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In this paper we prove that for any smooth variety X over an
algebraically closed field of characteristic p ~ 2, 3, 5 the group 03A0(p)1(X)
is a finitely presented pro-(p)-group. We recall that 03A0(p)1(X) denotes
the maximal quotient of 03A01(X) of order prime to p. In [8] Exposé II
this result is demonstrated for smooth X provided there exists a

projective smooth compactification X of X such that XBX is a divisor
with normal crossings on X and for all X provided we assume strong
resolution of singularities for all varieties of dimension ~ n. Thus the
result was previously known for X of dimension ~ 2.
The essential new step is Lemma 1 which allows us to reduce to the

case of dimension 2. The proof of this lemma uses Abhyankar’s work
on resolution of singularities [1] together with the technique of fibering
by curves. We follow the notation of [7] Exposé XIII and [8] Exposé II.

Let us now state our proposition.

PROPOSITION 1: Let X/k be a connected smooth variety over the algebra-
ically closed field k of characteristic p ~ 2, 3, 5. Then 03A0(p)1(X) is a finitely
presented pro-(p)-group.

PROOF : By [7] Exposé IX it is sufficient to prove the result for the
elements of a Zariski covering of X. Thus the result follows by induction
on dimension from the result in dimension 2, [8] Exposé II Theorem
2.3.1, and the following lemma :

LEMMA 1: Let X be a smooth variety of dimension n ~ 3 over the alge-
braically closed ground field k and x a point ouf x. Then x has a Zariski
neighborhood U such that there exists an algebraically closed extension
S2/k and a smooth variety V over S2 of dimension n-1 and a morphism
f : V ~ U such that f ’ induces a surjection 03A01(V) ~ 03A01(U) and an iso-
morphism 03A0(p)1(V) ~ 03A0(p)1(U).
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PROOF OF LEMMA 1: We proceed by induction on the dimension of X.
Let U be an affine neighborhood of x. By [1] Birational Resolution

there exists a smooth projective model of the function field k(U). Let U
be a projective compactification of U. By [1] Dominance there exists
a smooth projective variety X’ together with a birational morphism
X’ ~ U. By [1] Global Resolution there exists a smooth projective
variety X" together with a birational morphism X" ~ LI and such that
the inverse image of 0B U is a divisor with normal crossings on X". Let
U" be the complement of this divisor. Then the map g : U" ~ U is a
proper birational mapping of smooth varieties. The subvariety of points
of U where 9 is not an isomorphism is of codimension ~ 2. Thus by the
Purity Theorem [7] Exposé X.3, g induces an isomorphism

By [9], [5], or [10], a general hyperplane section of U", call it E gives
a smooth surface in U" such that

Thus the lemma is proved for n = 3.
Now assume n &#x3E; 3. By [4] Exposé XI, x has a Zariski neighborhood
W which admits an elementary fibration g : W - W’ with W’ smooth
of dimension n -1. Moreover, by [6] Proposition 2.8 we may assume that
g admits a finite etale multisection i.e. there exists a finite etale map
s : S ~ W’ together with a closed immersion i : S ~ W such that gi = s.
Let y = g(x). By induction y admits a Zariski neighborhood U’ in W’
such that there exists a smooth variety V’ of dimension n - 2 and a
morphism f’ : V’ - U’ such that f’ induces an isomorphism of the
(p)-completions of the fundamental groups of V’and U’. Let U = g-1(U’)
and V = V’ U, U with projections f : V - U and g’ : V - V’. Then
g’ is an elementary fibration admitting an etale multisection. Letting C
be a geometric fiber of g’, we have, by [7] Exposé XIII Proposition 4.3,
exact sequences
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Let K be the kernel of the homomorphism 03A0’1(U) ~ 03A0’1(V) and K’
the kernel of n1(V’) --+ 03A01(U’). Then the natural map K - K’ is an

isomorphism. Moreover, by hypothesis K’ is contained in the closed

normal subgroup of n1(V’) generated by the Sylow p subgroups of
03A01(V’). Since any Sylow p subgroup of 03A01(V’) is the image of a Sylow
p subgroup of 03A0’1(V), K is also contained in the subgroup generated
by the conjugates of the Sylow p subgroups. Thus K is contained in the
kernel of 03A01(V) ~ 03A0(p)1(V). Therefore the homomorphism

is injective and, by the five lemma, it is surjective. Thus the lemma and
proposition are proved.

Using Proposition 1 and standard descent techniques we can weaken
the resolution hypotheses required to prove finite presentation of

03A0(p)1(X) for arbitrary X. We shall say that a point x of a variety X admits
a ’weak resolution of singularities’ if there exists a Zariski neighborhood
U of x in X and a morphism of effective descent for the category of etale
coverings f : U’ ~ U such that U’ is a smooth variety. We have then
the following :

PROPOSITION 2: Let X be a variety over an algebraically closed field
of characteristic p ~ 2, 3, 5. Assume that every point of X admits a weak
resolution of singularities. Then 03A0(p)1(X) is a finitely presented pro-(p)-
group.

COROLLARY : Let X be a variety of dimension 3 over an algebraically
closed field of characteristic p ~ 2, 3, 5. Then 03A0(p)1(X) is a finitely p
presented pro-(p)-group.

PROOF : Proposition 2 is a straightforward application of [7] IX.5
together with Proposition 1. The Corollary follows from Proposition 2
and Abhyankar’s results on resolution [1].

As another application of the fibering by curves method we will
outline a proof of the following result :

PROPOSITION 3 (Kunneth Formula) : Let X and Y be connected

varieties over the algebraically closed field k of characteristic p. Then
the natural homomorphism
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is an isomorphism.

In [7] Exposé XIII this proposition is demonstrated using the hypoth-
esis of strong resolution of singularities. We avoid the use of resolution
of singularities as follows :

First we consider the case where X and Y are normal varieties. Then

it is sufficient to prove the formula for some non-trivial open subsets of

X and Y Choose U in X and V in Y such that U and admit elementary
fibrations f : U ~ U’ and g : V - V’ with etale multisections. By
induction on the dimensions of U and V we may assume the proposition
holds for U’ and V’. Let C and D be geometric fibers of f and g respec-
tively. Since f and g are elementary fibrations admitting etale multi-
sections we have the following exact sequences

Arguing now as in the proof of Lemma 1, we see that the natural homo-
morphism

induces an isomorphism on (p)-completions.
Consider now the case in which Y is assumed normal, and X is

arbitrary. Let X’ - X be the normalization of X, and define

Let X’03B1, a E 03A00(X’), be the connected components of X’. Then by [7] IX
Theorem 5.1, 03A01(X) is the free product of the groups 03A01(X03B1) and the
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free group generated by the elements of the set flo(X") modulo certain
relations defined by the projections:

Thus the same description holds for nr)(X) after replacing all the groups
involved by their prime to p completions. Moreover, the same result
applies to X’ x Y ~ X x 1: This gives a description of 03A0(p)1(X  Y) as the
free product (in the category of pro-(p)-groups) of the groups 03A0(p)1(X03B1 x Y)
and the free pro-(p)-group generated by the elements of the set no(X" x Y)
modulo relations defined by the projections :

It is long and tedious, but straightforward, to check that, since

the above relations force

Now applying the same argument as above without the assumption
that Y is normal (which is valid because we just verified that

for Xa normal and Y arbitrary) gives the result for X and Y arbitrary
varieties.
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