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0. Introduction

In [14], R. M. Schori and J. E. West proved that the hyperspace of
the unit interval 7 (the space of all non-empty closed subsets of I) is

homeomorphic to the Hilbert cube Q = [-1, 1]~. The hyperspace of
a compact metric space X is denoted by 2x; the set of all non-empty
subcontinua of X by C(X). Both 2x and C(X) are metrized by the
Hausdorff metric. In [8], D. W. Curtis and R. M. Schori proved that 2x
is homeomorphic to Q iff X is a non-degenerate Peano continuum and
that C(X) is homeomorphic to Q iff X is a non-degenerate Peano
continuum with no free arcs.

In [2] and [3], R. D. Anderson introduced the notion of Z-set and that
of capset or pseudo-boundary respectively. These concepts will be

defined in Section 1. However, the Z-sets coincide with those closed
subsets of Q which are equivalent under a space homeomorphism to a
subset which projects onto a point in infinitely many coordinates;
and the capsets of Q are the subsets which are equivalent under a space
homeomorphism to {x = (xi)i| for some i, lxil = 1}. Both capsets and
Z-sets have been extensively studied in infinite-dimensional topology.
A pseudo-interior for Q is the complement of a capset and is known to be
homeomorphic to separable Hilbert space 12.
* AMS 1970 Subject Classifications : Primary 54B20, 57A20, 58B05 ; Secondary 57A15,
54F65.
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In this paper the following pseudo-interiors are identified :
1° the collection of (connected) Z-sets in Q for 2Q and C(Q); and

similarly for compact Q-manifolds (Theorems 2.2 and 2.4).
2° the collection of zero-dimensional closed subsets and the collection

of Cantor sets for 2’ (Theorem 3.4).
As a corollary to 1° we obtain that the collection of compact subsets

of l2 is homeomorphic to 1 2 (Corollary 2.3).

1. Preliminaries

For an arbitrary metric, not necessarily compact space X, we denote
the collection of all non-empty compact subsets of X by 2x and the
collection of all non-empty compact subcontinua by C(X). The

Hausdorff distance dH(1: Z) between two compact subsets Y and Z of X
is defined as inf {03B5|Y c Ue(Z) and Z c U03B5(Y)}, where Ue(Y) denotes the
e-neighborhood of Y. If d and d’ induce the same topology on X then
dH and dH induce the same topology on 2x and C(X). Every map
f : X - X induces a map 2f : 2x -+ 2x by 2f(K) = f (K).
As indicated in the introduction, Q is represented as J 1, 1

with metric d(x, y) = d«xi)i, (yi)i) = Zi 2 -i. |xi - yi|. We define two kinds
of projection maps : for x = (xi)i, 7ti(X) = xi E J and ni(x) = (x 1, ..., xi) E Ji.
The pseudo-boundary B(Q) is the set {x = (xi)il for some i, |xi| = 1},
which is a dense a-compact subset of Q; the pseudo-interior s is its

complement (-1,1)00 and is a dense Ga and is known to be homeomorphic
to separable Hilbert space 12 ([1]). A closed subset K of Q is i-deficient
if 7ri(K) is a point; K is infinitely deficient if K is i-deficient for infinitely
many i. A closed subset K of Q is a Z-set (in Q) if for every B there exists
a map f: Q - QBK with d( f idQ)  B. This is not the standard definition,
which reads: a closed subset K of Q is a Z-set iff for every non-empty
homotopically trivial open set 0, the set OBK is non-empty and homo-
topically trivial. 2 The first definition implies the latter: let 0 be non-
empty and homotopically trivial and let K satisfy the first definition of
Z-set. We show that OBK has trivial homotopy groups. Suppose that
a map 9: Sn-1 = ajn - OBK is given. Since 0 is homotopically trivial,
there exists an extension (0: In - 0. For any B there exists an ecsmall map
fE: Q ~ QBK. For sufficiently small 03B5, f03B5(~(In)) c OBK. Since f03B5 03BF olajn
can be chosen arbitrarily close to ç, the convexity of Q shows that there

2 By ‘X is homotopically trivial’ we mean that X is arcwise connected and all homotopy
groups of X in positive dimensions vanish. For ANR’s this coincides with contractibility.
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is also an extension (o’: I" ~ OBK of ç itself. The converse implication
will be discussed somewhat later.

Obviously closed subsets of Z-sets are Z-sets. Also closed sets of
infinite deficiency and compact subsets of s are Z-sets, for in these two
cases we can find an integer i and a constant c such that 03C0-1i(c) does not
intersect the set and such that the map (xi)i ~ (x1,..., xi-1, c, xi+ 1,...)
is within e-distance of the identity. For the second definition of Z-set it is
known that any homeomorphism f : K - K’ between two Z-sets K and
K’ can be extended to an autohomeomorphism 1: Q - Q. Moreover,
if d( f, idK)  e then we can require that d(f, idQ)  e. This is the Homeo-

morphism Extension Theorem ([2], [5]). In particular, Q is homogeneous.
On the other hand, we have the Mapping Replacement Theorem which
says that for any B &#x3E; 0 and any map h: K - Q, where K is compact,
there exists an embedding h’ : K ~ Q such that d(h, h’)  s and h’(K) is
infinitely deficient. A proof is based on the well-known fact that any
compact metric space can be embedded in Q. So let ç : K - Q be any
embedding. Define for x E K,

Then h(N) is an embedding because 9 is an embedding, and h(N) is close to
h for large N because h(x) and h (N)(X) coincide in the lower-numbered
coordinates. Together with the Homeomorphism Extension Theorem
this implies that for any Z-set K in Q there is an arbitrarily small auto-
homeomorphism g of Q which maps K onto a set of infinite deficiency:
let g be an extension of h(N), where h = idK and N is sufficiently large;
then g is such an autohomeomorphism. Since g(K) is infinitely deficient,
it satisfies the first definition of Z-set. This proves the equivalence of
both definitions, and also shows that Z-sets are exactly those closed
subsets of Q which can be mapped onto a set of infinite deficiency by an
autohomeomorphism h of Q (where d(h, idQ) can be made arbitrarily
small).
With help of the notion of Z-set we can topologically characterize

the pseudo-boundary as a subset of Q : a subset M of Q is a capset for Q
([3] ; for the related concept of (G, K)-skeletoid, see [6]) if M can be

written as UiMi, where each Mi is a Z-set in Q, Mi ~ Mi+1 and such that
the following absorption property holds : for each e and j and every Z-set
K there is an i &#x3E; j and an embedding h: K ~ Mi such that h|K~Mj = idK~M
and d(h, idK)  B. This characterizes B(Q). It is shown in [3] that, for M
a capset and N a countable union of Z-sets, M v N is a capset, and also
that for M a capset and K a Z-set, MBK is a capset. In the next two
lemmas we give two alternative characterizations of capsets which are
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more convenient for our purposes. The first is used for the case 2’ and
for a proof of the second lemma, and the second lemma is used for the
case 2Q.

LEMMA (1.1) : Suppose M is a a-compact subset of Q such that
1 ° For every E &#x3E; 0, there exists a map h : Q ~ QBM such that d(h, idQ)  03B5

2° M contains a family of compact subsets Ml c M2 c ... such that
each Mi is a copy of Q and Mi is a Z-set in Mi+ 11 and such that for
each B there exists an integer i and a map h : Q ~ Mi with d(h, idQ)  03B5.

Then M is a capset for Q.

PROOF: From 1 ° it follows that every compact subset of M is a Z-set
in Q, so M is a countable union of Z-sets. As remarked above, every
countable union of Z-sets containing a capset is itself a capset, so it is
sufficient to show that U i Mi is a capset. Let 8, j and a Z-set K be given.
By 2°, there exist i &#x3E; j and h : Q - Mi such that d(h, idQ)  e/4. By the
Mapping Replacement Theorem there exists an embedding g : Q - Mi
which maps Q onto a Z-set in Mi such that d(h, g)  e/4. Then
d(g, idQ)  8/2. By the Homeomorphism Extension Theorem for Mi,
there exists a homeomorphism f : Mi ~ Mi which extends g-1Bg(K n Mi)
and such that d(f, id)  e/2. Then f ° g : K - Mi is an embedding of K
into Mi which is the identity on K n Mi and such that d(f 03BF g, id)  s.

Thus U i Mi is a capset, and therefore M is a capset as well.

LEMMA (1.2): Suppose M is a a-compact subset of Q such that
1 ° For every 8 there exists a map h: Q ~ QBM such that d(h, id)  03B5.

2° There exists an isotopy F = (Ft)t: Q x [1, 00] ~ Q such that F 00 = idQ
and FBQ  [1, ~) is a 1-1 map into M.

Then M is a capset for Q.

A separable metric space M is a Hilbert cube manifold or Q-manifold
if M is locally homeomorphic to Q. In [7], Chapman proved that every
Q-manifold M is triangulable, i.e., M ~ IPI x Q, where P is a countable
locally finite complex. If M is compact, then P can be chosen finite and
even such that |P| is a combinatorial manifold with boundary. We denote
points of |P| x Q by (p, x) or (p, (xi)i) and define the projection maps
03C0i(p, x) = xi and 1Cp(p, x) = p. For a given triangulation M = IPI x Q,
a closed subset K c M is called i-deficient if 1Ci(K) is a point, and
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infinitely deficient if K is i-deficient for infinitely many i. A closed subset
K of a compact manifold M is a Z-set if for every 8 there is a map

f M - MBK such that d( f idm)  e. As in the case of the Hilbert cube,
this definition has become a standard one and is observed to be equivalent
to the classical one (i.e., K is a Z-set iff for every non-empty homotopically
trivial open set 0, 0BK is non-empty and homotopically trivial) by several
authors. Only a restricted version of the Homeomorphism Extension
Theorem holds, since homotopy conditions have to be met.

2. Pseudo-interiors for 2Q and related results

First we show (Theorem 2.2) that the collection of (connected) Z-sets
in Q forms a pseudo-interior for 2Q(C(Q)) by verifying the conditions of
Lemma 1.2. Thus we rely heavily on the facts that 2Q ~ Q and C(Q) ~ Q
([8]). As a corollary, we show that 2l2 ~ l2 (Corollary 2.3). Next these
results are generalized to the manifold case (Theorem 2.4 and Corollary
2.5).

Notation:

by X’ we mean the space of all continuous mappings from Y into X
endowed with the compact-open topology.

LEMMA (2.1):
(a) The collection of Z-sets in Q is a G03B4 in 2Q.
(b) The collection of connected Z-sets in Q is a Ga in C(Q).

PROOF OF (a): Let

Obviously Li is an open subset of 2Q and i7 = ni Yi is exactly the
collection of Z-sets in Q.

PROOF OF (b) : This is a direct consequence of (a).

REMARK: Lemma 2.1 has a finite-dimensional analogue. In [9],
Geoghegan and Summerhill give generalizations to Euclidean n-space
En for many infinite-dimensional notions and results. In [9], Section 3,
they define what they call Zm-sets and strong Zm-sets in En for

0 ~ m ~ n-2. For (n, m) ~ (3, 0), (4, 1) or (4, 2), the Z.-sets and strong
Zm-sets coincide. A third possible definition is: ’K is a Zm-set if for all
i ~ m + 1, the maps from I into En’K lie dense in (En)1 i’. This definition
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is easily seen to imply the definition of Zm-set given in [9] and to be
implied by the definition of strong Z.-set. The collection of Z*-sets
can be written as a countable intersection of open sets: let, for all

i ~ m + 1, {fik}k be a countable dense subset of (En)Ii. Let

Then

is exactly the collection of Z*-sets. Moreover, this set is dense in 2En
since the collection of finite subsets of En is a subcollection of it. If

m ~ n - 3, its intersection with C(En) is also dense in C(E") since the
collection of compact connected one-dimensional rectilinear polyhedra
is a subcollection and is dense in C(E").

THEOREM (2.2):
(a) The collection L of Z-sets in Q is a pseudo-interior for 2Q.
(b) The collection ec of connected Z-sets in Q is a pseudo-interior

for C(Q).

PROOF : Note that Lemma 1.2 is stated in terms of the pseudo-boundary
and Theorem 2.2 in terms of the pseudo-interior. The maps h and (Ft)t
which are asked for in the lemma will map connected sets onto connected

sets, so that they prove (a) and (b) simultaneously.
As remarked in Section 1, every compact subset of s is a Z-set in Q.

Therefore the map h : Q ~ s, defined by

induces a map 2h : 2Q -+ fZ as asked for in 1° of Lemma 1.2.
We shall construct Ft so that for K E 2Q and t  oo the set FiK)

will be the union of two intersecting sets, one of which carries all informa-
tion about K and the other of which is not a Z-set. First we consider the

case that t is an integer. We define a sequence of maps (qJi)i: Q ~ Q by

Obviously qJ¡(Q) is contained in s and projects onto 0 in all odd
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coordinates ~ 2i + 1. We define another auxiliary operator 7j,c: 2Q - 2Q,
where j ~ 1 and c E [0, 2] : 

As c varies from 0 to 2, 1), c(K) is transformed continuously from K into
a set which occupies the whole interval in the jth direction. We have :

If nj(K) = {0} then c = 2 can be replaced by c = 1 in the above formula.
Now we set:

For every K this is a non-Z-set since the second term contains a subset
of the form 03C0- 1j(x1, xj) with -1  xi  1 for i = 1, ..., j. Furthermore,
03C0-12i+3(1 2) ~ Fi(K) = 03C0-12i+3(1 2) ~ T2i+3, 1 2(~i(K)) is a translation of qJi(K) in
the direction of the 2i + 3rd coordinate and therefore the first term contains
all information about K and Fi is one-to-one.

Before we describe qJ t for arbitrary t, we restrict ourselves to

k = i + (n-1/n) where i ~ 1 and n ~ 1:
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For

qJt is defined by linear interpolation between

This way qJlQ) projects onto 0 in all odd coordinates ~ 2i+3 if t ~ i + 1.
For i ~ 1 and s e [0, 1] we define

Note that this is consistent with the previous definition of Fi(K). We
check:
1° (Ft)t is continuous. For finite t this follows from the continuity of

the operators 1), c’ 2~t and 03C0-1j 03BF 03C0j; for t ~ ~ it is easily seen that
Ft(K) ~ K.

2° For every K, F,(K) is a non-Z-set if t is finite, for it contains a subset
of the form 03C0-1j(x1,..., xj) with -1  Xi  1 for i = 1, ..., j.

3 ° F = (Ft)t is one-to-one on 2Q x [0, ~): for the determination of t
from Ft(K) note that t ~ (i, i + 1] iff 03C0j(Ft(K)) = [-1, 1] for all

j &#x3E; 2i + 5 and for no odd j ~ 2i + 5. Once it is determined that

t ~ (i, i + 1] then on that interval t is in one-to-one correspondence
with

(recalling that 03C02i+3 03BF ~t(x) = 0 for x ~ Q and t ~ i + 1). Finally,
fort = i+s and s ~ (0,1],

is a copy of K in a canonical way. Note that this set does not intersect

the second term

since the latter set projects onto 0 in the 2i + 3rd coordinate, and if
s = 1 also in the 2i + 5th coordinate.
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4° If K is connected, then F,(K) is connected since Ft(K) is the union
of two connected sets which intersect in CfJt(K).

The following corollary answers a question posed by R. M. Schori:

COROLLARY (2.3): Both the collection of compact subsets of 12 and the
collection of compact connected subsets of 12 are homeomorphic to 12.

PROOF : According to [1], l2 is homeomorphic to s = (-1, 1)~. Thus
it is sufficient to show that the collection 2 (or 2 c) of closed (connected)
subsets of Q which are contained in s forms a pseudo-interior for 2Q
(or C(Q)). Since this collection is a subset of Y (Yc) we only have to verify
condition 1 ° of Lemma 1.2, and to show that fZ and LC are G03B4’s. But the
map 2h from the proof of Theorem 2.2 actually maps 2Q and C(Q) in 2
and 2 c respectively, showing 1° of Lemma 1.2. Finally, we can write
2 (2 c) as a Ga by ~i{K ~ Q|K is closed (and connected) and
ni(K) c (-1,1)}. This completes the proof of the corollary.

THEOREM (2.4): If M is a compact connected Q-manifold, then
(a) the collection LM of Z-sets in M is a pseudo-interior for 2M.
(b) the collection LMC of connected Z-sets in M is a pseudo-interior for

C(M).

PROOF : As observed earlier, by [7] we may write M = |P| x Q, where
is a compact finite-dimensional manifold with boundary. Again we apply
Lemma 1.2, where the M from the lemma is 2MBLM or C(M)BLMC
respectively. As before one can prove that LM and LMC are Ga-sets in 2m
and C(M) respectively. Condition 1 ° of the lemma is proved by the map
2B where h(p, x) = (p, (1 -s) ’ x).

Let H: IPI x [1, aJ] - IPI be an isotopy such that H 00 = id and
N,(!P!) c |P|B|~P| for finite t (remember that we assume that |P| is a

compact manifold with boundary). Consider the map F : 2Q  [1, 00 ] ~ 2Q
defined in the proof of Theorem 2.2. Define, for p E |P| and K c Q,
Gt({p} x K) = {Ht(p)} x Ft(K). If L is a subset of IPI x Q, then L can be
written as a union ~p~03C0P(L){p}  Lp. Now define

Then G = (Gt)t satisfies 2° of Lemma 1.2. We need only show that
Gt(L) is a closed set.
From the definition of F,(K) one readily sees that
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Therefore we can write

Let (qi, y;); be a sequence in G,(L) converging to (q, y). We have to show
that (q, y) E G,(L). Let qi = Hlpi) and yi E Ft({xi}), where (pi, xi) c- L. There
is a subsequence (pi,, Xik) converging to some point (p, x) E L. Then

Ht(p) = limk qik = q, and by continuity of Ft we have that y E Ft({x}).
Therefore (q, y) E Gt(L).

COROLLARY (2.5): For any connected 12-manifold M, both the collection
2M of compact subsets of M and the collection C(M) of connected compact
subsets of M are homeomorphic to 12.

PROOF: According to [10] and [11] we can triangulate M = lpl x l2,
where P is a locally finite simplicial complex. Of course, now we cannot
assume that |P| is a manifold with boundary.

Let K be a compact (connected) subset of M, then K has a closed
neighborhood |P’| x l2, where P’ is a finite (connected) subcomplex of P.
The collection OP’ (OP’C) of compact (connected) subsets of M which are
contained in the topological interior of P’ |  l2 is an open neighborhood
of K. Its closure in 2M (C(M)), the set {K c MIK is compact (and
connected) and K ~ |P’|  l2}, is a pseudo-interior for 21P’1 x Q (for
C(!P1 x Q)) if we identify 12 with (-1,1)~ c Q. This is proved by an
argument similar to that in the proof of Corollary 2.3. Therefore OP’ (OP’C)
is an open subset of a copy of l2, showing that 2M (C(M)) is an l2-manifold.
Next we show that 2M (C(M)) is homotopically trivial. By [12], this

will prove that 2" (C(M)) is homeomorphic to l2. Let a map f: aln -+ 2M
(or f : aln -+ C(M)) be given. Then Y’ = ~y~~Inf(y) is a compact union
of compact sets, and therefore a compact subset of M. Choose a finite
connected subcomplex P’ of P and a compact convex subset D of l2
such that Y’ ~ |P’| x D. Then

Moreover, 21P’1 x D and C(IP’L x D) are contractible: define, for

and for t E [0, T] where T is sufficiently large H(K, t) to be the closed
t-neighborhood of K in some fixed convex metric for IP’I x D. Then H
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is a contraction of 2|P’| D (or C(IP’I x D)). Therefore f can be extended to
f: I" ~ 2|P’| D ~ 2m (to f: I" - C(!P1 x D) c= C(M)).

3. Pseudo-interiors for 2’

In this section we show that both the collection of zero-dimensional

subsets of 7 and the collection W of Cantor sets in 7 are pseudo-interiors
for 2,. It seems reasonable that similar statements are true for the

hyperspace of more general spaces, but the author has been unable to
provc a comparable statement even for the hyperspace of a finite graph.

In this section 1 = [0, 1].

LEMMA (3.1): 
(a) The collection O of zero-dimensional closed subsets of a compact

metric space X is a GI, in 2X .
(b) The collection of Cantor sets in X is a Ga in 2x.

PROOF OF (a): The collection On = {A c XIA is closed and all com-
ponents of A have diameter less than 1/nl is an open subset of 2X. For
let (Ai)i ~ A, where Ai 0 (9n for all i. We show that A 0 (9. For every i

there is a component Ki of Ai with diameter at least 1/n. The sequence
(Ki)i has a subsequence (Kik)k which converges to a set K which is closed,
connected and has diameter at least 1/n and is a subset of A. Therefore
A 0 (!J n.

PROOF OF (b): We write Wn = {A c X|A is closed and for all x E A,
there is a y ~ x in A such that d(x, y)  1/nI. Since Cantor sets are
exactly the compact metric spaces which are zero-dimensional and have
no isolated points, it follows that W = (9 n ~nCn. We show that 16,,
is an open subset of 2X: let (Ai)i - A, where Ai ~ Cn for all i. Let U03B5(x)
denote the e-neighborhood of any point x. There is a sequence (pi)i
such that U1/n(pi) n Ai = {pi}. This sequence has a limit point p and it is
easily se en that U 1 /n(P) n A = {p}. Therefore A ~ Cn.

MAIN LEMMA (3.2): There exist arbitrarily small maps h: 21 - C.
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PROOF : The map h will be defined as a composition

where FSI (Finite Sequences of Intervals) is a collection of finite sequences
of intervals, to be defined later, and FSC (Finite Sequences of Cantor
sets) is a collection of finite sequences of topological Cantor sets, which
will also be defined later on. The map f will be discontinuous, but g, liN
and 9 0 hN 0 f are continuous. In the subsequent discussion we assume
a fixed B  1 2 and N is the largest integer such that N. 03B5 ~ 1. The map
h = g 03BF hN 0 f will have distance less than 3s to the identity.

Step 1. The set FSI.
Let FSIn be the set of all sequences of n terms [a1, b1],..., [an, bn]&#x3E;

such thàt

i) 0 ~ a1 and bn ~ 1
ii) ai + 1 ~ bi, i.e. the intervals do not overlap

iii) bi - ai ~ 2n · B2 if 1  i  n

iv) bi - ai ~ n’ B2 if i = l, n.
The metric on FSIn is

Define FSI = U:= 1 FSIn, where N is defined as above. Note that for
n &#x3E; N, FSIn = Ø since for any element s/ of FSIn, the sum of the lengths
of the intervals of A is at least (n -1) - 2n · B2 &#x3E; (n-1) · 2e &#x3E; 2 - 2E &#x3E; 1

since B  -L whereas A is a collection of non-overlapping subintervals
of [0,1]. We choose the following metric on FSI: 03C1(A, B) = Pn(sI, B)
if {A, é3) c FSIn, i.e., if both and A consist of n intervals, and
03C1(A, B) = 1 if for no n, -41 c FSIn, i.e., if A and A have a different
number of terms.

Step 2. The function f: 2I ~ FSI
Let A E 2’, then U,(A), the open s-neighborhood of A, is a finite union

of disjoint subintervals of I, open relative to I. Let
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where the intervals [ai, bi] are the closures of the components of UiA),
arranged in increasing order, e.g., if U03B5(A) = (a1, b1) ~ (b1, b2) then
f(A) = ([al’ b1], [b1, b2]&#x3E; and not ([al’ b2]&#x3E;. This assignment is not

continuous: Let A. = {0, 203B5 + 03B4}. If 03B4 ~ 0, then

but if 03B4  0 then f (A03B4) = [0, 3E + 03B4]&#x3E;. But apart from this phenomenon
f is continuous in the following sense : Let ô  8 and suppose for some

A, B E 2,, dH(A, B)  (5, where dH denotes the Hausdorff distance (see
Section 1). Then each gap of UiA u B) (including a gap consisting of
one point) corresponds to, i.e., is contained in a gap of Ue(A) since for
ô  8 it cannot lie left or right from Ue(A). Conversely, each gap in Ue(A)
which has length ~ 2b corresponds to, i.e., contains a gap of U03B5(A ~ B).
Let fB(A) be a function from 2, to FSI which is obtained from f(A) by
replacing each gap in Ue(A) which has no counterpart in Ue(A u B) by a
degenerate gap (see Fig. 1); e.g., if f(A) = [a1, b1], [a2, b2]&#x3E; with

Figure 1

Let f B(A) eliminate the degenerate gaps thus obtained (but not the
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other degenerate gaps); e.g., in the above example fB(A) = [a1, b2]&#x3E;.
Then for dH(A, B)  03B4 we have d(fB(A), fA(B))  Ô and also

These notations will be used in the proof of the continuity of g o hN 0 f.

Step 3. T he set FSC.
Let C be a topological Cantor set such that C c 1 and {0, 1} c C

and dH(C, I)  03B5. Let C(a, b) be the image of C under the ’linear’ map
which maps 0 onto a and 1 onto b. For [a, b] c [0, 1] we also have
dH(C(a, b), [a, b])  s. We define FSCn to be the collection of all sequences
of n terms C(a1, b 1 ), ..., C(an, bn)&#x3E; such that

(i) 0 ~ a1 ~ ... ~ an ~ 1
(ii) 0 ~ b1 ~ ... ~ bn ~ 1

(iii) ai  bi for i ~ i ~ n.
Thus the sets C(ai’ bi) may overlap. Define FSC = ~Nn=1 FSCn. The
metric of FSC is somewhat analogous to that on FSI: If

then

and if for no n, {A,B} c FSCN then 03C1(A,B) = 1.

Step 4. The map g : FSC - W
We simply let g(A) be the union of the terms of A. Obviously g is

continuous. Notice that by the characterization of Cantor sets given
in the proof of Lemma 3.1, g(A) is indeed a Cantor set.

Step 5. Construction of hN
From the remark at Step 2 it is easily seen that the function

does not yield a continuous composition 9 0 qJ 0 f. Instead, we construct
by induction a map hn: FSIn ~ FSC,, and set nn = Un= ohi (i.e., nn is the
function which assigns hi(A) to A if A E FSII and i ~ n). The following
induction hypotheses should be satisfied:

(i) If d = [a1, b1],..., [an, bn]&#x3E;, then hn(A) = Ca’1, b’1),..., C(a’n, b’n)&#x3E;,
where a’ 1 - a 1 and b’n = bn.
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(ii) Additivity at ’large’ gaps. If A can be broken up into P4 and C
where B = [a1, b1],..., [ai, bi]&#x3E; and C = [ai+1, bi+1],..., [an, bn]&#x3E;
and ai+1-bi ~ 282 then hn(A) = C(a1, b’1),..., C(a’n, bn)&#x3E;, where

and

In particular, by (i) b’ = bi and a’i+1 = ai+1.
(iii) If

that is, if ai+1 = bi, and if

and if, moreover,

then

i.e., a’i = a’i+1 and b’i = b’i+1 and ghn(A) = ghn-1(B).
These induction hypotheses, and especially (iii), will be seen to insure

continuity of g 03BF hN 0 f. We give now the inductive construction of
hn : FSIn ~ FSCn.

n = 1: set h1([a1, b1]&#x3E;) = C(a1, b1)&#x3E;, in accordance with (i).
n = 2 : let A = [a1, b1], [a2, b2]&#x3E; with both b1 - a1 ~ 03B52 and

b2 - a2 ~ BZ and with a2 - b1 ~ 0. If a2 = b 1 then according to (iii)
we have h2(A) = C(a1, b2), C(a1, b2)&#x3E;. If a2-b1 ~ 203B52 then according
to (ii), we have h2(A) = C(a1, b1), C(a2, b2)&#x3E;. If a2-bl - t. 2B2 with
0  t  1, then b’1 and a2 are constructed as in Figure 2 (the pictures
show what happens if t is large (upper pictures), and what happens if t
is small, (lower pictures)).

In formulas:’let A* = [a1,b*1],[a*2,b2]&#x3E; be the result of enlarging
the gap (b1, a2) symmetrically from its midpoint by a factor 1/t. Thus
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Note that above and below we have different A but the same .91*.

Figure 2

Note that this is consistent with the case a2 = bi and a2 - b1 ~ 203B52 as
treated above.

n + 1 : Suppose hn is already defined. Let

If for all i, ai+1 - bi = 0, i.e., if all gaps are degenerate, then by repeated
application of (iii) we find that for all i, C(a’i, b’) = C(a 1, bn+1). If

maxi(ai+1 - bi) ~ 2e’, then hn+1(A) is determined by (ii). If for several
i, ai+1 - bi ~ 2B2 then it is easily seen, using (ii) for nn’ that hn+1(A) is
independent of the choice of the gap at which .91 is broken up into é0
and C. So let us assume that the length of the largest gap
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with 0  t  1. Let A* be the result of widening each gap symmetrically
from its midpoint by a factor 1/t, so that the largest gap of A* has width
2e’. Now break up A* into 4 and 16, where the gap in between e and 16
has width 2e’. The reader may check that A and W are elements of

FSI1 u ... u FSIn, in particular that they consist of intervals of sufficient
length, noting that, since é3 and W have less terms than A, they are
allowed to consist of smaller intervals. Therefore !Î ,,(-4) and !Î,,(16) are
defined. Let hn(B) = C(a1, bi), ..., C(ai, hi) and 

The construction of hn+1(A) from hn(B) and hn(C) is shown in Figure 3.

Figure 3
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In formulas:

Thus each Cantor set is stretched somewhat toward C(a l’ bn+1): only a
little if t is close to 1 and almost all the way if t is close to 0.

It is an easy exercise to check the induction hypotheses and to prove
that dH(A, g 03BF hn 0 f(A))  38. To show continuity, we refer to the func-
tions fB and fB, defined at Step 2. From the remarks there and the
continuity of g and hN and the fact that 9 - liN 0 fB(A) = g o hN 0 f B(A)
for any two A, B E 2’ we easily see that g - liN 0 f is continuous.

Let I* = {{t}|t~I} ~ 2,. Then I* is a Z-set in 2,, since the map
/: 2’ - 2, defined by f (K) = Cl(U03B5(K)) is an e’small map from 2, into
2IBI*. Moreover, I * n W = p. Therefore the inclusion of I * in Lemma 3.3
is harmless (see the remarks above Lemma 1.1).

LEMMA (3.3): The set (2IBO) ~ I* contains a famil y of copies of Q
as asked for in Lemma 1.1 (20).

PROOF : If K c I, then let [aK’ bK] be the smallest closed interval
containing K. Define M03B5 c 2, by Me = {K c IJK is closed and

[aK+(1-03B5)·(bK-aK),bK] ~ K}. Let Re be the image of K under a
linear map which maps aK onto aK and bK onto aK + (1- e) - (bK - aK).
In formulas:

Let

Then h03B5 is a homeomorphism of 21 onto M03B5 with distance ~ 03B5 to the
identity. Since Lemma 3.2 and the remark on I* show that every closed
subset of (21B(9) u I* is a Z-set, it follows that Me is a Z-set in 21. Because
for ô  e, h-103B4 (M03B5) = M(03B5-03B4)/(1-03B4) is a Z-set in 21 by the same token,
we see that M03B5 is a Z-set in Ma. Therefore the family {M1/i}i satisfies
2° of Lemma 1.1, both for M = (2IBO) u I * and for M = 2IBC.
Combining Lemmas 3.2 and 3.3, we obtain the main theorem of this

section:
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THEOREM (3.4) : Both the collection of topological Cantor sets and the
collection of zero-dimensional subsets in I are pseudo-interiors for 21.

Finally, we mention the following conjecture (a definition of fd capset
can be found in [3]) :

CONJECTURE (R. M. Schori): The collection of finite subsets of I is

an fd capset for 21.
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