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Abstract

In this paper we give a new and simple proof of local contractibility
of the space of homeomorphisms of a finite polyhedron. We find that the
local contraction preserves PL homeomorphisms so we obtain the new
result that the space of PL homeomorphisms of a finite polyhedron is
locally contractible.

1. Introduction

If X is a topological space, let H(X) denote the group of homeo-
morphisms of X with the compact-open topology. If X is a polyhedron
then PL(X) is the subgroup of PL homeomorphisms.

THEOREM (1): Let K be a finite polyhedron. Then for each neighbourhood
W of 1 in e(K) there is a neighbourhood V of 1 and a map

satisfying

COROLLARY : For a finite polyhedron K, the spaces e(K) and PL(K)
are locally contractible.



4

The corollary, together with theorem 1.9 of Geoghegan [3, p. 466]
and the theorem of Haver [4, p. 281] tell us that PL(K) is an absolute
neighbourhood retract.
An alternative proof that e(K) is local: contractible appears in [5]

and an alternative proof of local contractibility of PL(M) for a compact
PL manifold M appears in [2].
We now give an indication of the proof of theorem (1). Suppose that

h : K ~ K is a homeomorphism which is near the identity 1. Using the
idea in Section 8 of [1] we modify h in a neighbourhood of each vertex
of K to hl so that hl is very close to 1 in a small neighbourhood of the
0-skeleton. The process is then repeated to modify h 1 in a neighbourhood
of the barycentre of each 1-simplex to h2 so that h2 is very close to 1 in a
small neighbourhood of the 1-skeleton. In this way we obtain an isotopy
from h to a homeomorphism which is very close to 1 on the whole of K.
Repeating the whole process, we obtain a sequence of isotopies in which
the initial homeomorphism of an isotopy is the end product of the
previous isotopy and the final homeomorphism of an isotopy is much
closer to 1 than the initial homeomorphism. These isotopies may then be
stacked together to give the map ~.

Extensions and variations of theorem (1) are possible. For example, by
choosing the auxiliary functions in Proposition (5) to be smooth, one
obtains

THEOREM (2) : The group of diffeomorphisms of a compact differentiable
manifold with the Cr-topology (any r &#x3E; 0) is locally contractible.

One can also give an alternative proof of Siebenmann’s theorem [5,
p. 132], as well as obtain relative and non-compact versions.

2. Notation and preliminary results

All spaces of embeddings (and homeomorphisms) are assumed to have
the compact-open topology. When we say that an embedding h’ con-
structed from an embedding h is canonical we mean that the function
h++ h’ on the embedding spaces is continuous.

If X is a topological space, by the (open) cone over X, denoted cX, is
meant the quotient space obtained from the disjoint union of X x [0, (0)
and the singleton {0} by identifying each point of X x {0} with 0. The
point 0 is the vertex of cX. If A c X then cA c cX in a natural way.
If a E [0, oo), let ca X (resp. é,,, X) be the subspace of cX obtained from
X x [0, a) (resp. X x [0, oc]). If y E cX and a E [0, oo ), define a y as follows :
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y is the image of some (x, fi) E X x [0, oo ). Let a y denote the image in cX
of (x, 03B103B2). For B c cX and a E [0, oo ), let

If y E cX is the image of (x, fi), write Iyl = fi. Let

PROPOSITION (3): Let X be a metrisable space. Then X is compact if and
only if its cone cX is metrisable by a metric d satisfying:

(i) d(a y, az) = ad( y, z) for any y, z E cX and a E [0, (0);
(ii) d(ay, [3y) = lex - [31. Iyl for any y E cX and u, fl E [0, oo).

PROOF: If X is compact then we may embed X in the unit sphere of the
Hilbert space l2 ; cX then embeds in l2 as all rays from the origin through
X. The metric on cX induced from the norm on l2 satisfies (i) and (ii).

Conversely, if cX is metrisable then the vertex 0 has a countable neigh-
bourhood basis, so X x {0} has a countable neighbourhood basis in
X x [0, 1 J. Thus X is sequentially compact and hence compact.

In the sequel, whenever we require a metric on cX for a compact
metrisable space X we will assume that it satisfies conditions (i) and (ii)
of Proposition (3).

If K is a finite polyhedron and 6 a simplex of K, let bc denote the
barycentre of 6 and K’ the first barycentric subdivision of K. Let lk(b6, K’)
denote the link of b6 in K’. Since K is finite, we may choose any metric
on K; so suppose K is metrised by a metric which is linear on each simplex
and which assigns to each edge the length 1. Then the closed star of ba
in K’ may be naturally identified with ët lk(b’, K’).
We require the following result which is 1.7 of [5].

PROPOSITION (4): Let h : F ~ F’ be an open embedding of locally com-
pact locally connected Hausdorff spaces. Let C c F be compact. If
g: F ~ F’ is another open embedding sufficiently near h in the compact-
open topology then h( C) c g(F). If, further, g = h outside C, then h(F) =
g(F).

3. The basic construction

The following result is essentially Edwards’ wrapping process, cf. [5,
Proposition 4.9] and [1, Section 8], except that we stop short of the final
wrapping step.
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PROPOSITION (5) : Let a, à and r be positive real numbers with r  1 and

let A be a closed subset of the compact, locally connected, metrisable space
X. Let U be an open neighbourhood of ëaA - car8 A in cX. Then there is a
neighbourhood W of A in X such that for all sufficiently small 03B5 &#x3E; 0 and all

open embeddings h : c03B1X ~ cX within 8 of the inclusion i and within b8

of i on U, there is an isotopy ht : c03B1X ~ cX satis, f’ying :
(i) ht = i if h = i;

(ii) ho = h;
(iii) ht is canonical;
(iv) htlcaX -Car4X = hlcaX -Car4X; 
(v) h1(x) = r3h(x/r3) if x ~ c03B1r7X ;
(vi) ht is within 6e of i;
(vii) hl 1 c,,, W - Car7 W is withih 6ôe of i;
(viii) if X is a polyhedron and h is PL then so is ht.

PROOF : Let W be a neighbourhood of A in X small enough so that the
closure of ca W - Cars W in cX lies in U. Suppose 8 is a small positive
number and h : ca X ~ cX is an open embedding within 8 of i and within
b8 of i on U.

Define x, ;[: [0, ~) - [0, oo) as follows : 03BA(y) = y/r3 ; 03BB is multiplication
by r3 on [0, 03B1r3], takes [03B1r3, ar2J linearly onto [03B1r6, ar2J and is the iden-
tity on [03B1r2, 00). Let Xt, fit: [0, ~)~[0, ~) be PL isotopies satisfying :

(a) Xo = 1 and 03BB1 Â;
(b) Xt = 1 on [03B1r2, ~);
(c) 03BCt = (03BBt03BA)-1.
Define Ât, ,ut: cX ~ cX by 03BBt(0) = 03BCt(0) = 0 and if x E cX - {0}, let

Define the required isotopy ht : c03B1X ~ cX by

see figure 1.
Provided 8 is small enough, the first line of the definition of ht(x) is

meaningful by Proposition (4). If |x| = ar4 then x/r3 E Sar X so if 8 is small
enough, h(x/r3) E Ca X - Car2 X on which Àt = 1; thus
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Figure 1. Definition of hl on c03B1r4X - c03B1r7X

and application of 03BCt here is multiplication by r3, so

when = ar4. Thus ht is well-defined.
The family ht is clearly an isotopy satisfying (i) to (v) and (viii). Proof

of satisfaction of (vi) is similar to that of (vii). We will verify the latter.
Suppose x ~ c03B1 W - c03B1r7 W. If |x| ~ ar4 then ht(x) = h(x) so ht(x) is

within be  6be of x. If |x| ~ ar4 then x/r3 E c03B1rW-c03B1r4 W, so

Since 03BB1 expands by at most a factor of 4, this implies

Thus

provided e is small enough, so, since pi does not increase distances, we
have

and hence

as required by (vii).

REMARKS : There is nothing special about the constant 6 appearing in
(vi) and (vii) of Proposition (5) and in Proposition (6) below except that it
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is independent of the embedding h. One could reduce the size of this
constant by adjusting the auxiliary functions Àt and Ilt, although it would
have to exceed 3, this being the number of applications of h (or its inverse)
in the definition of ht . As was pointed out by the referee, the scale ar, ocr 2
(Xr3,... is not necessary : in fact Edwards and Kirby, and Siebenmann use
a linear scale. However the above scale appears most suited to our ap-

plication as it better respects the cone structure we impose on our poly-
hedra.

PROPOSITION (6): Let a and ô be positive real numbers and let A be a
closed subset of the compact, locally connected, metrisable space X. Let U
be an open neighbourhood of s03B1 A in cX. Then there is a neighbourhood V of
ca A in cX such that for each sufficiently small 8 &#x3E; 0 and each open embed-

ding h : ca X -+ cX within 8 of the inclusion i and within b8 of i on U, there is
an isotopy ht : c03B1X ~ cX of open embeddings satisfying :

(i) ht - i if h = i ;
(ii) ho = h ;

(iii) ht is canonical;
(iv) ht agrees with t near s03B1X;
(v) ht is within 6e of i;
(vi) h1|V is within 6ôe of i;
(vii) if X is a polyhedron and h is PL then so is ht .

PROOF : Choose r  1 so that ëa A - car8 A c U, and let n be a positive
integer so that r3n ~ 6ô. Let W be the neighbourhood of A given by
Proposition (5) and let

For B &#x3E; 0 sufficiently small, if h : c03B1X ~ cX is an open embedding
within e of i and within be of i on U, we will construct a canonical isotopy
ht : c03B1X ~ cX of open embeddings parametrised by [0, n] so as to satisfy
conditions (i) to (vii) above (but with hn in place of hl in (vi)). By reparam-
etrising the isotopy we obtain the desired result. Given x E c03B1X, t ~ [0, n],
say t ~ [k, k + 1], let

The isotopy ht-k in the second line of this definition is that given by
Proposition (5). We have used condition (v) of Proposition (5) to enable us



9

Figure 2. The repetitive nature of hk

to isotope h to an embedding which repeats itself as we move toward the
vertex of the cone. See Figure 2.

Satisfaction of most of the conditions of Proposition (6) follows from
the corresponding condition in Proposition (5). Condition (vi) of Proposi-
tion (6) follows from condition (vii) of Proposition (5) for points outside
c03B1r3n+4X and for x ~ c03B1r3n+4X, we have

so since

by choice of n.

4. Proof of the main results

PROOF OF THEOREM (1) : Suppose dim K = n. For a homeomorphism
h : K ~ K sufficiently close to 1, construct a canonical isotopy ht : K ~ K,
t ~ [-1, n], with h-1 = h and hn twice as close to 1 as was h, by induction
up the skeleton of K as follows. For each vertex v of K, recall from the end
of Section 2 that the closed star of v in K’ is identified with c1 2lk(v, K’).
Applying Proposition (6) to h on this cone gives us an isotopy ’ht, t E
[-1, OJ, from h to ho which is very close to 1 in a neighbourhood of v.
By constructing this isotopy simultaneously about each vertex of K we
obtain the isotopy ht, t ~ [-1, 0], from h = h-1 to ho which is very close
to 1 in a neighbouthood of the 0-skeleton of K.

Inductively, if ht has been constructed for t~[-1,k] so that hk is
very close to 1 in a neighbourhood of the k-skeleton of K, and a is a
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(k+1)-simplex of K, then apply Proposition (6) to hk on the cone
c1 2lk(b03C3, K’), and simultaneously on the corresponding cones for the other
(k + l)-simplices of K, to obtain an isotopy ht, t E [k, k+1], so that hk + 1 is
very close to 1 in a neighbourhood of the (k + l)-skeleton.
By ’very close’ above, one might mean the following: if h is within 8

of 1, we want hk to be within B/2.6n-k of 1 in a neighbourhood of the k-
skeleton. Further details are left to the reader.

If we set k = n in our definition of ’very close’, we see that the isotopy
ht takes h-1 = h to hn which is within e/2 of 1 on a neighbourhood of the
n-skeleton of K, i.e. on all of K. By reparametrising, we obtain an isotopy
ht, t E [0, 1 2, from ho = h so that ht is twice as close to 1 as was h. Repeat-
ing the process over and over, we obtain a canonical isotopy ht, t e [0, 1),
from ho = h so that hl-l/2k is twice as close to 1 as is h1-1/2k-1. We can
then set h 1 = 1 to obtain the required canonical isotopy ~(h, t).

PROOF OF THEOREM (2): For this we need smooth versions of Proposi-
tions (5) and (6). These are easily attained by making Ât and 03BCt in the proof
of Proposition (5) smooth. Condition (v) of Proposition (5) actually holds
in a neighbourhood of ëar7 X so when we piece together the isotopies in
the proof of Proposition (6), this will be done smoothly.

Relative versions

If, for example, K is a finite polyhedron and A, B are closed subsets of
K so that B is a neighbourhood of A then any homeomorphism of K
sufficiently close to 1 which is already 1 on B can be deformed to 1 leaving
A fixed. This construction is carried out in the usual way, i.e. choose a

subdivision of K so fine that no simplex meets both A and K - B. Proceed
as in the proof of theorem (1). Since the homeomorphism is already 1 on
the closed star of A, the deformation will leave this set, and hence also A,
fixed. In the case where A is a subpolyhedron of K we can dispense with
the set B. Similarly, in the case where A is a subpolyhedron of K, any
homeomorphism of the pair (K, A) sufficiently close to 1 can be deformed
through homeomorphisms of (K, A) to 1. One can formulate analogues
in the smooth case.

Siebenmann’s Deformation theorem
(cf. [5], p. 132); We can adapt the above proof to give an alternative

proof of Siebenmann’s theorem. For example in the case where (Sieben-
mann’s notation) X is a finite polyhedron, subdivide sufficiently so that
no simplex meets both A and Cl(X - A’) and that the closed star of C lies
in U, where C consists of the union of all (closed) simplices meeting B.
Barycentrically subdivide X and apply the ideas of the inductive part of
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the proof of theorem (1) to st’(C) to bring the embedding twice as close to
1 on st’(C). Again subdivide X and repeat the process on st"(C). Continu-
ing in this way we obtain an isotopy of embeddings converging to an
embedding which is the inclusion on C and agrees with the old embedding
outside st(C). Unfortunately this limiting embedding need not be PL
even if the original embedding is PL. Thus although we obtain Sieben-
mann’s theorem 2.3, we do not obtain PL or smooth analogues of this
result.
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