomorphism

$$
C / C^{2} \leadsto \prod_{p \mid \mathscr{D}}^{\prime}\{ \pm 1\} \quad \tilde{\mathfrak{B}} \rightarrow\left(\ldots\left(N_{E / Q} \mathfrak{B}, \mathscr{D}\right)_{p} \ldots\right)
$$

where C is the class group of a complex quadratic field, E, of discriminant \mathscr{D}, and $\prod^{\prime}\{ \pm 1\}$ is a subgroup of $\prod\{ \pm 1\},[5, \S 26,29]$. Using this isomorphism on $E=\mathbb{Q}\left(\sqrt{-2^{\delta} m}\right)$ we see that $\tilde{\mathfrak{A}}$ is a square in the class group
of E. Hence, there is an element, β, of E such that $(\beta)=\mathfrak{H B}^{2}$ for some ideal \mathfrak{B}. Let $K=k(\sqrt{\beta})$; clearly K / F is 2-ramified. Let $N_{E / Q} \mathfrak{B}=b$. Since $\sqrt{\beta} \sqrt{\beta}=\sqrt{N_{E / Q} \beta}$ where $\bar{\beta}$ is the conjugate of β, K is normal if it contains $\sqrt{N_{E / Q} \beta}=b \sqrt{2^{\delta} d / m}$, which it does. Let $\sigma \in \operatorname{Gal}(K / F)$ which is not trivial on k.

$$
\sigma(\sqrt{\beta}) \sigma(\sqrt{\beta})=\sigma\left(b \sqrt{2^{\delta} d / m}\right)=-b \sqrt{2^{\delta} d / m}=-\sqrt{\beta} \sqrt{\bar{\beta}} \quad \text { and } \quad \sigma \beta=\bar{\beta}
$$

Thus $\sigma^{2}(\sqrt{\beta})= \pm \sigma(\sqrt{\beta})=-\sqrt{\beta}$ and σ has order 4 implying that K / F is cyclic. Also since $Q(\sqrt{\beta}) / Q$ is not normal, K / \mathbb{Q} is not abelian and so is dihedral.

To use this lemma we note that the hypothesis that some odd prime divisor of d is not congruent to $\pm 1(8)$ implies that it does not split in $F(\sqrt{2})$, the quadratic subfield of K_{1}, and hence, does not split in the third quadratic subfield of L. If all the odd prime divisors of d split in two 2-ramified quadratic extensions of F, then one of these extensions would be disjoint from L. But by the lemma we would have a degree 4 cyclic 2-ramified extension, F^{\prime} of F disjoint from L. Hence $\operatorname{Gal}\left(F^{\prime} L / L\right) \approx \mathbb{Z} / 4 \mathbb{Z}$ would be a quotient of T, contradicting the fact that $2 T=0$.

Example 3 (c.f. [1, § III])
Let $l=3$ and suppose F has class number prime to 3 . From the sequence of Theorem 5 we see that $T \simeq \mathbb{Z} / 3 \mathbb{Z}$ if $d \equiv 3(9), d \neq 3$, and $T=0$ otherwise as $F_{\mathfrak{q}}, \mathfrak{q} \in S$, contains cube roots of 1 only when $d \equiv 3(9)$. We divide into cases:

Case (i): $d \not \equiv 3(\Omega):$ Since $T=0$, Theorem 12 tells us that any cubic 3-ramified extension of F normal and non-abelian over \mathbb{Q} must lie in K_{2}. Let $k=F(\rho)$ where ρ is a primitive cube root of 1 , and let ε be a fundamental unit of $\mathbb{Q}(\sqrt{3 d})$. First we claim that $k(\alpha) / k$ where $\alpha^{3}=\varepsilon$ is 3-ramified, $k(\alpha) / \mathbb{Q}$ is normal, and $k(\alpha) / F$ is abelian. It is obvious that $k(\alpha) / k$ is 3-ramified. If σ is an automorphism of $k(\alpha)$ then

$$
(\alpha \sigma(\alpha))^{3}=\varepsilon \sigma(\varepsilon)= \pm 1
$$

or ε^{2} so $\alpha \sigma(\alpha)= \pm \rho^{i}$ or $\pm \rho^{i} \alpha^{2}$ and $\sigma(\alpha) \in k(\alpha)$. Hence $k(\alpha) / \mathbb{Q}$ is normal. Let σ be a lifting of order 2 of the generator of $\operatorname{Gal}(k / F)$ to $k(\alpha)$ and let $\lambda \in \operatorname{Gal}(k(\alpha) / k), \lambda(\alpha)=\rho \alpha$. As above, $\alpha \sigma(\alpha)= \pm \rho^{i}$, but

$$
\alpha \sigma(\alpha)=\sigma(\alpha \sigma(\alpha))= \pm \rho^{-i}
$$

so $i=0$. From this, it follows that $\sigma \lambda=\lambda \sigma$. Thus $\operatorname{Gal}(k(\alpha) / F)$ is cyclic, and so $\langle\sigma\rangle$ is a characteristic subgroup. Hence its fixed field, E, is normal over \mathbb{Q}. Also E / \mathbb{Q} is not abelian, or $k(\alpha) / \mathbb{Q}$ would be, so $\operatorname{Gal}(E / \mathbb{Q}) \approx S_{3}$. Finally, we claim that $E=F(\alpha+\sigma(\alpha))$. Clearly, $F(\alpha+\sigma(\alpha)) \subseteq E$ but α satisfies the polynomial $x^{2}-(\alpha+\sigma(\alpha)) x \pm 1$ so $[k(\alpha): F(\alpha+\sigma(\alpha))] \leqq 2$.

Case (ii): $d \equiv 3(\bmod 9):$ We know by earlier remarks in Case (i) and by Lemma 4 that there are two disjoint 3-ramified cubic extensions of F which are dihedral over \mathbb{Q}. Exactly one of the four cyclic subfields of their composite over F lies in K_{2}. The computation in Case (i) is valid for $d \equiv 3(\bmod 9)$ so that $F(\alpha+\sigma(\alpha)) / F$ is such an extension, where $\alpha^{3}=\varepsilon$ is the fundamental unit in $\mathbb{Q}(\sqrt{3 d})$, and σ is a lifting of order 2 of the non-trivial automorphism in $\operatorname{Gal}(F(\sqrt{-3}) / F)$. Since $d \equiv 3(\bmod 9)$, the principal ideal $(3)=q q^{\prime}$ is a product of distinct primes in $\mathbb{Q}(\sqrt{3 d})$. Let $(\beta)=q^{m}$, where m is the order of q in the class group of $Q(\sqrt{3 d})$. Since the class number of F is prime to 3, a theorem of Scholz, [10], implies that the class number of $\mathbb{Q}(\sqrt{3 d})$ is not divisible by 3 , and hence $3 \nmid m$. Let $\gamma^{3}=3^{i} \beta$, where $i=1$ or 2 and $i \equiv m(\bmod 3)$. A proof entirely analogous to Case (i) shows that $F(\gamma+\sigma(\gamma)) / F$ is a 3-ramified cubic extension of F which has S_{3} as Galois group over \mathbb{Q}. We must next determine which field lies in K_{2} (it is clear that $F(\alpha+\sigma(\alpha)) \neq F(\gamma+\sigma(\gamma))$ as $(\gamma \alpha)^{3}$ and $\left(\gamma \alpha^{2}\right)^{3}$ are non-cubes in $k=F(\sqrt{-3})$). For this we must consider the extensions of $k=F(\sqrt{-3})$.

Proposition (14): Let $F_{1}=\mathbb{Q}\left(\sqrt{d_{1}}\right), F_{2}=\mathbb{Q}\left(\sqrt{d_{2}}\right), F_{3}=\mathbb{Q}\left(\sqrt{d_{1} d_{2}}\right)$, and $k=F_{1} F_{2}$. Suppose l is an odd prime, and let $M_{i}($ respectively $M)$ be the maximal abelian l-ramified l-extension of F_{i} (respectively k). If T_{i} (respectively T) is the l-torsion subgroup of $\operatorname{Gal}\left(M_{i} / F_{i}\right)$ (respectively $\operatorname{Gal}(M / k))$, then $T \simeq T_{1} \oplus T_{2} \oplus T_{3}$ and $M=k M_{1} M_{2} M_{3}$.

Proof: Let σ generate $\operatorname{Gal}\left(k / F_{1}\right)$ and τ generate $\operatorname{Gal}\left(k / F_{2}\right)$ and extend these to $\sigma, \tau \in \operatorname{Gal}(M / \mathbb{Q})$, automorphisms of order 2 . If $G=\operatorname{Gal}(M / k)$, we can decompose G as a $\langle\sigma, \tau\rangle$ module, so that $G=G_{++} \oplus G_{+-} \oplus G_{-+} G_{--}$, where e.g. G_{+-}is the subgroup of G fixed by σ and inverted by τ (i.e. $\left.G_{+-}=(1+\sigma)(1-\tau) G\right)$. The fixed field E_{1} of $G_{-+} \oplus G_{--}=(1-\sigma) G$ is a normal extension of \mathbb{Q}, and is the maximal subextension of M which is abelian over F_{1}. Hence the subfield of E_{1} fixed by σ is contained in M_{1} and so equal to M_{1}. We proceed similarly for M_{2} and M_{3}, and since

$$
\left(G_{-+} \oplus G_{--}\right) \cap\left(G_{+-} \oplus G_{--}\right) \cap\left(G_{-+} \oplus G_{+-}\right)=0
$$

we see that $M=k M_{1} M_{2} M_{3}$. Also the field fixed by $\langle\sigma, \tau\rangle$ and $G_{+-} \oplus G_{-+} \oplus G_{--}$is an l-ramified abelian l-extension of Q, and so must be the cyclotomic \mathbb{Z}_{l}-extension of Q. Thus G_{++}is torsion free, and since T_{1} is the torsion subgroup of $G_{++} \oplus G_{+-}$, etc., we deduce that $T \simeq T_{1} \oplus T_{2} \oplus T_{3}$.

We apply this proposition for $F_{1}=F=\mathbb{Q}(\sqrt{-d}), d \equiv 3(\bmod 9)$, and $F_{2}=\mathbb{Q}(\sqrt{3 d})$. As we remarked in the beginning of this example, T, has order 3. By the same method one sees that $T_{3}=0$, and T_{2} is the 3-torsion subgroup $\left(U_{3} \times U_{3}\right) /\langle\overline{ \pm 1, \varepsilon}\rangle$, where U_{3} is the group of units in \mathbb{Q}_{3}.

In order that $T_{2} \neq 0$, we must have ε a cube in \mathbb{Q}_{3}. However if $\varepsilon \in \mathbb{Q}_{3}^{3}$, then $k(\alpha) / k$ would be unramified, and 3 would divide the class number of k. It is well-known that the 3-primary subgroup of the class group of k is isomorphic to the product of the 3-primary subgroups of the class groups of F and F_{2}, both of which are trivial. Thus $T \approx T_{1}$ has order 3 . Furthermore, as in Theorem 6, T is isomorphic to the 3-torsion subgroup of $J_{k} / \overline{k^{*} J^{S}}$. We choose as representative, the idèle $x=(\rho, 1, \ldots)$ of J_{k} with a cube root of $1, \rho$, in the \mathfrak{q}_{0} place, and 1 elsewhere, where \mathfrak{q}_{0} is a prime of k dividing \mathfrak{q}^{\prime} in $\mathbb{Q}(\sqrt{3 d})$. We now use a Kummer pairing to find the subfield of $k(\alpha, \gamma)$ which lies in a \mathbb{Z}_{3}-extension of k, namely $k\left(\alpha^{s} \gamma^{t}\right)$, $s, t=0,1,2$, lies in a \mathbb{Z}_{3}-extension of k if and only if the Hilbert 3-symbol $\left.\left(\varepsilon^{s(} 3^{i} \beta\right)^{t}, \rho\right)_{\mathrm{q}_{0}}=1$, (see [1, § III], [2, §3]).

Now $\varepsilon \equiv \pm 1\left(\bmod \mathfrak{q}^{\prime}\right)$, but $\varepsilon \not \equiv \pm 1\left(\bmod \mathfrak{q}^{\prime 2}\right)$ since otherwise $\varepsilon^{2} \in k_{q_{0}}^{3}$ and as mentioned above $k(\alpha) / k$ would be unramified. Thus $\varepsilon \equiv-2$ or $4\left(\bmod q^{\prime} 2\right)$ and since units congruent to $1 \bmod \mathfrak{q}^{\prime 2}$ are cubes in $k_{\mathbf{q}_{0}},(\rho, \varepsilon)_{\mathbf{q}_{0}}=(\rho,-2)_{q_{0}}^{ \pm 1}$. We compute this symbol using reciprocity in the field $\mathbb{Q}(\rho)$, noting that $k_{q_{0}}=\mathbb{Q}_{3}(\rho)$. We have $\prod_{q}(\rho,-2)_{q}=1$ where \mathfrak{q} runs over all primes of $\mathbb{Q}(\rho)$. Since all the symbols are tame except for \mathfrak{q}_{3} where $\mathfrak{q}_{3} \mid 3$, all but $(\rho,-2)_{\mathfrak{q}_{3}}$ and $(\rho,-2)_{\mathfrak{q}_{2}}$ are trivial where $\mathfrak{q}_{2} \mid 2$. Since $(\rho,-2)_{\mathrm{q}_{2}}=\rho$, it follows that $(\rho,-2)_{\mathrm{q}_{0}}=(\rho,-2)_{\mathrm{q}_{3}}=\rho^{2} \neq 1$. Hence $k(\alpha)$ is not contained in a \mathbb{Z}_{3}-extension of k. Reciprocity also shows that $(\rho, 3)_{\mathrm{q}_{0}}=1$ so that $\left(\rho, 3^{i} \beta\right)_{\mathrm{q}_{0}}=(\rho, \beta)_{\mathrm{q}_{0}}=1$ if and only if $\beta= \pm 1$ $\left(\bmod \mathfrak{q}^{\prime 2}\right)$. We can alter β by powers of ε to achieve this. Thus $k(\gamma)$ lies in a \mathbb{Z}_{3}-extension of k. Since σ acts trivially on $\mathrm{Gal}(k(\gamma) / k), k(\gamma) \subset k M$, by the proof of Proposition 14. Hence $F(\gamma+\sigma(\gamma)) \subset k(\gamma) \subset k L$, so $F(\gamma+\sigma(\gamma)) \subset L$. But $F(\gamma+\sigma(\gamma)) / \mathbb{Q}$ is normal dihedral, so $F(\gamma+\sigma(\gamma)) \subset K_{2}$.
e.g. if $F_{1}=\mathbb{Q}(\sqrt{-21})$, then $F_{2}=\mathbb{Q}(\sqrt{7})$, and $\varepsilon=8+3 \sqrt{7}$. Take $\mathfrak{q}=(2+\sqrt{7})$, so $\sqrt{7} \equiv 5\left(\bmod \mathfrak{q}^{\prime 2}\right)$ and $-\varepsilon(2+\sqrt{7}) \equiv 1\left(\bmod \mathfrak{q}^{\prime 2}\right)$. Thus if $\gamma^{3}=-3 \varepsilon(2+\sqrt{7})$ then $F_{1}(\gamma+\sigma(\gamma))$ begins the normal, non-abelian \mathbb{Z}_{3}-extension of F.

REFERENCES

[1] Candiotti, Alan: Thesis, Harvard University, 1973.
[2] Carroll, J. E.: On Determining the Quadratic Subfields of Z_{2}-extensions of Complex Quadratic Fields. Compositio Mathematica, 30 (1975) 259-271.
[3] Coates, John: On K_{2} and some Classical Conjectures in Algebraic Number Theory. Annals of Math. 95 (1972) 99-116.
[4] Greenberg, R.: On the Iwasawa Invariants of Totally Real Number Fields (to appear).
[5] Hasse, H.:Zahlentheorie, Akademie-Verlag, 1949.
[6] Iwasawa, K.: On Z_{l}-extensions of Algebraic Number Fields. Annals of Math., series 2 (1973) (98) 187-326.
[7] Iwasawa, K. : A Note on the Class Numbers of Algebraic Number Fields. Abh. Math. Sem. Univ. Hamburg, 20 (1956) 257-58.
[8] Mazur, B. : private correspondence.
[9] Serre, J. P.: Classes des Corps Cyclotomiques. Seminaire Bourbaki, Dec. 1958.
[10] Scholz, A.: Idealklassen und Einheiten in Kubischen Körper. Monatsh. Math. Phys. 30 (1933) 211-222.
(Oblatum 27-X-1974 \& 22-VIII-1975)
California Institute of Technology Pasadena, California 91125

[^0]: * Supported in part by NSF Grant GP-40871.

