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Since its introduction in [5], Euler mod 2 spaces, E(2) space from now
on, have attracted some interest, especially in regards to calculating
their Stiefel-Whitney homology classes, see for example [1], [3]. In this
paper we shall study wn- 1 of an n-dimensional E(2) space. We shall
eventually obtain a formula which establishes the topological invariance
for this class, this leads to a Wu type formula involving Sql for this class
in analogy with the situation in a smooth manifold. Then some examples
are given to show that this formula is the best possible which one can
obtain. One of the examples shows that wn-1 is not a homotopy invariant.
Finally a general formula is given but not proved, which gives a method
for defining the S - W classes in the original complex without passing
to the first derived. One final word is in order and that is that although
everything is stated and proved in the context of E(2) spaces the only
hypothesis we really need is that the links of n -1 and n - 2 dimensional
simplexes have even Euler characteristic.

Let K be an n-dimensional E(2) space, that is K is a finite n-dimensional
simplicial complex with the property that for any simplex, the number of
simplexes in its link is even or equivalently the Euler characteristic of
its link is even. The p-dimensional skeleton of a first derived of K, viewed
as a p-chain with Z2 coefficients, is a cycle whose homology class is called
the p-dimensional Steifel-Whitney homology class of K and is written
as wp(K). We observe that Wn(K) is just the totality of all the n-simplexes
in K and is clearly a topological invariant of K.
To each n-simplex in K arbitrarily choose an orientation. For each

(n-1)-simplex s, the orientation induces on the set of n-simplexes which
* Supported by the Alexander von Humboldt Stiftung.



34

have s as a face, an equivalence relation defined as follows : two simplexes
are equivalent if their orientations induce the same orientation on s.

We denote by A(s) and B(s) the number of elements in each class and
remark that they have the same parity which is called the parity of s
with respect to the orientation. We write P(s) = 0( 1 ) if the parity is even
(odd). In the rest of this section we assume that everything is taken

mod 2 unless it is stated to the contrary.

THEOREM (1.1): £s(P(s) + 1)s is a cycle, whose homology class is wn-1(K).

PROOF: We shall construct an n-chain, C, in K’, whose boundary
consists of all n -1-simplexes whose carrier is an n-simplex in K and
those n -1-simplexes whose carrier is an (n -1 )-simplex with odd parity.
Now a typical n-simplex in K’ can be expressed as (so, sl, ..., Sn) where
sj is a j-simplex in K. Order the vertices in Sm so that sj = (vo, ..., vj),
for every j. This well defined ordering on the vertices of sn induces an
orientation on Sn; we define C to consist of those simplexes (so, sl, ..., sn),
whose induced orientation on sn agrees with the preassigned one on sn.
Now an (n -1 )-simplex in K’ whose carrier is an n-simplex in K can be

represented as (so, ..., Si - 1, sj+1,..., sn), where 0 ~ j ~ n-1. Now there
exactly two j-dimensional simplexes which can inserted in the above
representation, however exactly one of the two will produce a simplex
which is in C.

An (n-1)-simplex whose carrier is an (n-1)-simplex in K, looks like
(so, ..., sn-1). Now the coefficient of this simplex in ô C, is equal to
P(sn-1), thereby proving the theorem.

COROLLARY (1.2): wn-1(K) is 0 if and only if there exists an orientation
for each n-simplex so that P(s) = 1 for every (n -1)-simplex.

PROOF : Arbitrarily choose an orientation for each n-simplex and call
the parity function P’. If wn-l(K) is 0, then there exists n-simplexes
t1,...,tk, so that 03A3S(P’(s) + 1) = c(t1+ ... + tk). Change the orientation
on those n-simplexes and call the new parity function P. It is clear that
P satisfies P(s) = 1 for each s.
The other implication is obvious.
Since K is an E(2) space, the link of every n -1 simplex s, consists of

2k(s) vertices (k(s) could be 0). Let Zn-1 be the chain consisting of those
s so that k(s) is even, that is Ls(k(s)+ 1)s.

LEMMA (1.3): Zn-1 is a cycle.
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PROOF : Let r be an (n - 2)-simplex and let Cr be its link. Now Cr is an
1-dimensional simplicial complex with xCr --- 0 mod 2. Now the vertices

in Cr correspond, via joining to r to (n -1)-simplexes in K and the
1-simplexes to n-simplexes in K. We call the order of a vertex, the number
of 1-simplexes of which it is a face and denote it as 0(v), where v is the
vertex. It is clear that 0(v) = 2k(v*r). The lemma will be proved when
we show that there is an even number of vertices v, with 0(v) = 0 (mod 4).
However this is an immediate consequence of the following:

LEMMA (1.4): Let C be a 1-dimensional simplicial complex so that 0(v)
is always even. Then the number of vertices v, with 0(v) = 0 (mod 4) is

equivalent to the xC modulo 2.

PROOF : 

Case a). If C has the property that 0(v) is either 0 or 2, then C is a
disjoint union of circles and points and the proof is evident.

Case b). If v is a vertex with 0(v) &#x3E; 2, then add a new vertex v’ to C
disconnect 2 1-simplexes which meet v, and join them instead to v’.

In this new complex C’, the hypotheses of the lemma are still satisfied
and both terms are changed by one. Keep on doing this until case a is
reached. Hence the lemma is demonstrated.
We denote the homology class of Zn-1 as Xn-1. Now the carrier of

Zn-1, viewed as a point set of K is the closure of the union of the following
two sets:

The first set are those points which lie on (n -1 )-simplexes which have
k(s) even but not 0; the second set are those where k(s) is 0. Hence Xn-1
is a topological invariant. Now let B* denote the Bockstein homo-
morphism in Z2 homology.

THEOREM (1.5): wn-1(K) = B*(wn)+Xn-1, hence wn-1 is a topological
invariant.

PROOF: Using previous notation B*(wn) has as a representative
03A3s(A(s)-B(s))/2s. It suffices to show that
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Since k(s) = (A(s) +B(s))/2 and P(s) ~ A(s) (mod 2), the result follows.
The topological invariance is a result of the fact that both wn and Xn-1
are topological invariants.

2. Wu type formula

Although E(2) spaces do not satisfy Poincare duality, and are essentially
homology objects, a relationship between a Steenrod square and wn-1
exists under certain conditions which is analogous to the situation when
the E(2) space is a smooth triangulation of a manifold. In this situation
we know that if Sq 1: Hn-1(K) ~ H"(K) is 0, then the first Wu class of
the manifold and hence the first Stiefel-Whitney cohomology class is 0.
However the Whitney theorem [2], implies that wn-1 is 0. We shall show
that this is also valid for E(2) spaces under the assumption that k(s) is
odd for every (n -1 )-simplex, s.

This fact will follow quite readily from the following lemma, whose
proof is immediate by an application of ’Pontryagin duality’ and 1.5.

Let 03BC:Zp ~ Zp2 be the homomorphism which takes 1 to p, and

03B2: Zp2 ~ Zp be defined by sending 1 to 1 where p is a prime.

LEMMA (2.1): 03B2*:Hn(K; Zp2) ~ Hn(K;Zp) is onto if and only if
J1* : Hn(K ; Zp) ~ Hn(K ; Z p2) is a monomorphism.

When we specialize to the case when p is 2, since Sql is the coboundary
homomorphism in the exact sequence induced by the coefficient homo-
morphism 0 - Z2 4 Z4 L Z2 ~ 0, we get the following theorem

THEOREM (2.2): Let K be an n-dimensional E(2) space with k(s) odd for
every (n-1)-simplex, then Sql : Hn-1(K) ~ Hn(K) = 0 implies that wn-1(K)
is 0.

PROOF: Sq1: Hn-1(K) ~ Hn(K) equal to 0 implies that jM* is one to one,
hence by 2.1 we get that 03B2* is onto. Since Xn-1 is 0 and B* is 0, by
applying 1.5 we arrive at the desired conclusion.

It should be noticed that under the additional hypothesis that

Hn(K; Z2) ~ Z2, then the converse is also valid.

3. Examples

In the following examples, the spaces considered are what Ted Turner
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Example 1

and the author call Quasi-regular complexes rather than simplicial
complexes, the main result in [1] allows us to use the first derived of
these to compute wp. The ’obvious’ first derived of these are simplicial
complexes and one may do the calculations in these if it is desired.

EXAMPLE 1: Here K consists of a single 0, 1 and 2-cell. Since K is

homotopy equivalent to RP’, we have a Z2 term in every dimension in
Z2 homology. It is easy to check that X, is also the generator in Hl,
hence w1 is 0. This example shows that the Stiefel-Whitney homology
classes are not homotopy invariants for E(2) spaces.

Example 2



38

EXAMPLE 2: Here K again consists of one cell in every dimension.
Here we have that Sql is 0, although w, is not the 0 element.

Example 3

EXAMPLE 3 : K consists of 10-cell, 1 1-cell, and 3 2-cells. In this example
k(s) is odd for each 1 simplex. It is straightforeward to check that w, is 0,

although Sq 1 is different from 0.
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4. A différent formula

In this section a formula will be given but not proven, which is a

generalization of that given for wn-1. It is interesting to note the not so
accidental connection between this formula and the definition given by
Steenrod in his original work on cohomological operations [6]. In fact
except for a reversal of order the notion of regularity given here is

identical to his.

DEFINITION: Let K be a finite simplicial complex with the vertices
ordered. Let t be a simplex in K which respect to the ordering is (vo, ..., vm).
A face s of t is said to be regular if s = (wo, ..., wp) and the following
condition is satisfied

*) If s is 0-dimensional then wo = vo
**) If dimension of s is even then wo = vo, w 1 = vi and W2 = vi+1,

w3 = vj and w4 = vj+1,..., and wp = vm when p is odd.
Now let êpt be the mod 2 union of all regular faces of t of dimension p.

The following theorem is a product of joint work with Ted Turner.

THEOREM : Let K be an E(2) space, then wp(K) = 03A3(lpt.
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