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0. Introduction

In this paper, we shall be concerned with extending the results of [6]
to arbitrary group extensions, and utilizing our previous results to lift
dynamical properties of measures. The analytic structure of an ergodic
measure sitting over a fixed ergodic measure was examined in detail
in [6] for compact abelian groups. However, in most distal extensions,
the groups that naturally arise are in general non-abelian. In particular,
given a distal extension, one can ’build’ it using almost periodic extensions,
and each almost periodic extension comes by ’interpolating’ between
a group extension over the base transformation group (see [5, pp. 255-6]
for a precise statement). In the case where the spaces in the original
extension are metric, one can show that the group extensions involved
also have metric spaces. Although this fact is surely known, we have been
unable to locate it in print, and thus will include a proof in an Appendix.
With this in mind, the extension of analytic results to general compact
group extensions is natural, and we carry this out in Section 2. In fact,
we shall carry out our analysis for the case where X and Y are compact
T2, and G is metric. The major result obtained is that every ergodic
measure above a fixed one is derived by first an isomorphism and then
an ergodic ’Haar lift’. Our isomorphisms are Borel in the case that X
is metric or T is countable, and isomorphisms of the completion in the
general case. To do this, one needs to construct T invariant functions
which are simultaneously eigenfunctions for irreducible representations
of the compact group. Problems arise in obtaining a strictly invariant
section in the general case; this yields the weaker type of isomorphism
in the general case.
* Research supporfed in part by NSF GP32306X.
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In Section 3, we consider the following problem : given a free abelian
group extension n : (G : X, T) (Y, T) and an invariant measure v on
Y with some dynamical properties, how can one ’perturb’ the action on
X to still maintain a G-extension and yet have the Haar lift of v enjoy
the same dynamical property. The simplest type of perturbation comes
from a continuous homomorphism x : T ~ G, namely pX(x, t) = x(t)(xt).
We show that for most (in the sense of category) x, the Haar lift will
enjoy the same property with respect to the action p,. The properties
examined are ergodicity and weak-mixing, and analogous results for
minimality and topological weak-mixing are indicated in certain cases.
We note that Parry and Jones [4] first considered these questions for
the most general type of perturbation under the integers and the reals,
and also showed that these properties lift for almost all perturbations.
However, our actions belong to a set which is first category in their

topology (the coboundaries), and hence the results are distinct from one
another.

We will generally follow the notation and terminology of [6]. The
additional structures required will be presented in the next section.

1. Preliminaries

We begin by establishing some notation. Let (X, T) denote a topo-
logical transformation group with X a compact T2 space and T a locally
compact separable group.
We shall briefly review the notation established in [6]. Thus, we will be

considering a free G-extension, (G; X, T) of another transformation
group ( Y, T) where Y and G are compact T2, and n : (G ; X, T) - ( Y, G)
will be the canonical map. If H is a subgroup of G, we will consider the
splitting 03C0 = n2 0 nl, where 03C01: (H; X, T) ~ (X/H, T) yields a free

H-extension and 03C02: (X/H, T) ~ (Y, T) is the natural homomorphism.
Again, M(X, T) will be the collection of T-invariant regular Borel
probability measures on X, and E(X, T) the ergodic measures in M(X, T).
Also, 03C0*: M(X, T) ~ M(Y, T) will be the canonical map given by
n * v(B) = v(03C0-1B). In our case, n * E(X, T) = E(Y, T). Finally, if y E E(Y, T),
the Haar lift of J1 is given by

where is Haar measure on G, and 03C0-103BC is the induced measure on
03C0-1B(Y).
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The main purpose of this paper is to take a fixed ergodic measure
03BC ~ E(Y, T) and describe analytically the structure of those v E E(X, T)
with 03C0*v = Il. To this end we have to deal with representations of the
group G. As a general reference we refer to [3].

Let 9l( G) denote the set of equivalence classes of continuous finite-
dimensional irreducible unitary representation of G. With no loss of
generality we will assume representations act on a suitable Cn, C being
the complex field, and where necessary we will identify a unitary operator
on C" with its matrix relative to the standard basis. The dimension of

a representation a will be denoted by na and the equivalence class of a
will be denoted by [a] E 9l( G). We denote by 03A3n-1 the sphere

~ lin being the innerproduct norm in Cn.
Let a be an irreducible representation of G with dimension n. A Borel

function f : X - 03A3n-1 is called an a- function if

We first want to show the existence of a-functions. We shall first

need Borel sections.

LEMMA (1.1) : Let G be a Lie group. Then 03C0 admits local sections, i.e.,
given y E Y, there exists a neighborhood U of y and a continuous map
s : U - X with nos = idu.

PROOF: [10, page 219].

LEMMA (1.2) : Let G be a Liegroup. Then there exists a Borel isomorphism
ç : X - YxG.

PROOF: By Lemma 1.1, we can write Y = u 1 Ui, where Ui is a

compact neighborhood, and pi:Ui ~ X is a local section. It easily
follows that gi: Ui x G ~ 03C0-1(Ui), (x, g) - gpi(x) is a homeomorphism,
with inverse

where gpi(z) E G satisfies gpi(z). pi03C0(z) = z. Defining ç by qJ(x) = çj ’(x),
where i is minimal with respect to x ~ 03C0-1(Ui), yields the desired iso-
morphism (ç is actually continuous except on Uni=1 Bd. (Ui), a nowhere
dense set).
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We now set gp = pr2 0 ~ : X - G. Then gp is Borel and satisfies

x = gp(x) · p03C0(x), where p : Y - X, p(y) = pi(y), where i is minimal, is the
induced Borel section, completing the proof.

Let f be an a-function. Then f (gx) = f (x) for g E ker a, and so f
defines on à-function on the induced extension

where 03B1 is the induced representation on G/ker a. Conversely, a-functions
yield a functions. Now G/ker a ~ im a is a closed subgroup of a Lie
group and hence is a Lie group. So a-functions can be analyzed using
Lie group extensions.

LEMMA (1.3) : Let a be an irreducible representation of G with dimension
n. Then there are n a- functions fl , ..., f" such that for each x E X the values
fl(x), ..., fn(x) form an orthonormal basis of cn. Every a-function f can
then be written in the form

where the functions ai(x) are G-invariant Borel functions.

PROOF: Using the above comments, we assume WLOG that G is a
Lie group. Let v 1 , ..., Vn be an orthonormal basis on Cn and let p : Y - X

be a Borel section. Define

It is easily verified that these satisfy the first conditions of the lemma.
Finally, if f’ is an a-function, define ai(x) = ( f (x), fi(x)), where (-, -)

is the inner product. Then clearly ai is Borel and

Since clearly f(x) = 03A3ni=1ai(x)fi(x), the lemma is proved.
One final result on a-functions

LEMMA (1.4) : Let m be probability measure on X and let f : X ~ 03A3n-1
be a Borel function such that Mx) = a(g) f (x) a.e. m , for each g. Then
there is a Borel function f ’ : X ~ In- 1such that f = , f ’ a.e. m and f ’
is an a-function.
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PROOF: Define h : G x X C" by h(g, x) = f(gx) - 03B1(g)f(x). Then for
every g, m{x : h(g, x) ~ 01 = 0. Setting K = {(g, x) : h(g, x) ~ 0}, it follows
that 03BB x m(K) = 0, and so 03BB{g: h(g, x) =1= 01 = 0 for x E L, a Borel set with
m(L) = 1. Hence, if we define

then f(gx) = 03B1(g)f(x) (g E G, x E X) and clearly f(x) = f(x) if x E L.

Now A = {x|f(x) = 01 is Borel and G-saturated and so Lo = X-A
is also G-saturated. Thus, f = f on Lo n L, m(Lo n L) = 1 and

f:L0~03A3n-1 is a measurable mapping. In the set X - Lo, which has
zero m-measure, we replace f by any Borel a-function fo into En - 1
restricted to X - Lo. Defining f ’ = 1 on Lo and f’ - fo on X - Lo
completes the proof of the lemma.

2. Ergodic measures for group extensions

In this section we generalize the results of [6] to the case of not
necessarily abelian compact group extensions. We begin by giving
necessary and sufficient conditions for ergodicity of the Haar lift of an
ergodic measure. The same assumptions as Section 1 will be in force.

THEOREM (2.1): Let J1 E E(1: T). Then the Haar lift of Il, fi, belongs to
E(X, T) if and only if there are no a-functions, (X =1= 1, satisfying

PROOF: Assume fi E E(X, T) and let fa be an a-function satisfying

Then there is a constant a E 03A3n03B1-1 and a Borel set F, fi(F) = 1 such that

Now for any x, define Gx = {g: gx ~ F}. Since
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then

for 03C0-103BC-almost all x. Pick one such x E F, and 9 E G X. Then

a = £(x) = fa(gx) = a(g)a. Since Gx is dense, we have that 03B1(g)a = a
for all 9 E G. Since a is irreducible, it follows that oc = 1.
Now assume that fa 0 t = fa a.e. fi implies that a = 1.
Let W be the subspace of L2(X, fi) consisting of T-invariant functions.

We identify L2(Y, Il) with the subspace of L2(X, fi) consisting of G-invariant
functions. The ergodicity of Il implies that W n L2(Y, Jl) = G, the subspace
of constant functions. Since fi is G-invariant, the action of G on X induces
a unitary representation {Ug} of G on L2(X, ,û). Since W consists of
T-invariant functions and G commutes with T, it follows that W is an

invariant subspace for {Ug}. It follows from general representation
theory (see e.g., [9, Theorem 7.8]) that W decomposes into finite dimen-
sional subspaces on which {Ug} is irreducible. Pick any such finite-

dimensional subspace and let fl,..., f,, be an orthonormal basis of
it and 03B1(g) the matris of Ug relative to this basis. Define a vector-valued
function f to C" by f = col ( fl, ..., fn) whenever possible and 0 other-
wise. Then f 03BF g = a(g) f in L2. The set {x: f (x) = 01 is both G-in-

variant and T-invariant, so by the ergodicity of p has measure 0.

Normalizing f in L2, we obtain f to 03A3n-1 with f 03BF g = a(g) f in L2.
By 1.4, we can assume f : X ~ 03A3n-1. Since f is T invariant, we have
a = 1. It follows that {Ug} is the identity representation on W. So
W = .Y n I3( Y) = C(j and is ergodic, completing the proof.
Note that 2.1 does not require that G be metric.
Our next theorem considers the other extreme case when there are the

’maximum’ number of T invariant a-functions. By isomorphism, we shall
mean isomorphisms of dynamical systems. This requires the existence of
strictly T-invariant measurable sections in X over Y, i.e., a Borel set B
with 03C0(B) Borel, M(nB) = 1, xt E B whenever x E B, t E T and n : B ~ n(B)
measurable. If either X is metric or T is countable, then 03C0 is Borel,
and we use the term’isomorphism mod 0’. In the général case, we will
need to consider n : (X, T, v0) ~ ( Y, T, ,uo), where vo, po are the completions
of v, y respectively. We then use the expression ’Lebesgue isomorphism
mod 0’.

THEOREM (2.2): For each irreducible representation class [a] of dimen-
sion na, let there be na pointwise orthogonal T-invariant a-functions. Let
v E E(X, T) with 03C0*v = Il. Then if either X is metric or T is countable,
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is an isomorphism mod 0. Otherwise,

is a Lebesgue isomorphism mod 0.

PROOF : We will construct a strictly T invariant measurable section over
Y Let fll, i = 1,..., na be the na a-functions of the theorem. Since v is

ergodic and 03C0*v = ,u there are constant vectors ai03B1, i = 1,..., na such that

fi03B1(x) = ai03B1 a.e. v. Put

Since there are only countable many [03B1], X’ is a Borel set and v(X’) = 1.
Now let x E X’ and gx E X’, for some g E G. Then

Thus, a(g) is the identity map since the vectors a’ form a basis of cncx.
This is also true for each a and so g = e. Therefore X’ intersects each

orbit in at most one point.
The remainder of the proof for the case that X is metric follows the

final part of the proof of Theorem 3.1.3 of [6], so we sketch the details.
We put X0 = {x~X:xt~X’ for 03BE-almost all t ~ T}, 03BE being a left

invariant Haar measure on T. Then X ° is a strictly T invariant Borel
set which intersects each G-orbit in at most one point, 03C0X0 is a Borel
set and n : X° - nX° gives the required isomorphism.
For the remaining cases, we write X° = U~i= 1Ki ~ N, where v(N) = 0,

Ki compact, Ki c Ki+1 and 7r 1 Ki continuous, by Lusin’s Theorem. Then
nlKi is a homeomorphism, and setting K = U~i=1Ki, nlK is a Borel

isomorphism. If T is countable, set Ko = nteTKt; then Ko is the desired
Borel section over Y In general, we can assume (see [6, Remark 3.2])
that 03C0X0 is Borel, and hence 03C0(N) is Borel with pn(N) = 0. This will
then yield that X ° is the desired Lebesgue section over Y The proof is
completed.

Finally, we combine Theorem 2.1 and 2.2 to give

THEOREM (2.3): Let v E E(X, T) with 7r*v = Il. Then there is a closed

subgroup H = H(v) of G such that if we split the extension by H;
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and put vi = niv then rc2 is a measure (either Borel or Lebesgue) iso-
morphism mod 0 and v1 = v.

PROOF: For each irreducible representation class [oc] of G let there
be precisely la pointwise orthogonal T-invariant a-functions fi03B1, i = 1,..., la
(note that possibly la = 0). Since v is ergodic there are constant vectors
ai03B1, i = 1,..., la such that

We define a subgroup H by

and define

Then v(X’) = 1 and given x e X’, gx E X’ if and only if g E H. Now
consider the split extension over H

Since X’ is an H-saturated Borel set it follows that 03C01(X’) is a Borel set
in X/H with v1(03C01(X’)) = 1. We now note that 03C01(X’) is a Borel section for
03C02: X/H ~ Y To do this it suffices to show that if 03C0x1 = nX2 and

03C01x1, 03C01x2 ~ 03C01(X’) then nixi = 03C01x2. This follows, however, directly
from the definitions of X’ and H. The technique of Theorem 2.2 now
allows us to assert that 03C02: (X/H, T, v1) ~ ( Y, T, p) is a measure isomor-
phism mod 0.
We thus have a strictly T invariant measure section mod 0 ; p : Y’ ~ X/H

with n2 o p = idY,, p 03BF 03C0t = 03C0t 03BF p and v( Y’) = 1. We use p to complete
the proof by showing that 1 is ergodic, and thus vl - v.

Let [a’] E R(H) with dimension na and let [ac] E R(G) extend [a’].
Let f03B1’: X ~ 03A3n03B1’-1 be a T invariant a’-function. First we will construct
an a-function.

We use fa, to construct an a-function as follows: if 03C3: X/H ~ X
is any Borel section, then 03C3 03BF p : Y’ - X is a section over Y’. If x E 03C0-1Y’,
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then x = g(x)ap(nx). Now we can assume that 03B1/H has the form [03B1’0 
’ 

0].
If 0 is an (na - n03B1’) x 1 zero vector, we define

Since the set X - 03C0-1Y’ is T and G-invariant and has v-measure 0,
this set is irrelevant and we define fa to be any a-function on it.
Now we show that fa is T invariant. First note that 6(z)t = h(z, t)u(zt)

for some h(z, t) E H, whenever z E X/H.We then have that

which gives that g(xt) = g(x)h(pnx, t).
Hence

Therefore fa is a T invariant a-function and so we may write

Now the coefficients ai(x) are both G and T invariant, and therefore
constant a.e. v. This means that for almost all x fa(x) belongs to the
subspace generated by a103B1, ..., al03B103B1. But by the definition of H, a IH is the
identity on this subspace. Therefore a’ is the identity representation on H.
This shows that 1 is ergodic and completes the proof.

It appears from the proof of Theorem 2.3 that the subgroup H depends
not only on v but also on the choice of a-functions. The next result shows
that this is not the case.
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COROLLARY (2.4) : H(v) = {h : hv = vl, that is H(v) is the stabilizer of
the ergodic measure v.

PROOF : Since v is a Haar lift through H(v) it follows that

Let X’ be the set defined in the proof of Theorem 2.3. If g ~ H (v) then
gX’ n X’ - 0. But then v(gX’) = 0 and gv(gX’) = v(g’gX’) = v(X’) = 1
so gv ~ v and hence g 0 Hv. Therefore Hv c H(v) and the proof is

complete.

3. Lifting dynamical properties

In this section, we will consider a free G extension n : (G; X, T) ~ (Y, T),
where X and Y are metric, G is abelian and T is locally compact separable
abelian. We fix m E M(Y, T). Consider Hom (T, G), the group of continuous
homomorphisms x : T ~ G, provided with the compact open topology.
Then Hom (T, G) is a locally compact abelian group. Given X E Hom (T, G),
we define a new action of T on X as follows: if p is the old action of T

on X, we set Px(x, t) = X(t)p(x, t) = X(t)xt. We shall write xtx for X(t)xt.
It is easy to check that (G ; X, T, p.) is still a bitransformation group and
that (G ; X, T, p,) remains a free G-extension of (Y, T). Hence for every x,
the Haar lift m E M(X, T, p.). Thus, it is meaningful to ask if, given that
m is ergodic (weak-mixing), the natural extension m is ergodic (weak-
mixing) with respect to p,. The intent of this section is to show that the
first statement holds for a residual set in Hom ( T, G), and the second
statement has a trivial answer in Hom ( T, G).
To prove our results, we recall the following notation: we let T(G)

and T(T) denote the character groups of G and T respectively, and,
if y E r(G),h denotes a Borel function of type y, i.e., fy(gx) = y(g)f (x).
Now consider the following équations :

The basic result used in our analysis is the following

THEOREM : 

A. Assume that m ~ E(Y,T). Suppose that whenever fy satisfies (1),
then y = 1. Then m is ergodic.
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B. Assume that m is weak-mixing. Suppose that whenever fy satisfies
(2) for some b E r(T), then y = 1. Then m is weak-mixing.

Statement A. is precisely the statement of [6, Theorem 3.1.2]. With
regard to B., this statement appears in [4] for T = Z or T = R. Although
no proof is given, this result even in our situation follows directly from
[7, Theorem 3]. For completeness, we sketch a proof. If the condition is
satisfied, then m is ergodic by part A. Suppose f 0 t = 03B4(t)f[03C0-1m]
(t E T), with f bounded and measurable. Since f is invariant, |f| is a

constant by ergodicity and so we assume f : X K. Now if h : X - K
also satisfies hou = ô(t)h[7i - lm](t E T), then h/ f is invariant and so

h = cf, c constant. Fix g E G. Then ( f o y) - t = b(t)(f 0 g)[03C0-1m] (t E T)
and so f 03BF g = 03B3(g)f[03C0-1m]. It is direct to verify that 03B3~0393(G) and so
f is a function of type y. Hence y m 1 and hence f can be regarded as
bounded measurable on Y Thus, f is a constant, completing the proof.
We need one last definition before proving the main result. If U is open

in Hom ( T, G), then we can assume that U is basic: U = (x : x(C) c W},
where C is compact in T, and W is a neighborhood of e in G. We say that
Hom (T, G) covers e if given U as above, U {~(T): XE U} ~ V, where V
is a neighborhood of e in G.

THEOREM (3.1): Let m ~ E(Y, T). Suppose that G is connected and

Hom (T, G) covers e. Then for almost all x, m is ergodic with respect to
(X, T, Px).

PROOF : Suppose m is not ergodic with respect to (X, T, p,). Then there
exists 03B3 ~ 1 and an fy satisfying (1). Since G is metric, T(G) is countable.
For 03B3 ~ 1, set Ay = {~ E Hom (T, G) : x admits a solution to (1) using yl.
Now for fixed y, we define : Hom (T, G) ~ Hom (T, K) by (~) = y 0 x.
Now if x E Ay and Ir 0 tx = f03B3[03C0-1m], then

Hence, (~-1) is a T eigenvalue for the original action of T and, since X
is metric, a straightforward L2-argument shows that there are only
countably many such eigenvalues. It follows that (A-103B3) and thus (A03B3)
is countable. Setting (A03B3) = {(~i): i ~ 1}, then

and to prove the result, we need only show that -1(~i) does not contain
an open set.

Suppose -1(~i) ~ U1, with U open. It follows that if U = U1~-1i,
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then |U = 1. Since Hom (T, G) covers e, then U {~(T):~ ~ U} ~ V,
where Tl is open about e. Now choose 9 E K Then g = X(t) for some
x E U, and so y(g) = y(x(t)) = (~)(t) = 1. Thus, ylV ~ 1 and so y(G) is
finite. Since G is connected, this is a contradiction, and the theorem is

proved.
With regard to weak-mixing, it is impossible to perturb a non-weak-

mixing flow into a weak-mixing flow within the class of perturbations
induced by Hom (T, G). The next result shows that given x E Hom (T, G),
(X, T, 03C1~; m) is weak-mixing precisely when (X, T, p; m) is already weak-
mixing.

THEOREM (3.2): Let (Y, T, m) be weak-mixing. Then the following are
equivalent :

(1) (X, 7§ p ; Ài) is weak-mixing.
(2) For some x E Hom (T, G), (X, T, 03C1~; m) is weak-mixing.
(3) For every X E Hom (T, G), (X, T, px; m) is weak-mixing.

PROOF : We need only show that (1) =&#x3E; (3). Choose x e Hom (T, G), and
suppose that fy satisfies f03B3(xt~) = 03B4(t)f03B3(x)[03C0-1m] for some b E r(T).
Then since

we have that

Since (X, T, p; m) is weak mixing, this implies that y = 1. The conclusion
then follows from Theorem B.

C OROLLARY 3.3: 

A. Let (Y, T) be uniquely ergodic, and m ~ E(Y, T). Then for almost
all x, (X, T, 03C1~) is uniquely ergodic, and m E g(X, T).

B. Let T = Z or R, and (Y, T, m) be ergodic with m having maximal
entropy. Then for almost all x, (X, T, px; m) has maximal entropy.

PROOF: 

A. This follows immediately from Theorem 3.1 and [6, Corollary
2.2.6].

B. Again, this follows immediately by Theorem 3.2 and [6, Proposition
5.4.4].
We now show that the assumption that Hom ( T, G) covers e is always

satisfied if T is locally compact separable abelian.
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THEOREM (3.4): If T is locally compact separable abelian, then

Hom (T, G) covers e.

PROOF : First suppose T = Z. Then Hom (Z, G) ~ G, and clearly
Hom (Z, G) covers e. Next, suppose T = R. Since G is connected, then G
is a subgroup of some m-dimensional torus Km, where 1 ~ m ~ oo . If

G = Km, m  oo, then Hom (R, Km) ~ IRm. This means that the U that
we want to consider is transformed to a neighborhood of 0 E Rm. Now
it is well known that the one-parameter subgroups cover Km. Moreover,
any one-parameter subgroup has a representation as

where (rl, ..., rm) vary over a fixed neighborhood of 0 E Rm. So

and Hom (R, Km) covers e. A similar argument holds for K"0. Finally,
if G c KOO is a solenoid, then a direct argument involving the representa-
tion of G as an inverse limit of tori shows that in the metric case, the

one-parameter subgroups cover G, and the same argument holds.
Finally, suppose T is arbitrary. Then T ~ Rn x Zm x C, with C compact

[2]. Since T is assumed non-compact, either n ~ 1 or m ? 1. If n ~ 1,
we have a homomorphism p : T ~ R, which gives

If U is open about 1 T, then -1(U) is open about 1R, and by the above,

a neighborhood of e. But ~(R) = x(pT) = p(x)(T), which gives the result.
A similar argument holds if m ~ 1, and this completes the proof.
As noted, we now have the results for the classical cases T = Z and

T = R. For T = Z, Theorem 3.1 was already known [7, Theorem 4].
We now note some straightforward extensions of these ideas. Recall

that a free G-extension n : (G ; X, T) ~ (Y, T) is simple if for every y E r(G),
there exists a continuous function fy of type y. We now consider the

equation

We then have :
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T HEOREM : 

C. Suppose (Y, T) is minimal and whenever fy satisfies (3), y = 1.

Then (X, T) is minimal.
D. Suppose (Y, T) is minimal and topologically weak-mixing and

whenever fy satisfies (4), y = 1. Then (X, T) is minimal and topologically
weak-mixing. If (X, T) is assumed minimal, then weak-mixing is equiv-
alent to this condition.

PROOF: 

C. This is a direct consequence of [6, Theorem 6.3].
D. This proof proceeds as in Theorem B, replacing measurable by

continuous functions.

We use this to prove the analogue of Theorem 3.1 for minimality.

THEOREM (3.5): Suppose (Y, T) is minimal and 7r: (G; X, T) ~ (Y, T) is

a simple G-extension with G connected. Then for almost all x, (X, T, Px)
is minimal.

PROOF : This proof follows the lines of Theorem 3.1, and hence will be
omitted.

Note that one obvious way of getting a simple extension is to set

X = G x Y and define g(gl, y) == (ggl, y). Applying Theorem 3.5 in this
setting says that for almost all p,«g, y), t) = (x(t)g, yt) gives a minimal
action on X. Finally, for T = Z, Theorem 3.5 was already known
[7, Theorem 2].
We should also note that if (X, T) is minimal, D holds even if G is not

abelian (but T is still abelian). Thus, in the case that G is simple, (X, T)
is topologically weak-mixing whenever (Y, T) is. Also, a direct copy of
Theorem 3.2 shows that again in the topological case, it is impossible
to perturb a non-weak-mixing flow into a weak-mixing flow within the
class of perturbations induced by Hom ( T, G).
We finally note that if we are willing to give up the continuity of

the new actions, we can obtain the same results in the larger group
Hom (1d, G) of all homomorphisms from T to G (not necessarily con-
tinuous). Here we consider T as a discrete group and hence Hom (Td, G)
is compact in the compact-open topology (being equal to pointwise
convergence topology). Carrying through the same proof as Theorem 3.1,
we recall that if -1(~i) ~ U, and U = U1~-1i, then yi U ~ 1. In this
case, a finite number of left translates of U covers Hom (Td, G), and so
(Hom (Td, G)) is a finite subgroup. Now suppose that :



67

If kl, ..., kn are the orders of the elements of (Hom (Td, G)) and
k = 03C0i=1ki, then (~)k = 1(~~Hom(Td,G)). If g E G and g = X(t), then
03B3k(g) = (~)k(t) = 1, and thus y is of finite order. Since G is connected,
this is impossible. We use this in showing:

THEOREM (3.6): 
I. Let m ~ E(Y,T), and G be connected. Then for almost all

x E Hom (Td, G), m is ergodic with respect to (X, T, Px).
II. Let. (Y, T, ) be uniquely ergodic, and G be connected. Then for

almost all X E Hom (Td, G), (X, T, px) is uniquely ergodic.

PROOF : We need only show that if Td is the discrete group underlying
a locally compact separable abelian topological group, then (*) holds.
Following the proof of Theorem 3.4, we need only show this for T = Z
or T = R. The first case is obvious, so we now show that if 9 E G, ~(1) = g
for some ~ ~ Hom(Rd, G). By [2, Theorem 25.20], we have that

H = {~(1)|~ E Hom (R, G)j is a dense subgroup of G. If g E G, choose
sequences (gn) E H and (xn) E Hom (R, G) with gn ~ g and Xn(l) = gn- By
compactness, we have that some subsequence (~nj) converges in

Hom (Rd, G), xnj ~ x. Thus gnj = xnj(1) ~ ~(1) and ~(1) = g, completing
the proof.
We end this section by making one observation concerning weak-

mixing in the case T = Z, i.e., we have homeomorphisms 9: X ~ X,
03C8: Y - Y In this case, Hom (Z, G) ~ G. If m ~ 1, then

and thus, if m is ergodic with respect to .pm, then m is ergodic with respect
to 9 ..pm for a.e. g, by Theorem 3.6, 1. Since a countable intersection of
residual sets is residual, it follows that if m is totally ergodic with respect
to gi, then for a.e. g, m is totally ergodic with respect to ~. Since weak-
mixing implies total ergodicity, we have shown:

COROLLARY (3.7): Under the above assumptions, suppose (1’:.p, m) is

weak-mixing. Then for a.e. g, (X, g - ~; m) is totally ergodic.

In general, we can define total ergodicity for a general flow ( Y, T, m)
by requiring that ( Y, S, m) be ergodic for every syndetic normal subgroup
S of T. One can then show that weak-mixing implies total ergodicity.
Hence, 3.7 will hold for any countable group T.
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Appendix

In this appendix, we show that one application of the general theory
developed in Section 2 is to the situation where (X, T) and ( Y, T) are
metric minimal transformation groups with 9: (X, T)  ( Y, T) a distal
extension and (Y, T) uniquely ergodic. To see this, the generalized
Furstenberg Structure Theory (see [5] for a precise statement) says that
we build X from Y by steps of the form

where (X03B1+1, T) is an isometric extension of (X03B1, T) in this case (in general,
just an almost periodic extension - see [1] for these definitions) inter-
polating between the group extension (Ga, Ya, T) of (Xa, T). In general,
Ga and Y03B1 are compact Hausdorff. We show that in the metric case we
can choose Ga and Y03B1 to be compact metric, and thus apply our theory.
We again emphasize that some of these results are surely known to
dynamicists, but we have been unable to find them in print.
We shall assume familiarity with notation and results of [1], especially

Chapter 12.
Let si c r!4, A = g(A), the group of A, and set P = ~R03B1|03B1 E A),

the algebra generated by {B03B1|03B1 E AI. If B = g(B), then

is a normal subgroup of A. If in addition, 4 is a distal extension of A,
then (A/S, [P|, T) is a bitransformation group with

[1, Prop. 12.12 and 12.13]. Suppose in this situation, (H, |F|, T) is another
bitransformation group with A c-- 57 and (|F|/H, T) ~ (ldj, T). Then
H ~ A/F where F = g(F), and ff A ~ F. Thus, Aot c ffex c-- 57(ot E A),
and so P ~ F. Thus, i7 is the ’smallest’ bitransformation group over
A ~ e, and A/S the ’smallest’ group. Moreover, in the situation that we
are dealing with, namely, anisometric extension of metric transformation
groups (or more generally an almost periodic extension), putting the
03C4(P)-topology on A/S makes (A/S, 03C4(P)) into a compact Hausdorff
group which acts jointly continuously on |P| [1, Remark 14.4, Prop.
14.11, 14.26]. We shall show that (A/S, r(Y» and |P| are both metric,
giving the result.
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PROPOSITION (I) : (A/S, 03C4(P)) is compact metric.

PROOF: We are assuming that the restriction map r: |B|  |A| is an
isometric extension. Now each fibre r-1r(x) (x E |A| is homeomorphic
to (A/B, 03C4(B)) [1, Prop. 1.2, Notes to Chap. 15] and so (A/B, 03C4(B)) is

compact metric. Hence, we can assume without loss of generality that
this metric is both right and left A-invariant. Letting I(A/B) denote the
group of isometries on A/B, it is well known that I(A/B) is metrizable
in the topology of uniform convergence. The right invariance of A yields
a canonical map ç : (A, 1(é3)) - I(A/B), and the left invariance yields
that ç is continuous. It is direct to verify that ker ç = S and hence
(A/S, 03C4(B)) ~ im ~ is compact metric. Since 03C4(B) c 03C4(P) and (A/S, 03C4(P))
is compact, then (A/S, 03C4(P)) = (A/S, 03C4(B)), completing the proof.

It is easy to verify that the converse: (A/S, 03C4(P)) compact metric
implies r is isometric, is also true.

PROPOSITION (II): |p| is metric.

PROOF : Recall that c d* c A*, where A# is the maximal almost-
periodic extension of A, and A* is the maximal distal extension of A.
Now A ce i7 ~ A* gives B ~ S, 03C4(B) c 03C4(A*). Thus (A/S, 03C4(B))
compact metric and A/S ~ A/B gives (A/B, 03C4(B)) and hence, (A/B, 03C4(A*))
compact metric. Pick {B03B1n|n = 1,2,...} 03C4(A*)-dense in A/B and set
P1 = ~B03B1n|n = 1, 2,...~. Since

|P1| is metric. We complete the proof by showing that P1 = P.
Choose a E A. Since the canonical map (A, 03C4(A*)) ~ (A/B, t(d*)) is

open, if (B03B1nj) is a sequence in the dense subset with B03B1nj ~ Ba, then
there exists a sequence (03B2j) E B with 03B2j03B1nj ~ a in (A, 03C4(A*)). Next, let
f ~ A#. Then a - ( g ap) (p E M) is continuous on (A, t(d*)). This
implies that f 03B2j03B1nj ~ fa pointwise on 03B2T, or f 03B2j03B1nj - fa in G(|A#|) = A#
with the topology of pointwise convergence. Since

is jointly continuous and {f03B4|03B4 e A} is compact, f 03B2j03B1nj - f a uniformly
on A#.

Finally, choose g ~ B ~ A#. Then g03B2j03B1nj - go uniformly. Now
g03B2j = g since 03B2j c- B and so g03B1nj ~ ga. Thus, g03B1 e P1. Since oc is arbitrary,
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i7 ~ P1, completing the proof.
In summary, we have shown: ç : (X, T)  (Y, T) is isometric iff there

exists a group extension (G, Z, T) of (Y, T) with G and Z metric such that
(Z, T)  (X, T).
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