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Introduction

Developed here is the basic theory of the join of two projective schemes.
Intuitively, the join is the locus of points on the lines joining two schemes
in general position in an ambient projective space. The (projective
projecting) cone is the important special case in which one of the two
schemes is equal to the base scheme.
The join is an old and fruitful construction in algebraic geometry.

Recently, joins have been used in proofs of Chow’s moving lemma
(cf. Chow [3], Samuel [11], Chevalley [2], Roberts [10]) and by Lascu
and Scott [9] in an interesting determination of the change in the Chern
classes of a variety undergoing a blowing-up.
The theory of joins is closely related to the theory of maps of the form

Proj (a), thought of as linear projections. The theory of linear projections
is developed at the end, and it includes the determination of the blow-up
of the source along the center of projection. One such determination is
a key step in Holme’s important work [6] giving a numerical character-
ization of the smallest projective space into which a given smooth
projective variety can be embedded by means of a linear projection.
Another is used in the theory of Lefschetz pencils (see Katz [7]).
We ourselves were led to develop a theory of joins because we needed

a number of properties of cones to study an example of a divisorial cycle
acquiring an embedded component under a flat specialization [1]. There
is an alternate treatment of the theory of cones in EGA II, 8, but it does
not contain all the results we needed. Moreover, our development of
the theory of joins seems more concise, less technical, and easier to
comprehend, as well as being more general than EGA’s theory of cones.
The first section consists of preliminaries, which could have been

in EGA II. It divides naturally into two parts. The first part deals with
the Serre map,
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where Y is a projective scheme Proj (P). The principal result asserts
that the linear embedding, Proj (03B1#Y), is equal to the diagonal map,
0394Y : Y - Y x Y. While the details are not carried out here, this result
can easily be made to yield the functorial characterization of T points
of Proj (P) as homogeneous 1-quotients of PT (a homogeneous
1-quotient of YT is a homogeneous quotient of PT that is isomorphic,
as a graded (9T-Algebra, to Sym (L) for some invertible (9T-Module L).
In fact, the result can easily be made to yield for a map, a : P ~ Y of
graded Algebras, the functorial characterization of the T points of the
scheme G(a) as the homogeneous 1-quotients Y of TT such that the
natural composition,

is surjective.
The second part of the first section deals with tensor products of graded

Algebras, and the principal result here asserts that the open subscheme
G(c) of Proj (R ~P T) is the product over Proj (P) of the open subschemes
G(a) of Proj (Y) and G(b) of Proj (R), where a : P ~ T and b : P ~ R
and c : P ~ R ~p P denote the structure maps. (This assertion could
also be derived from the above characterization of the T points of G(a).)
The second section contains the basic definitions and compatibilities

of the theory of joins. The join of two projective schemes, Proj (R) and
Proj (Y), is defined as "Proj" of the tensor product, Proj (R Q P)
(thus, it depends upon the embeddings of Proj (R) and Proj (Y) in
projective space). There are several more basic definitions. The two
fundamental embeddings and the two fundamental retractions are

defined as linear maps arising naturally from two augmentation maps
and two structure maps. The two conjunctive embeddings are defined as
linear embeddings arising naturally from Serre maps, and the conjunctive
transforms are equal to the images. The compatibilities of these notions
with linear embedding and with base change are derived easily from the
definitions and are important in the remainder of the development.
The third section contains the principal results of the theory of joins.

The key result is the first, which asserts that the conjunctive transform
is isomorphic to the join off the exceptional locus and that the exceptional
locus’ is the inverse image of the fundamental subscheme. All the

important structural results follow from this result and from the defini-
tions. The main result, which asserts that the conjunctive transform is
equal to the blow-up of the join along a fundamental subscheme, is now
easy to anticipate, but nevertheless somewhat difficult to prove.
The fourth section deals with linear projections using the ideas
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developed in the first three sections. The first result asserts that the

blow-up of the source of a linear projection along the center of projection
is equal to the closure of the graph of the linear projection; in other words,
the fundamental points of a linear projection can be eliminated by
blowing up along the center of projection. The main results give an
explicit description of this blow-up as a certain "Proj" over the target of
the linear projection, valid under certain useful hypotheses. Three
blow-ups are computed as examples: the blowing-up of a linear sub-
scheme of -a projective scheme, the blowing-up of the diagonal of a
product of a projective space with itself, and the blowing-up of the axis
of an r-fold family of r-codimensional linear space sections.

Blanket notation, see also (Bl) and (B7)
Fix S, a base scheme. Let L(S) denote the category whose objects are

the graded, quasi-coherent (9s-Algebras generated as Os-Algebras by
their terms of degree one (and so they are zero in negative degrees and
(9s in degree zero) and whose morphisms are the homogeneous ÛS-
Algebra homomorphisms. Let L(S)surj denote the subcategory with the
same objects but with only the surjective maps in W(S) for morphisms.

Fix an object P of W(S); set

and let f : Y - S denote the structure morphism.
Fix maps a : Q - 1 in W(S) and u : fi/ --+ Yin L(S)surj. Set

and let g denote the (affine) S-morphism,

where G(a) denotes the open subscheme, (Z - V+(a(¿/ +))), of Z. Set

the linear embedding defined by u.

A. General lemmas on Proj

(A1) The canonical surjection 03B1#Y
Let M be a quasi-coherent (9s-Module, and regard it as a graded
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OS-Module concentrated in degree 0. There is a useful functorial iso-
morphism on Y,

For future reference, note the formula, which holds for any integer n,

which holds because, clearly, M[n] 0 Y is equal to (M Q P) ~P P[n]
and because tilde is compatible with tensor product (EGA II, 3.2.6).
For each nonnegative integer n, there is a canonical map,

Applying tilde yields, by (Al.l), a canonical (9y-homomorphism,

(It is equal to the adjoint of the Serre homomorphism, 03B1Y,n : Pn ~ f*OY(n),
by the last paragraph of (EGA II, 3.3.2).) Since !7 is generated by !7 l’
there is a canonical isomorphism,

So, summing the y yields an important map in l(Y),

Since P is generated by P1, the maps Sn of (Al.3) are obviously
(TN)-surjective; (in fact, their components of degree d are surjective for
d ~ 0). So, 03B1#Y is surjective by (EGA II, 3.4.2).

(A2) LEMMA: There is a natural commutative diagram on the open sub-
scheme G(a) of Z,

Moreover ~ is an isomorphism.
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PROOF : For each integer n, consider the natural commutative diagram
on S,

The lower horizontal map is obviously an isomorphism. Applying tilde
yields the following commutative diagram on Z, in which the bottom
map is an isomorphism :

Restrict this diagram to G(a). Since tilde is compatible with g (EGA II,
3.5.2, (ii)), the diagram becomes a commutative diagram, in which the
bottom map is an isomorphism,

Summing these diagrams yields the desired diagram (A2.1) with iso-
morphism 11.

(A3) LEMMA: Use the structure maps to identify Proj (Sym OZ(1)))
with Z (EGA II, 3.1.7 and 3.1.8, (iii)) and Proj (ff z) with Z  SZ (EGA II,
3.5.3). Then Proj (03B1#Z) is equal to the diagonal map, 0394Z : Z ~ Z  SZ.

PROOF : Take !7 to be Sym (P1) and take a : P ~ T to be the canonical
surjection. Then g = Proj (a) : Z - Y is a (linear) embedding. Consider
a diagram,
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The left-hand square is commutative because Proj is compatible with
base change (EGA II, 3.5.3). The right-hand square is obtained by
applying Proj to the commutative diagram (A2.1) ; so it is commutative
because Proj is a ’functor (EGA II, 2.8.4).

It follows immediately from (EGA II, 4.2.3) (indeed, it is the principal
result) that Proj (03B1#Y) is equal to the diagonal map, 0394Y : Y ~ Y  SY
because Y is equal to P(1). Hence, since the above diagram is commu-
tative, 0394Y  g is equal to (g x g) o Proj (03B1#Z). Obviously, 0394Y g is equal to
(g  g) 0394Z. Therefore, since (g  g) is a monomorphism, the maps,
Proj (03B1#Z) and 0394Z, are equal.

(A4) LEMMA : Consider a tensor product diagram (pushout diagram) in
the category L(S), (actually R and P need not be generated by their
components with degree 1),

where c denotes the composition, r 0 b = t 0 a. Then the following diagram
of S-schemes is cartesian:

PROOF: The assertion is clearly local on S, so we may assume S is
affine (cf. EGA 1, 3.2). Set A = 0393(S, Y), set R = 0393(S, 3l), and set

T = r(S, g-). Let h be a homogeneous element of A. Then there are
canonical isomorphisms (EGA II, 2.4.1 and 2.8.1),

Assume h has degree 1. Then there is a canonical isomorphism (cf.
the proof of EGA II, 2.5.13),
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Therefore, by (EGA 1, 3.2.1.3), there is a canonical isomorphism,

1 h

Since A is generated by A1, such Yh cover Y Hence G(c) is canonically
isomorphic (cf. EGA 1, 3.2) to the fibered product G(a) x y G(b).

(A5) LEMMA : Consider the tensor product diagram in W(S),

(i) The following diagram of S-schemes is cartesian :

(ii) If a is surjective, then the following diagram of S-schemes is

cartesian:

PROOF: (i) Since u is surjective, the images a’(u(+)) and a’(’+) are
equal; hence, G(a’ u) is equal to G(a’). Also since u is surjective, G(u)
is equal to Y’. So, (A5.1) is cartesian by (A4).

(ii) Since a is surjective, a’ is also surjective. So, diagram (A5.1) becomes
diagram (A5.2).

B. Definitions and compatibilities in the theory of joins

More blanket notation

For each object ft of W(S), let c denote the augmentation map,
8 : P ~ Os, and let p denote the structure map, 03C1 : Os ~ P.

Fix an element W of l(S), and set
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(B1) Joins
The join J(R, g) of e and Y is the projective S-scheme defined by

the formula,

It will also be called the join of X and Y and denoted X * Y when no
confusion is likely.

Join is a (contravariant) functor of two variables on the category
l(S)surj because of the functoriality of Proj (cf. EGA II, 2.8.4). In geometric
terms, the morphism J(R, u) of J(R, Y’) into J(R, T) is denoted

Note that it is a (linear) embedding because it is ’Proj’ of a surjection.
Hence, the join of closed subschemes is in a natural way a closed sub-
scheme of the join of their ambient schemes.
The fundamental embedding,

is defined as the linear S-embedding, J(8, Y). Its image is denoted V,
and is called a fundamental subscheme of X * Y
The fundamental retraction,

is defined as the (affine) S-morphism, Proj (p Q T). Since the composition
e - p is equal to the identity of Y and since Proj is ’functor’ (EGA II, 2.8.4),
the fundamental subscheme Vy is contained in the open subscheme

G(p (D T) of X * Y, and there is a formula,

justifying the use of the term retraction for r.
The formation of the above objects and maps is compatible with base

change basically because Proj is so (EGA II, 3.5.3). In particular, for any
S-scheme T, these formulas hold:
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(B2) EXAMPLES: (i) Take X = P(E) and Y = P(F) where E and F
are quasi-coherent US-Modules. Then, there is a formula,

because of the following formula:

Moreover, the fundamental embedding v of P(E) in P(E) * P(F) is clearly
equal to the natural linear embedding of P(E) in !P(E E9 F). 

(ii) Take /7 = P/P with p in l(S) and f a homogeneous Ideal of P.
Then, à (8) /7 is clearly isomorphic to the quotient of fJ1l (8) ft by the
homogeneous Ideal generated by P. So, for example, the join of a
hypersurface, X : P(To,..., Tm) = 0, and projective n-space is equal to
the hypersurface in projective (m + n + 1 )-space defined by P, thought of
as a polynomial in the (m + n + 2) variables.

(iii) Take /7 = Sym (L) where L is an invertible Os-Module. Then
the join X * Y is called a twisted S-cone over X. Geometrically it is the
join of X with the base S. The fundamental subschemes TY and Vx are
called the vertex subscheme and the locus at infinity.

Since Y is equal to S, and since the fundamental retraction,
r : G(p (8) P) ~ Y, is an S-morphism, it is equal to the restriction ql of
the structure map, q : X * Y ~ S. Now, by (Bl.l), the fundamental

embedding of Y in X * Y is a section of r; hence it is a section of q.
It is called the vertex section of the twisted cone. The fundamental

embedding of X in X * Y is called the embedding at infinity.
Take,91 = OS[t], a polynomial Os-Algebra in one variable t. Then the

join (a special case of a twisted S-cone over X) is called the projective
(projecting) cone over X, and it is denoted C(X). The affine S-scheme
Spec (fJ1l) is called the affine (projecting) cone, and it is denoted C(X).
We shall see in (B5, (ii)) that it is equal to the complement in e(X) of
the locus at infinity.

(B3) LEMMA: (i) The homogeneous Ideal P = (fJ1l ~ + defines the
fundamental subscheme Vx in X * Y ; put symbolically, there is a formula,

Moreover, .1 is equal to the Ideal of Vx in X * Y
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(ii) The open subscheme G(p Q Y) of X * Y is equal to the complement
of the fundamental subscheme Vx; put symbolically, there is a formula,

PROOF : (i) The exact sequence of graded (9s-Modules,

yields an exact sequence,

Hence X defines Vx because the fundamental embedding, v : X ~ X * Y, is
equal to Proj (R Q e). Moreover, ,.7 is therefore equal to the Ideal of
VX by (EGA II, 3.6.2, (i)).

(ii) The subscheme G(p (D P) is defined (EGA II, 3.5.1) as the comple-
ment of V+((03C1 ~ )(+)). Since (03C1 ~ )(+) generates R ~ +,
assertion (ii) follows from (i).

(B4) REMARKS: (i) In view of formula (B3.2), the fundamental retrac-
tion, r : G( p Q ) - x may be written more geometrically

(ii) The fundamental subscheme Vy is contained in (X * Y - Vx) by
(B3, (ii» and (Bl) ; so, Vx and Vy are disjoint.

(B5) PROPOSITION : (i) Let {t03B1} be a set of generators of the (R ~ Y)-
Ideal (R ~ +). Then the complement in X * Y of Vx is equal to the
union of’ the corresponding principal open sets; put symbolically, there is
a formula,

(ii) There is a canonical isomorphism,

PROOF : (i) The closed set Vx is equal to V+({t03B1}) by (B 3, (i)), so to
~03B1V+(t03B1) by (EGA II, 2.3.2.2). Therefore, (i) holds.

(ii) The subscheme (C(X) - Vx) is equal to C(X)t by (i) because t
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generates W (D C9s[t] + = tR[t]. The affine Algebra of è(X)t is equal to
R[t]/(t - 1)R[t] by (EGA II, 3.1.4), so to e. Thus, (ii) holds.

(B6) LEMMA : Set f = (R (D +). For each positive integer n, there is
a canonical surjection,

which is natural in rJ1l and Y and compatible with base change. Moreover,
it is an isomorphism if  has the form Sym (L), where L is an invertible
(9s-Module.

PROOF : Shifted n places to the right and tensored with rJ1l, the map sn
of (Al.3) becomes a map,

Obviously mn is natural in 4 and Y and compatible with base change.
Since P1 generates P+ , the image of m’1 is equal to P. Since Pn[-n] is,
obviously, equal to (P1[-1])n, the image of mn is equal to (Im (m’1))n,
so to Pn. Hence mn induces the required surjection mn .
Assume Y has the form Sym (L). Then in degree (s + t + n), the map

mn is equal to the natural map,

because L is invertible. This map is obviously an isomorphism.

(B7) The conjunctive transform Bx
The conjunctive transform of X * Y with respect to X, denoted Bx and

also Bx(X * Y), is defined as the twisted Y-cone over X x S Y,

Let p denote its structure map,

The conjunctive embedding is defined as the linear Y-embedding.
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that is equal to the map,

Note that i fits into this important commutative diagram:

where pl and P2 denote the projections and b is defined as the composi-
tion Pl 0 i. This map b is called the conjunctive transformation of X * Y
with respect to v : X ~ X * Y, or to X, and it is also denoted bx. Note
for future reference, the formula,

The embedding at infinity is called the exceptional embedding, and it
is denoted

Its image, the locus at infinity, is called the exceptional locus, and it is
denoted E. The vertex subscheme is denoted V.

(B8) PROPOSITION: Assume X * Y is a twisted S-cone over X, that is,
P has the form Sym (L) for a certain invertible (9s-Module L.

(i) The locus at infinity Vx is a divisor, and there is a f ’ormula,

where q : X * Y ~ S denotes the structure morphism.
(ii) The conjunctive embedding, i : BX ~ (X * Y) x s Y, and the conjunc-

tive transformation, b : BX ~ X * Y are both isomorphisms and are

essentially the same map.

PROOF : (i) That the Ideal of Vx is equal to q*L Q OX*Y(-1) results
from applying tilde to the isomorphism ml of (B6) and then identifying
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the terms using formula (Al.2) and assertion (B3, (i)). Hence Vx is a
divisor because its Ideal is invertible, and so the formula holds.

(ii) The map, a#Y : Sym (L)Y ~ Sym (OY(1)), is an isomorphism (EGA II,
3.4.2) because it is obtained by applying tilde to the maps sn of (A1) and
sn is obviously (TN)-bijective because L is invertible. So, since i is equal
to Proj (,Wy Q 03B1#Y), it too is an isomorphism. Since the structure map,
f : Y - S, is an isomorphism by (EGA II, 3.1.7 and 3.1.8, (iii)), the
projection pl : (X * Y) x s Y - X * Y, is also an isomorphism. Hence
b = p1 i is an isomorphism.

(B9) THEOREM (Compatibility with linear embedding) : Let u’ : R ~ e’
be a map in l(S)surj, set X’ = Proj (R’) and let j’ : X’ ~ X denote the
linear embedding Proj (u’). Then the following diagrams are cartesian
except for (iii, a), which is only commutative:
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PROOF : (i) Form the tensor product diagram of u and u’,

Applying Proj obviously yields diagram (i). So, it is cartesian by (A5, (ii)).
(ii) Consider the diagram,

Since Y’ and Y are equal to the joins, J«9s, g/) and J«9s, g), both squares
of (B9.1) are cartesian by (i). Hence, (ii) is cartesian.

(iii, a) Applying the ’functor’ Proj (R 0 -) to the commutative

diagram,

yields diagram (iii, a) by virtue of (B3, (ii)) ; hence, (iii, a) is commutative.
(iii, b) Form the tensor product diagram of u and p,

Applying the ’functor’ Proj yields, by (A5, (i)) a cartesian diagram,

which, by (B3, (ii)), is equal to (iii, b); hence (iii, b) is cartesian.
(iii, c) Consider the diagram,
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The right-hand square is cartesian by (iii, b), and, clearly, the left-hand
square is cartesian by (ii). Hence, the outer rectangle is cartesian.

Next, consider the diagram,

The upper left-hand square is clearly cartesian by (i) and (ii); the other
two are cartesian because (B9.2) is cartesian. It now follows formally,
by considering T points, that (iii, c) is cartesian.

(iv) Consider the diagram,

The right-hand square is cartesian because join is compatible with base
change (B 1.3). The left-hand square is commutative, so cartesian, because
it 1" obtamed by applying J(RY’, - ) to the crmmutative diagram (A2.1)
with u : P ~ 9" for a : P ~ 1. Hence the outer rectangle is cartesian.
Next consider the diagram,

The right-hand square is equal to the outer rectangle of (B9.3); hence
it is cartesian. The left-hand square is cartesian by (i) because a con-
junctive transform is a join. Hence, (iv) is cartesian.
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C. Properties of conjunctive transforms

Still more blanket notation
Let pl and P2 denote the first and second projections from any fibered

product of schemes.

(Cl) THEOREM: (i) The following diagram is cartesian :

I n particular, there is a formula,

(i’) The following diagram is cartesian :

In particular, there is a formula,

(ii) The conjunctive transformation, bx : BX ~ X * Y, induces an iso-

morphism bxl, which fits into a commutative diagram,

(ii’) The conjunctive embedding, i : Bx - (X * Y) x s Y, carries (Bx - E)
isomorphically onto the image of the graph morphism, rr = (id, r), of the
fundamental retraction, r : (X * Y - Vx) - Y

PROOF : (i) Consider this diagram :
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Its two squares are cartesian because fundamental embeddings are
compatible with base change (Bl), and with linear embedding (B9, (ii)).
Hence diagram (Cl.l) is cartesian.

(i’) Consider this diagram:

Its two squares are cartesian because fundamental embeddings are
compatible with base change (Bl) and with linear embedding (B9, (ii)).
Since Proj (oc’) is equal to dY by (A3), diagram (Cl.2) is therefore

cartesian.

(ii) and (ii’) The appropriate form of diagram (B9,(iii, b)) expressing
the compatibility of the fundamental retraction with linear embedding
is equal to the cartesian diagram,

because L1y is equal to Proj (03B1#Y)) by (A3), because pl is equal to the
fundamental retraction, r : (BX - E) ~ Y, by (B2, (iii)), and because r s Y
is equal to the fundamental retraction, r : ((X * Y) - VX)  s Y ~ Y x s 1:
by compatibility of r with base change (B1). Since the diagram,

is also cartesian, assertions (ii) and (ii’) follow.
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(C2) COROLLARY : If f!/l is isomorphic to Sym (F) where F is a locally
free (9s-Module with a finite rank, then the fundamental retraction,
r : (X * Y - Vx) ~ Y, is smooth.

PROOF: The map r is isomorphic to the restriction pl of the structure
map, p : BX ~ Y, by (Cl, (ii)), while p is smooth because it is isomorphic
to the structure morphism of P(FY ~ OY(1)) by (B2.1).

(C3) THEOREM: (i) The exceptional locus E is a divisor on Bx.
(ii) There are formulas,

(iii) The invertible sheaf E) is relatively very ample for the
conjunctive transformation, b : Bx - X * Y

PROOF : Since E is equal to the locus at infinity of the twisted Y-cone
Bx over X x s Y, it is a divisor by (B8, (i)). Moreover, (B8, (i)) yields the
following formula :

Now, since b is p1 i, there is a formula,

because the formation of O(1) is compatible with pl , a base change
(EGA II, 3.5.3), and with i, a linear embedding (EGA II, 3.5.2). Therefore,
formula (C3.3) yields formula (C3.1).

Clearly formula (C3.3) yields a formula,

Now, there are canonical isomorphisms,

because the formation of O(1) is compatible with e, a linear embedding
(EGA II, 3.5.2), and with pl , a base change (EGA II, 3.5.3). Now, e is a
Y-morphism ; that is, pose is equal to p2. Hence formula (C3.4) yields
formula (C3.2).
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Finally, recall the situation in diagram (B7.1). The sheaf p*2OY(1) is
relatively very ample for p1 by (EGA II, 4.4.10, (iii», and so p*OY(1)
is relatively very ample for b by (EGA II, 4.4.10, (i bis)). So, since (9Bx( - E)
is isomorphic to p*(9y(l) (D b*OX*Y( -1) by (C3.1), it is also relatively
ample for b by (EGA II, 4.4.9, (i)).

(C4) LEMMA : Let T be a scheme, D an effective divisor on T, and T’
a closed subscheme of T.

(i) If T’ n (T -D) is a divisor and if the Ideal of T’ is everywhere
locally principal (but possibly generated by a zero-divisor), then T’ is a

divisor.

(ii) The scheme T is equal to the scheme-theoretic closure of (T -D);
that is, if a closed subscheme T" of T contains (T - D), then T" is equal
to T.

PROOF : Both assertions are clearly local on T. So, we may assume
that T is affine and that D and T’ are principal. Set A = F(T, (9T)’ and
let a = 0 be an equation of D and t = 0 an equation of T’. Clearly
(T - D) is equal to Ta, so it is affine with ring Aa . Since D is a divisor,
a is a nonzero-divisor; so the restriction map, e : A ~ Aa, is injective.

(i) Clearly e(t) = 0 is an equation of the divisor T’ n (T - D), so e(t)
is a nonzero-divisor. Since e is injective, t is clearly a nonzero-divisor.
Thus, T’ is a divisor.

(ii) Let I denote the ideal of T". Then e(I) generates the ideal of
T" n (T - D). Since this ideal is equal to zero by assumption, e(I) is

equal to zero. So, since e is injective, I is equal to zero. Thus, T" is equal
to T.

(C5) PROPOSITION : (i) The open subscheme (Bx - E) is scheme-theoreti-
cally dense in BX.

(ii) The conjunctive embedding, i : BX ~ (X * Y)  s Y, carries Bx
isomorphically onto the scheme-theoretic closure r of the graph subscheme
of the fundamental retraction, r : (X * Y - Vx) --+ Y

(iii) The inverse image under the conjunctive transformation,
b : BX ~ X * Y, of each effective divisor on X * Y is a well-defined divisor
on Bx.

(iv) If the structure map, f : Y - S, is surjective, then the conjunctive
transformation, b : BX ~ X * Y, is surjective and birational.

PROOF : (i) Since E is a divisor on Bx by (C3, (i)), the open subscheme
(Bx - E) is scheme-theoretically dense in Bx by (C4, (ii».

(ii) By (Cl, (ii’)), the map i carries (Bx - E) isomorphically onto the
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graph subscheme of r. So, since i is a closed embedding, it carries the
closure of (BX - E) isomorphically onto r. Hence assertion (ii) follows
from assertion (i).

(iii) Let D be an effective divisor on X * Y The Ideal of b-1(D) is
clearly everywhere locally principal, and b-1(D) n (Bx - E) is a divisor
because b is an isomorphism on (Bx - E) by (Cl, (ii)). So, b-1(D) is a
divisor by (C4, (i)) because E is.

(iv) Assume f is surjective. Then, b carries E onto VX because diagram
(Cl, (i)) is commutative. It carries (Bx - E), which is dense in Bx by (i),
isomorphically onto (X * Y - Vx) by (Cl, (ii». Hence b is surjective, and
(X * Y - VX) is dense in X * Y. Thus b is birational.

(C6) THEOREM : Considered as an (X * Y)-scheme via the conjunctive
transformation, Bx is canonically isomorphic over X * Y to the blow-up
Bt x of X * Y with center Vx, and the isomorphism carries E onto the
exceptional divisor D of Bex.

PROOF: Set P = (R ~ J+), set B = (Ay Q Sym (OY(1))), and set

X = (RY Q Sym (OY(1))+). The map mn of (B6) is natural and compatible
with base change, so there exists a commutative diagram on Y,

Moreover, the bottom map is an isomorphism by (B6).
Applying tilde to (C6.1) yields this commutative diagram on Bx, in

which the bottom map is an isomorphism,
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in view of (A1.2) and of the compatibility of tilde with i, a linear embedding,
(EGA II, 3.5.3), and with pl , a base change (EGA II, 3.5.2, (ii)) (recall the
definition, b = p1 i).
Summing (C6.2) over n and applying Proj yields a commutative

diagram of B,-schemes, in which the bottom map is an isomorphism,

in view of (EGA II, 3.1.8, (iii)) (it asserts that Proj (0 (Pn ~ L~n)) is

canonically isomorphic to Proj (ft) for an arbitrary graded quasi-
coherent Algebra /z and invertible sheaf L), of (EGA II, 3.5.3) (it asserts
that Proj is compatible with base change), and of (B3, Ci» (it asserts .1
is the Ideal of V,).
Diagram (C6.3) yields a commutative diagram of (X * Y)-schemes, in

which the bottom maps are isomorphisms,

because Proj (03B1#Y) is equal to 4y by (A3) and because i is equal to (b, p)
by (B7.2).

There is an (X * Y)-morphism,

satisfying the relation, i’ Proj (Et) nln) = i, because the bottom right-hand
map in diagram (C6.4) is an isomorphism. The map i’ is a closed

embedding because i is so, (EGA 1, 4.3.6, (iv)). The map i’ carries the open
subscheme (BX 2013 E) isomorphically onto the open subscheme (Bt x - D)
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because, by (Cl, (ii» and (EGA II, 8.1.3), both open subschemes are
isomorphic to the same open subscheme of the base, namely to

(X * Y - Vx), and because, by (EGA II, 8.1.8), the second open subscheme
is the full inverse image. Hence i’ is an isomorphism because Bt x is the
scheme-theoretic closure of (Bt x - D) by (C4, (ii)).

Finally, since i’ is an (X * Y)-morphism, since E is the inverse image
of VX under bx by (Cl, (i)), and since D is the inverse image of VX under
the blowing-up, clearly (i’)-1(D) is equal to E.

(C7) The conjunctive transform B
The conjunctive transform of X * Y with respect to X il Y, denoted B

and also B(X * Y), is defined as the (X x s Y)-scheme,

It is equal to the join,

by (B2, (i)), and is canonically embedded in (X * Y) x s(X x . Y) via the
linear embedding,

that is equal to the map,

J(p*103B1#X, p*203B1#Y) : J(Sym (p*1OX(1)), Sym (p*2OY(1))) ~ J(p*1 RX, p*2JY).

Note that fits into this commutative diagram :

where 1C denotes the structure map, and fi, the composition pl - 1. The

map 03B2 is called the conjunctive transformation of X * Y with respect to
XU Y Let
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denote the canonical linear embedding, and let Ex denote its scheme-
theoretic image.

(C8) PROPOSITION : (i) There is a cartesian diagram,

Moreover, the compositions bx 0 f3y and by 0 f3x are both equal to f3.
(ii) The map 03B2Y is isomorphic to the conjunctive transformation of Bx

with respect to the (vertex) map, v : Y ~ BX.
(iii) I n the diagram,

the left-hand square is commutative and the right-hand square is cartesian.
I n particular, there is a formula,

(iv) The conjunctive transformation, 03B2 : B ~ X * Y, induces an iso-

morphism 03B2|, which fits into a commutative diagram,

PROOF: (i) Form the tensor ptoduct diagram of p*1x#X and p*203B1#Y,

It is obviously equal to the diagram,
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Applying Proj yields the commutative diagram of (X x s Y)-schemes,

defining 03B2X and f3y. The outer square is cartesian by (A5, (ii)). It now

follows formally that diagram (C8.1) is cartesian and that f3 is equal to
bx 03B2Y and to by 0 f3x.

(ii) It is obvious from the définitions that f3y is isomorphic to the
conjunctive transformation of Bx with respect to the vertex map v.

(iii) The left-hand square of diagram (C8.2) is commutative by (B2, (i)).
Since 03B2 is equal to bx - 03B2Y and since bx and 03B2Y are both conjunctive
transformations, the right-hand square is cartesian by (Cl, (i) and (i’)).

(iv) Consider the following diagram :

Both top maps are isomorphisms and both squares are commutative
by (Cl, (i), (i’), and (ii)). Moreover by (i), the top composition is equal
to 03B2|. Hence 03B2| is an isomorphism. Moreover, there is a similar diagram
for the composition (by!) 0 (03B2x|). Combining these two diagrams yields
the commutative diagram (C8.3).

(C9) PROPOSITION : There is a canonical isomorphism,
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PROOF : Set L = p*1OX(1) and M = p*2OY(1). It follows from (EGA II,
4.1.4) that there is a commutative diagram with isomorphisms,

Since, by (B2, (i)), the projective (X x s Y)-cone over P(L (D M-1) is equal
to P((L ~ M-1) ~ OX sY) and since the affine (X x s Y)-cone over
P(L Q M-1) is equal to V(L Q M-1), the canonical isomorphism (B5.1)
becomes a canonical isomorphism,

Since (B - EX) is equal to (P(L Et) M) - P(L», the isomorphisms of
diagram (C9.2) yield the isomorphism (C9.1).

(C10) THEOREM: The conjunctive transformation fi is isomorphic to

the blowing-up of X * Y with center Vx Il Vy.

PROOF : By (C8, (ii)), the map 03B2Y is isomorphic to the conjunctive
transformation of Bx with respect to v : Y ~ Bx. So, by (C6), it is iso-

morphic to the blowing-up with center b-1X(VY), and bx is isomorphic
to the blowing-up with center Vx. Hence, fi is isomorphic to the blowing-
up of X * Y with center Vx If Vy as can be seen readily by means of a
local analysis.

(Cil) A geometric description of the join
Let E and F be quasi-coherent (9s-Modules, and suppose X and Y

are closed subschemes of P(E) and P(F) (that is, suppose ,-"A and Y are
isomorphic to quotients of Sym (E) and Sym (F)). Then the join
X * Y is a closed subscheme of the projective space P(E q) F), the join
of P(E) and P(F) (B2, (i)). Identify X and Y with their images, the
fundamental subschemes, in the join X * Y We shall now see that the
join X * Y is the locus of points lying on lines of P(E Et) F) determined
by pairs of points of X and Y, that the conjunctive transform B = B(X * Y)
is the ‘disjoint’ union of these lines, and that the conjunctive transforma-
tion, 03B2 : B ~ X * Y, is the natural map preserving these lines. Thus fi is
the natural map identifying the end points of these lines. (This is in keeping
with (C10), which asserts that is the blowing-up whose center is the
union of X and Y).
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Let (x, y) be a pair of T-points of XIS and Y/S. The line of P(E @ F)
determined by the pair (x, y) is just the relatively one-dimensional linear
subscheme x * y of P(ET ~ FT) where x and y are viewed in the natural
way as relatively zero-dimensional linear subschemes of P(ET ~ FT).
It lies in (X * Y)T by the compatibility ofjoin with linear embedding (Bl).
In fact, the cartesian diagram expressing the compatibility of 03B2 with
linear embedding is easily seen to be

with the two indicated isomorphisms (cf. B9, (iv) and B8, (ii)). Hence 03B2T
carries BT isomorphically onto the line x * y determined by x and y;
in other words, fi preserves lines, and 03B2-1T(x * y) is equal to the fiber
over (x, y) of the structure map, x : B - X x s Y
On the other hand, given a T-point z of the complement in the join

X * Y of the two fundamental subschemes, let x and y be the pair of
T-points of X and Y obtained by applying the two fundamental retrac-
tions to z. Then z lies on the line x * y determined by x and y because
the following diagram expressing the compatibility of fundamental

retractions with linear embedding is cartesian (cf. B9, (iii, c)) :

Thus X * Y is the locus of points lying on the lines of P(E E9 F) deter-
mined by pairs of points of X and Y

D. Linear projections
(Dl) Basics

Linear projection is a name for a map of the form g = Proj (a) from
the open subscheme G(a) of Z = Proj (J) to Y = Proj (J). The closed
subscheme X = Proj (J/P) of Z, where X is the Ideal generated by
a(J1), is called the center (of projection). Obviously X is a linear sub-
scheme because a(J1) concentrated in degree 1. Obviously the com-
plement (Z-X) is equal to the open subscheme G(a).
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There is a natural minimal target for the linear projection 9 = Proj (a),
namely, the closed subscheme Proj (Im (a)) of Y Moreover, g with this
target is dominating because then g is equal to Proj of an injection
(EGA II, 3.7.5), although it need not be surjective (for example, consider
the projection of the plane quadric, Z : Tl T2 = T20, to the Tl (or T2) axis).
Any linear subscheme Proj (.r 1 cf) of Z is the center of a linear projec-

tion, namely, the projection defined by the inclusion map of OS[P1]
into J. Any closed subscheme of Z whose homogeneous Ideal P is
finitely generated can be made the center of a linear projection by
reembedding Z in projective space using a suitable d-fold Veronese
embedding so that the subscheme becomes linear (that is, replace 1 by
J(d) = ~n Jnd and f by P(d) = E9n cfnd (cf. EGA II, 3.1.8) for a suitable
d where f d generates P(d)).

Linear projection is compatible with base change because Proj is so
(EGA II, 3.5.3). In other words, for any S-scheme T, the linear projection,

with center, Proj ((J/P)T) = X x s T, is equal to the map,

Linear projection is compatible with linear embedding in the following
sense. Let Z’ = Proj (1’) be a closed subscheme of Z = Proj (J),
and let Y’ = Proj (J’) be a closed subscheme of Y = Proj (Y) such that
the map a : Q - 1 induces a map a’ : J’ ~ 9-’. Then since Proj is a
’functor’ (cf. EGA II, 2.8.4), the projection g = Proj (a) with center X
restricts to the projection g’ = Proj (a’) with center X’ = X n Z’. In
other words, there is a commutative diagram,

If 1’ is equal to Y ~JJ’, then diagram (Dl.l) is cartesian by (A5, (i))
and then X is contained in Z’ - in other words, X is equal to X’ - because
J/J1J is obviously isomorphic to J’/J’1 J’.
By way of example, suppose g is the natural linear projection from a

projective space P(F) with center a linear subspace P(F’); that is, suppose
g is the map,
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where a denotes the inclusion of Sym (G) in Sym (F) and G denotes the
kernel of the canonical surjection u : F ~ F’. Suppose F, F’ and G are
free. Then for a suitable choice of coordinates, g is clearly given by the
formula,

In view of the compatibility of projection with embedding (Dl.l), any
restriction of g is also given by such a formula. Moreover, it is evident
that any linear projection is such a restriction, so given by such a formula,
at least locally over the base.

(D2) The Y-scheme B(g)
The scheme and maps introduced in (B7) for a join X * Y will now be

generalized for the linear projection g = Proj (a). The Y-scheme,

generalizes the conjunctive transform B,(X * Y). The natural linear

Y-embedding,

equal to the map,

generalizes the conjunctive embedding. It clearly fits into an important
commutative diagram (similar to (B7.1)),

where p is the structure map of B(g), where pl and p2 are the projections
and where b is defined as p1 i.
The linear projection Proj (ay) of Z x s Y to Y x s Y is equal to gy and

its center is X x s Y by (Dl). It restricts, by (Dl), to a projection,
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of the closed subscheme B(g) of Z x s Y to the closed subscheme

y = Proj (Sym (OY(1))) of Y x s Y The center of h will be denoted by E.
It is equal to the center X x,, Y of gY by (Dl) because the homogeneous
coordinate ring of B(g) is equal to the tensor product JY ~ JY Sym (OY(1)).
Moreover, h is equal to the restriction pl to (B(g) - E) of the structure
map p of B(g) because h is a Y-morphism.

It is easy, in view of the preceding paragraph, to verify, following the
proof of (Cl, (i), (ii), and (ii’)), that E is equal to the inverse image b-1(X)
of X in B(g), that b induces an isomorphism b|, which fits into a
commutative diagram,

and that i carries (B(g) - E) isomorphically onto the graph of g. In
particular, E is the exceptional locus of b.
We shall now verify that the formation of B(g) is compatible with linear

embedding in the following sensé : For each closed subscheme Z’ of Z
and restriction g’ : (Z’ - X’) ~ Y ’, the following diagram is cartesian:

To verify this, consider the diagram,

where gl denotes the restriction, gl : (Z’ - X’) ~ Y, of g. The left-hand
square is obviously cartesian; the right-hand square is cartesian by
(A5, (ii)) because it can be obtained by applying Proj to the diagram,
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which is obviously a tensor product diagram in l(Y). Moreover, there are
relations,

Hence diagram (D2.2) is cartesian.

(D3) THEOREM : (i) The blow-up Be(g) of Z along X is equal to the
closure in Z x s Y of the graph of g, and the complement in Be(g) of
the graph is the support of the exceptional divisor.

(ii) Be(g) is a closed subscheme of B(g). If Be(g) is equal to B(g), then
E is equal to the exceptional divisor. If E is a divisor, then Be(g) is equal
to B(g) and E is equal to the exceptional divisor. (I n general, Be(g) is

not equal to B(g), for E is equal to X x s Y while the exceptional divisor
often has a different form.)

PROOF : (All the assertions are proved by reasoning similar to that in
(C6).) For each positive integer n, there is a canonical surjection,

similar to the one defined in (B6), which is natural in a and compatible
with base change, where P is, as always, the Ideal of J generated by
a(J1). Then, the map,

is a closed Z-embedding of Be(g) in Z x . Y The reasoning of (C6) shows
that Bt(g) contains the graph ouf 9 as an open subscheme whosè comple-
ment is equal to the support of the exceptional divisor. By (C4, (i)),
the blowup Bl(g) is therefore equal to the closure of the graph of g in
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Z x s Y Moreover, the reasoning of (C6) shows (1) Be(g) is a closed

subscheme of B(g) (for the right-hand vertical map of the diagram
analogous to (C6.4) is always an isomorphism) and (2) if B(g) is equal to
Be(g), then E is equal to the exceptional divisor of Be(g). Finally, if E
is a divisor in B(g), then since E is equal to the complement of the graph
of g in B(g) by (D2), clearly B(g) is equal to Be(g) by (C4, (i)).

(D4) PROPOSITION : (i) The Ideal I of X in Z is equal to the image of
the canonical map, JZ,1 0 OZ(-1) ~ OZ, induced by a.

(ii) Assume E is a divisor in B(g). Then there are formulas,

PROOF: (i) Since Im (m1(a)) (see (D3.1)) generates the homogeneous
Ideal X of X in Z, clearly Im ((m1(a))~) is equal to I = . So, the assertion
follows from (Al.2).

(ii) The surjective map (see (D3.1)),

is bijective because both its source and target are locally free with rank
1. The formulas now result from reasoning similar to that in (C3, (ii)).

(D5) THEOREM : Assume the map a : J ~ J is locally isomorphic to
a map of the form 03C1 ~ 1 : J ~ R ~ J. Then B(g) is equal to Be(g),
and E is equal to the exceptional divisor.

PROOF’: Locally Z is equal to the join X * Y of X and Y Hence, E is
locally a divisor in B(g) by (B8, (i)). So, E is a divisor in B(g), and the
assertions hold by (D3, (ii)).

(D6) LEMMA: Consider a dia,gram with exact rows,

in which u" is surjective, V is locally generated by r sections, and L is locally
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free with rank s. Assume that S is locally noetherian and that the Ideal u(V)
defines a regularly embedded subscheme with codimension r in S. Then the
Ideal u’(L) defines a regularly embedded subscheme with codimension s in T.

PROOF : Let t be a point of T. Set A = Os,t, set I = u(V)t and set
J = u’(L)t . Consider the commutative diagram of k(t)-vector spaces,

The vertical maps are obviously surjective and will now be proved
bijective; the top row is exact because L is locally free and the bottom
row will now be proved exact.

Since u(V) defines a regularly embedded subscheme with codimension
r, the (A/I)-module (I/I2) is free with rank r (EGA IV 4’ 16.9.2,16.9.3);
hence 1 Q k(t) is r-dimensional. Therefore, since V has r generators,
the surjection Ut Q k(t) is bijective. It follows easily that the vertical
maps of (D6.2) are bijective. Thus, the bottom row is exact, and J 0 k(t)
has dimension s.

By Nakayama’s lemma, there is therefore a minimal set of generators
(f1, ..., 1,.) of l such that (f1, ..., fr-s generates Ht and such that the
image of (fr-s+1, ..., 1,.) in J generates J. Since A is noetherian and I
is regular, the sequence (f1, ..., fr) is A-regular (EGA IV4, 16.9.5 and
19.5.2). So since (!JT, t is equal to A/(f1 A + fr-sA), clearly
J = fr-s+1 OT,t + ... + frOT,t t defines a regularly embedded subscheme
with codimension s in T.

(D7) THEOREM : Assume that Z is locally noetherian, that Y is flat and
o.f’ finite type over S, that X is regularly embedded in Z with codimension r,
and that !/ 1 is locally generated by r sections. 1hen B(g) is equal to Bl(g)
and E is equal to the exceptional divisor.

PROOF : Since Z is locally noetherian and Y is of finite type over S,
clearly Z  s Y is locally noetherian. Moreover, since Y is flat over S,
clearly Z  s Y is flat over Z; hence (pY), which is equal to(P~)Y by
(EGA II, 3.5.3), is a regular Ideal of OZ~SY (EGA IV 4’ 19.1.5, (ii)). The
Ideal of B(g) = Proj (JY ~ JY Sym (OY(1))) in Z x s Y = Proj (JY) is

obviously equal to the image H of the tilde of Ker (ff y (8)Sy 03B1#Y). By (A1.2),
this tilde is equal to Ker(p*(03B1#Y,1))(-1). By (D4, (i)), the Ideal of E in
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B(g) is equal to the image of p*OY(1) Q OB(g)(-1) in (9B(g). So, by (D6)
with the diagram,

for (D6.1), the Ideal of E in B(g) is invertible. Thus E is a divisor in B(g).
Therefore the assertions hold by (D3, (ii)).

(D8) The blow-up of a projective space along a linear subscheme

Compare [8], Corollary (4.5).
Let u : F ~ F’ be a surjective 19s..homomorphism of quasi-cohérent

crs-Modules, and let G denote the kernel of u. Assume u is locally split;
this holds, for example, when F’ is locally free. Then the blow-up of
P = P(F) along the linear subscheme L = P(F’) is equal to the scheme
W = P(H) over Y = P(G), where H is equal to the Wy-Module defined
by the commutative diagram with exact rows and columns,

where all the maps are the canonical ones.

Indeed, W is obviously equal to B(y), with y = Proj (c) where c is the
inclusion of Sym (G) in Sym (F). Since u is locally split, c is locally
isomorphic to the natural map of Sym (G) into Sym (G E9 F’) =
Sym (G) (8) Sym (F’). Hence W = B(y) is equal to the blow-up of P along
L by (D5).
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(D9) The blow-up of the diagonal in P(V) x s P(V)
Let R denote the projective space P(V) associated to a quasi-coherent

OS-Module E In (D8), take R for the base, and take the Serre map,
03B1#R,1 : VR ~ OR(1), for the map, u : F ~ F’ (it is locally split because
OR(1) is locally free). Then, the linear embedding P(03B1#R,1) of R in R x s R
is equal to the diagonal map by (A3). Set 03A9(1) = Ker (a’, 1). If V is locally
free with a finite rank, then 03A9 is equal to the Module of 1-differentials,
03A91P/S, by (GD I, 3.1), and P(03A9(1)) is isomorphic to the projectivized tangent
bundle of R.

The blow-up of P(V) x s P(V) along the diagonal subscheme is there-
fore, by (D8), equal to the bundle of projective lines P(H) over Y = P03A9(1))
where H is a suitable extension of (OP(V)(1))Y by (9y(l).

(D10) Families of linear space sections
Use the notation of (D8). The Y-projective space P(H) is obviously

linearly embedded in P x s Y Moreover, the canonical surjection uy
from FY to F’Y factors through H, so P(H) contains L x s Y Thus, P(H)
is the total space of a family, parametrized by Y, of linear subspaces of P
containing L. It is easy to check that P(H)/Y is the universal family of
linear spaces containing L as a subspace with codimension 1 in the sense
that, for a family P(H’) parametrized by T, the natural surjection H’ ~ FT
has an invertible sheaf for its kernel. Thus it is natural to call L the axis
of the family, for the members of the family ’rotate’ about L. If G is
locally free with rank 2, then P(H)/Y is a 1-parameter family, or pencil,
of hyperplanes.

Let Z = Proj (J) be a closed subscheme of P, and set X = Z n L.
The intersection P(H) n (Z x s Y) is clearly the total space of a family,
parametrized by Y, of linear space sections of Z containing X. Again X
is called the axis.

Let y be the natural projection from P to Y and g its restriction to Z.
Then P(H) is equal to B(y) by (D8). So, P(H) n Z x . Y is equal to B(g)
by (D2).
Assume that Z is locally noetherian, that G is locally free with rank

(r + 1), and that X is regularly embedded in Z with codimension (r + 1).
The latter occurs, for example, when Z is flat and locally of finite presenta-
tion over S, when the fibers of Z/S satisfy condition Sr+1, (e.g., the fibers
are Cohen-Macaulay, or the fibers are normal and r = 1 holds), and
when the relative codimension of X in Z is (r + 1). Then, by (D4) and (D7),
the Y-scheme B(g) is equal to the blow-up of Z along X and there are
formulas,
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In sum, under mild assumptions, the blow-up of the ambient space
along the axis of a family of linear space sections is equal to the total
space of the family, and there are formulas for the Ideal of the exceptional
divisor and for its normal sheaf.
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