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THE n-COHOMOLOGY OF REPRESENTATIONS
WITH AN INFINITESIMAL CHARACTER

William Casselman and M. Scott Osborne

1

Let F be a field of characteristic 0, g a reductive Lie algebra over [,
p a parabolic subalgebra with n as nilpotent radical and m a reductive
complement in p to n. If V is an irreducible finite-dimensional g-module,
then the Lie algebra cohomology H*(n, V) has a canonical m-module
structure (see Section 2). Over an algebraic closure of F, this module
decomposes completely into a direct sum of absolutely irreducible
m-modules, and Kostant [5] has determined this decomposition com-
pletely. In this paper we shall prove a partial generalization of Kostant’s
result for the class of all g-modules with an infinitesimal character
(Theorem 2.6 and its corollary). We include (in Section 4) an elementary
derivation of the structure of H*(n, V) when V is finite-dimensional.

One of the applications Kostant made of his result was to give a new
proof of the Weyl character formula. In order to give the n-cohomology
groups for infinite-dimensional V' some general interest, we would like to
point out here that one might expect, even for them, a relationship
between characters and n-cohomology (see [7]).

We have in mind other applications of these groups also, notably to
the question of analytic continuation of interwining operators between
principal series, and even further to a detailed analysis of the decomposi-
tion of principal series. This is what one would expect in light of the theory
for p-adic groups, where a crucial role is played by the fact that the
Vy-functor (see [3] for notation) is exact.

Notation: if I is a Lie algebra, U(}) is its universal enveloping algebra
and Z(b) the centre of U(b).
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2

Let b be an arbitrary Lie algebra over [, and let U and V be h-modules.
If

o U -»U,-»>1T -0

is any U(b)-projective resolution of U, then Extf (U, V) is the cohomo-
logy of the complex Homy(U,, V). Since one can show fairly easily
that any two projective resolutions are homotopically equivalent, the
Ext-groups are independent of the choice of resolution. If one has U = F
with the trivial action of fj, then one recovers the cohomology of § with
coefficients in V:

Extfe(F, V) = H*®, V).
One also has
Ext}q (U, V) =~ H*®H, Hom (U, V)).

There exists a standard resolution of the h-module F, which is finite
in length. This is obtained by letting U, be U(h) ®, A™) (with b acting
on the first factor alone) and defining a differential by the formula

dl1 @ (hyn-"Ah) = Y (=)', @ (hyn--Ab; A+ Ah,)

1<ism

+ Y (DY ([h kA AbAc ARG A ARy
15i<js=m

Since for any F-space X and h-module Y one has
Homy,(U(h) ® X, Y) = Hom (X, Y),

this gives rise to the common definition of H*(h, V) as the cohomology
of the complex C*(h, V) = Hom (A*h, V) with the differential

df(hp" "hn+1) = Z (_1)i+1hi' f(hp" ',Ei" ' 'ahn+1)
+ Z (—I)ij([hi, hj], e h‘i, e ﬁj, co by )

1<i<jsn+1

If h is an ideal in another Lie algebra g and V a g-module, then one
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has the adjoint action of g on b, hence on A*l, hence on C*(h, V). The
differentials above are g-morphisms ([8], Lemma 2.5.1.1) and one
obtains thus a representation of g on H*(b, V).

We now describe a second way to obtain a representation of g on
H*®, V).

2.1. LemMma: If g is any Lie algebra and by a subalgebra, then U(g) is
a free U(h)-module. Any injective U(g)-module is also U(h)-injective.

ProoF: The first claim follows from Poincare-Birkhoff-Witt. The
second is an elementary (and well known) exercise.
Now again assume ) to be an ideal in g, V' a g-module. If

U, »U,-F->0

is any resolution of the trivial g-module by free U(g)-modules, then by
Lemma 2.1 one has that H*(, V) is the cohomology of the complex
Homy, (U,,, V). Now clearly U(g) acts on this complex and the differen-
tials are U(g)-morphisms, and this gives the second representation of
on H*(}), V) that we want to consider. This one is for the usual reasons
independent of the resolution.

2.2 PROPOSITION : Assume | to be an ideal in g, V a g-module. The two
representations of g on H*(h, V) just defined are the same.

Proor: It will suffice to choose, in the definition of the second rep-
resentation, the standard U(g)-resolution of F. There are two representa-
tions of g on each term U(g) ® A™g in the complex: go(u ® 1) = (gu ® A)
and gx(u®A)=u®g-4). These operations are homotopic. More
precisely, for any geg let K, be the linear map:

U@ ® A" - U@@) ® A"™'g, u®i—->u®@gni
Then as one may check easily,
@K, +K,du® 1) =gou® A)—gxu® A).

This implies, for example, that the two induced representations of g on
H*(g, V) are the same — hence trivial, since the first one clearly is. From
this point, one can prove Proposition 2.2 by considering the restriction
map from C*(g, V) to C*(H, V).

Incidentally, since — with assumptions as in Proposition 2.2 — one can
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see easily from 2.2 that § acts trivially, one obtains in fact a canonical
representation of g/h on H*(h, V).

2.3 ProposiTiON: (a) If U and V are two g-modules and f:U -V
is a g-morphism, then the induced map:H*(h, U)— H*(b, V) is a g-
morphism.

(b) If
0-1->V,-V,-0

is a short exact sequence of g-modules, then the connecting morphisms:
H™®W, V) » H™* (Y, V,) are g-morphisms.

Proor: Straightforward.

Now assume b to be a subalgebra of g. Let N (b) be the subspace of
X eU(g) such that [X,h] =b. If V is any g-module, N (b) takes V°
to itself. If one applies this to the spaces Hom (U, V), where V is a
g-module and U, a free U(g)-resolution of [, one obtains a representation
of N (b) on H*(b, V). This representation is of course independent of
the resolution.

Now assume, as in Section 1, g to be a reductive Lie algebra over F,
p a parabolic subalgebra of g with Levi decomposition p = m @ n.
Let N(n) = N(n). This space contains U(n), U(m), and Z(g) (identifying
these with their canonical copies in U(g) if necessary).

2.4 LemMa: There exists a unique homomorphism o : Z(g) — Z(m) such
that for any X € Z(g) one has X —o(X)e U(g)n. It is injective.

PROOF: Let a be the centre of m, g = @ g, the eigenspace decomposition
of g with respect to the adjoint action of a. Let X be the set of eigen-
characters other than 0. Then one knows that g, = m and that there
exists a subset Xt < ¥ such that (1) 1 = @5+ G, Q) N~ = Ppey_35+ 8,
is a Lie subalgebra of g. From this point the argument is exactly as for
Lemmas 2.3.3.4 and 2.3.3.5 of [8].

If V is a g-module, then one has the representation defined earlier of
N(n) — hence of U(n), U(m), and Z(g) — on H*(n, V). The algebra n acts
trivially, so that according to Lemma 2.4 one has Xy = o(X)y for all
X eZ(g), ye H¥(n, V).

2.5 LemMa: If V is a g-module annihilated by the Z(g)-ideal I, then
o(I) annihilates H(n, V) ~ V™.
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ProoF: Clear from the preceding remarks.

The main result of this paper is the analogous assertion for higher-
dimensional n-cohomology:

2.6 THEOREM: If V is a g-module annihilated by the Z(g)-ideal I, then
o(I) annihilates H*(n, V).

The proof will occupy the next Section.

If V is a g-module, one says that V is Z(g)-scalar and has infinitesimal
character 0:Z(g)— [ if 6 is a ring homomorphism such that for all
X € Z(g), ve V, one has Xv = O(X)v. This means that V' is annihilated by
the Z(g)-ideal generated by {X—60(X)|X € Z(g)}, hence Theorem 2.6
immediately implies:

2.7 CoROLLARY: If V is a g-module with infinitesimal character 0,
then for all X € Z(g) and ye H*(n, V) one has o(X)y = 0(X)y.

These results impose a severe restriction on the structure of H*(n, V)
as an m-module. If V is finite-dimensional, it is equivalent to a crucial
lemma ([ 1], Proposition 6, or 8], Lemma 2.5.2.3) in Aribaud’s derivation
of Kostant’s result. Our proof is new even in that case.

In light of the remarks made just before Lemma 2.5, one can also
phrase Theorem 2.6 as this: if V' is annihilated by I, then so is H*(n, V).
However, this seems only curious rather than useful; we only require
in this paper (through Lemma 2.5) the representation of Z(g) on H%(n, V),
which is trivial to obtain.

We remark also that an analogous result is true for the homology
spaces H (i, V).

3

Continue to assume g, p, 11, nas in Section 1, and let p ™ be the parabolic
subalgebra opposite to p (in the terminology of the proof of 2.4,
p~ =m+n7). Then g = p~ @ n, so that by Poincare-Birkhoff-Witt one
has U(g) = U(p~) @ U(gn.

3.1 Lemma: If X is any element of Z(g), then U(p~)X n U(gn = 0.

Proor: The case X = 0is trivial, so assume X # 0. Let R be an element
of U(p™) such that RX e U(g)n. Since X —a(X)e U(gn, one also has
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Ra(X)e U(g)n. Hence Ra(X) = 0. Since X # 0 and ¢ is injective (Lemma
2.4, 6(X) # 0 as well. Since U(g) has no 0-divisors, R = 0.

3.2 CorOLLARY : If X is any element of Z(g), then
U(g)X n Ugin = U(g)Xn.
ProoF - Since Xn = nX, one has
U@X = Ulp7)X @ U(g)Xn.
Since U(g)Xn < U(g)n,
U(@X n Ugin = (U(p7)X n U(gn) @ U(g)Xn
= Ulg)Xn,
by 3.1.

3.3 PROPOSITION: If X is any element of Z(g) and V an injective
U(g)/U(g)X -module, then Hin, V) =0 for q > 0.

Proor: Let Uy be the ring U(g)/U(g)X. If E is a vector space over F,
define I(E) to be the Uy-module Hom; (Uy, E). This is an injective
Uy-module, and if E is a Uy-module there exists a canonical injection of
E = Homy, (Uy, E)intoit. Thus every injective U y-module is a summand
of a suitable I(E), and it suffices to prove the proposition for V = I4(E).

One has the exact sequence of g-modules

0 —» I(E) - Hom¢ (U(g), E) - Hom (U(g)X, E) — 0.

Since U(g) and U(g)X are free over U(g), the last two modules in this
sequence are U(g)-injective, hence U(n)-injective (Lemma 2.1). The long
sequence of cohomology groups gives us that H¥n, I4(E)) = 0 for g > 1,
and reduces proving that H!(n, I,(E)) = 0 to proving that the canonical
map

H°(n, Hom; (U(g), E)) - Hn, Hom, (U(g)X, E))
is surjective. This map is equivalent to:

Hom¢ (U(g)/U(g)n, E) —» Homg (U(g)X/U(g)Xn, E)
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which is surjective by Corollary 3.2.

PrOOF OF THEOREM 2.6: We must show that if V is a g-module and
X €Z(g) "nnihilates V, then o(X) annihilates H*(n, V). As above, let
Uy be the ring U(g)/U(g)X. Then V is a Uy-module, and there exists an
injective Uy-module A into which V embeds. If B is the quotient, then
we have this sequence of Uy-modules:

0>V ->4-B-0.

Applying 3.3, one sees that the long exact sequence of n-cohomology
decomposes:

0 - H°(n, V) - Hn, A) » H(n, B) » H'(n, V) - 0
0—- H™" '(n,B) » H"(n, V) -» 0 (m > 1).

From Proposition 2.3 and Lemma 2.5, one concludes Theorem 2.6 for
H'(n, V); proceed by induction.

3.4 ReMARK: By an argument a great deal more complicated, using
among other things the fact that U(g) is free over Z(g) (see [6]), one can
prove the following generalization of Proposition 3.3: if I is any ideal
of Z(g) and V an injective U(g)/U(g)I-module, then H¥n, V) =0 for
q > 0.

4

Assume [ to be algebraically closed, g a reductive Lie algebra over [,
p a maximal solvable subalgebra of g with Levi decomposition
p = m @ n (so that m is a Cartan algebra of g). Let X be the set of roots
of g with respect to m, and give to X the ordering associated to p. Let W
be the Weyl group associated to 2, and for each we W let I(w) be its length.

Let V be an irreducible finite-dimensional g-module, 6 its infinitesimal
character, A its highest weight.

Let 6 be the character 7Y . ¢ o.

4.1 LemMa: The characters {w(A+5)—dlwe W} are precisely those
one-dimensional representations A of m (hence of U(m)) such that
Mo(X)) = 68(X) for all X € Z(g).
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PRrOOF: See § 23 of [4].
We remark that these characters are all distinct.

42 LemMA: For a given we W, the character w(A+98)—9d occurs
exactly once in Hom (A, V) if (w) is q, and not at all if the length of
w is not q.

Proor: See [2].

(Note that the proof which both [5] and [8] give of this fact relies on
the Weyl character formula for the g-representation with highest weight
0, while Cartier avoids this.)

4.3 TuroreMm: (Kostant) If V is an irreducible finite-dimensional
representation of g with highest weight A, then as an m-module one has
Him, V) = @)=g M(A+6)—0.

Proor: Lemmas 4.1 and 4.2 and Theorem 2.6 imply that if 4 is a
character of m occurring in H%n, V), then 1 = w(A+J)—0 for some
weW with I(w)=gq. It remains to show that if [(w)=gq, then
Hom,, (W(A+8)—4, Hin, V)) # 0. Let ¢ be an m-eigenvector = 0 in
Cin, V) with eigencharacter w(A +0)—d, which exists by Lemma 4.2.
Because (i) the differential of the complex C*(n, V) is an m-morphism,
and (ii) the character w(A+8)— & does not occur in either C?2~(n, V) or
Ci*Y(n, V) (4.2), the cochain ¢ is a cocycle but not a coboundary.

4.4 REMARK: One can deal similarly with parabolic subalgebras other
than the minimal one to obtain Kostant’s result for these, too.
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