Compositio Mathematica

Robert E. DressLer

A property of the φ and σ_{j} functions

Compositio Mathematica, tome 31, $\mathrm{n}^{\circ} 2$ (1975), p. 115-118
http://www.numdam.org/item?id=CM_1975__31_2_115_0
© Foundation Compositio Mathematica, 1975, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A PROPERTY OF THE φ AND σ_{j} FUNCTIONS

Robert E. Dressler

1. Introduction

As usual, φ stands for Euler's function and σ_{j} stands for the sum of the $j^{\text {th }}$ powers of the divisors function. The purpose of this note is to answer the following very natural question: If t is a positive integer and f is φ or σ_{j}, when does t divide $f(n)$ for almost all positive integers n ? We also answer this question for the Jordan totient function, φ_{j}, a generalization of the φ function.

We will use the well known formulas:

$$
\begin{equation*}
\varphi(n)=n \prod_{p \mid n} \frac{p-1}{p} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{j}(n)=\prod_{p^{e} \| n}\left(p^{e j}+p^{(e-1) j}+\ldots+p^{j}+1\right) \tag{2}
\end{equation*}
$$

Here $p^{e}| | n$ means $p^{e} \mid n$ and $p^{e+1} \nmid n$.

2. Results

Our first theorem concerns the φ function.
Theorem (1): For any prime p_{0} and any positive integer k we have $p_{0}^{k} \mid \varphi(n)$ for almost all n. That is, the set of integers n for which $p_{0}^{k} \nsucc \varphi(n)$ has natural density zero.

Proof: If $p_{0}^{k} \nmid \varphi(n)$ then by (1), no prime divisor p of n satisfies $p \equiv 1$

[^0]$\left(\bmod p_{0}^{k}\right)$. Now, if N and M satisfy $N>p_{1}^{\prime} p_{2}^{\prime} \cdot \ldots \cdot p_{M}^{\prime}$ where the p_{i}^{\prime} $(i=1, \ldots, M)$ are the first M primes congruent to $1\left(\bmod p_{0}^{k}\right)$, then the number of positive integers not exceeding N, none of whose prime divisors is congruent to $1\left(\bmod p_{0}^{k}\right)$ is
$$
\leqq 2 N \prod_{i=1}^{M} \frac{p_{i}^{\prime}-1}{p_{i}^{\prime}}
$$

If we let N and M vary together to infinity, then we have, by a strong form of Dirichlet's theorem, that

$$
\left(2 N \prod_{i=1}^{M} \frac{p_{i}^{\prime}-1}{p_{i}^{\prime}}\right) / N \rightarrow 0
$$

This establishes our result.

Since the finite union of sets of natural density zero is a set of natural density zero we may state the following:

Corollary (1): Let t be any positive integer. Then $t \mid \varphi(n)$ for almost all n.

It is also worth noting that the φ_{j} function where

$$
\varphi_{j}(n)=n^{j} \prod_{p \mid n}\left(1-p^{-j}\right)
$$

also satisfies the conclusions of Theorem 1 and Corollary 1. To see this, observe that if $p \equiv 1\left(\bmod p_{0}^{k}\right)$ then also $p^{j} \equiv 1\left(\bmod p_{0}^{k}\right)$.

The situation for the σ_{j} functions is more complicated. We first need the following two lemmas:

Lemma (1): [3, pg. 58]. Let $(c, q)=1$ where q is any integer having primitive roots. The congruence $x^{j} \equiv c(\bmod q)$ is solvable if and only if

$$
c^{\varphi(q) /(\varphi(q), j)} \equiv 1(\bmod q) .
$$

Lemma (2): Given any prime p_{0} and r such that $\left(r, p_{0}\right)=1$ and any positive integer k, then almost all n are such that n is divisible by only the first power of some prime congruent to $r\left(\bmod p_{0}^{k}\right)$.

Proof: Let $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{M}^{\prime}$ be the first M primes congruent to $r\left(\bmod p_{0}^{k}\right)$.

Let N be greater than $\left(p_{1}^{\prime} p_{2}^{\prime} \cdot \ldots \cdot p_{M}^{\prime}\right)^{2}$. Now for any subset

$$
\left\{p_{i_{1}}^{\prime}, p_{i_{2}}^{\prime}, \ldots, p_{i_{T}}^{\prime}\right\} \text { of }\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{M}^{\prime}\right\}
$$

the number of integers $\leqq N$ which are not divisible by any

$$
q \in\left\{p_{1}^{\prime}, \ldots, p_{M}^{\prime}\right\} \mid\left\{p_{i_{1}}^{\prime}, \ldots, p_{i_{T}}^{\prime}\right\}=\left\{q_{1}, \ldots, q_{M-T}\right\}
$$

and are divisible by $p_{i_{1}}^{\prime 2} \cdot \ldots \cdot p_{i_{T}}^{\prime 2}$ is less than

$$
2 N \cdot \frac{1}{p_{i_{1}}^{\prime 2} \cdot \ldots \cdot p_{i_{T}}^{\prime 2}}\left(\frac{q_{1}-1}{q_{1}}\right) \cdot \ldots \cdot\left(\frac{q_{M-T}-1}{q_{M-T}}\right)
$$

Thus, the number of integers $\leqq N$ which are divisible by some p_{i}^{\prime} ($i=1, \ldots, M$) only to the first power is greater than

$$
\begin{array}{r}
N-2 N \sum_{\substack{\text { all subsets } \\
\left\{p_{i_{1}}^{\prime}, \ldots, p_{i_{T}}^{\prime} \text { of }\left\{p_{1}^{\prime}, \ldots, p_{M}^{\prime}\right\}\right.}} \frac{1}{p_{i_{1}}^{\prime 2} \cdot \ldots \cdot p_{i_{T}}^{\prime 2}}\left(\frac{q_{1}-1}{q_{1}}\right) \cdot \ldots \cdot\left(\frac{q_{M-T}-1}{q_{M-T}}\right) \\
=N-2 N \prod_{i=1}^{M}\left(\frac{1}{p_{i}^{\prime 2}}+\frac{p_{i}^{\prime}-1}{p_{i}^{\prime}}\right) .
\end{array}
$$

If we now let $M, N \rightarrow \infty$ then by a strong form of Dirichlet's theorem we have

$$
(N-2 N) \prod_{i=1}^{M}\left(\frac{1}{p_{i}^{\prime 2}}+\frac{p_{i}^{\prime}-1}{p_{i}^{\prime}}\right) / N \rightarrow 1 .
$$

This completes the proof.
Theorem (2): Let p_{0} be an odd prime and let k and j be any positive integers. Then $p_{0}^{k} \mid \sigma_{j}(n)$ for almost all n if and only if $\varphi\left(p_{0}^{k}\right) /\left(\varphi\left(p_{0}^{k}\right), j\right)$ is even.

Proof: Since p_{0} is odd, p_{0}^{k} has primitive roots. If $\varphi\left(p_{0}^{k}\right) /\left(\varphi\left(p_{0}^{k}\right), j\right)$ is even then, by Lemma $1, x^{j} \equiv-1\left(\bmod p_{0}^{k}\right)$ is solvable. Thus we can find an x_{0} such that $x_{0}^{j} \equiv-1\left(\bmod p_{0}^{k}\right)$. If a prime p satisfies $p \equiv x_{0}\left(\bmod p_{0}^{k}\right)$ and if $p \| n$, then by (2) we have $p_{0}^{k} \mid \sigma_{j}(n)$. To complete this half of the proof we apply Lemma 2 with $r=x_{0}$.

Now, suppose $\varphi\left(p_{0}^{k}\right) /\left(\varphi\left(p_{0}^{k}\right), j\right)$ is odd. Since $\varphi\left(p_{0}^{k}\right)=p_{0}^{k-1}\left(p_{0}-1\right)$, it follows that $\varphi\left(p_{0}^{k}\right) /\left(\varphi\left(p_{0}^{k}\right), j\right)$ is odd, for an odd prime p_{0}, if and only if

$$
\frac{p_{0}-1}{\left(p_{0}-1, j\right)}=\frac{\varphi\left(p_{0}\right)}{\left(\varphi\left(p_{0}\right), j\right)}
$$

is odd. Thus, by Lemma $1, x^{j} \equiv-1\left(\bmod p_{0}\right)$ is not solvable. Thus for any square-free integer $n\left(\right.$ since $\left.\sigma_{j}(n)=\prod_{p \mid n}\left(p^{j}+1\right)\right)$ we have $p_{0} \nmid \sigma_{j}(n)$. Since the square-free integers have natural density $6 / \pi^{2}>0$ we are done.

In addition, we have
Theorem (3): For any positive integers k and $j, 2^{k} \mid \sigma_{j}(n)$ for almost all n.
Proof: It is known [1] that for any positive integer k, almost all integers n have the property that they are divisible only to the first degree by at least k distinct odd primes. For these integers n it follows, from (2), that $2^{k} \mid \sigma_{j}(n)$ and the proof is complete.

We may now capsulize Theorems 2 and 3 with
Theorem (4): Let p_{0} be any prime and let k and j be any positive integers. Then $p_{0}^{k} \mid \sigma_{j}(n)$ for almost all integers n if and only if

$$
\frac{p_{0}\left(p_{0}-1\right)}{\left(p_{0}-1, j\right)}
$$

is even.

Finally, we state

Corollary (2): Let t and j be any positive integers. Then $t \mid \sigma_{j}(n)$ for almost all n if and only if for each prime divisor p of t we have $p(p-1) /(p-1, j)$ is even.

REFERENCES

[1] Dressler, R. E.: On a Theorem of Niven, Can. Math. Bull., Vol. 17 (1974) 109-110.
[2] Hardy, G. H.: Ramanujan-Twelve Lectures on Subjects Suggested by His Life and Work. Chelsea (1940).
[3] LeVeque, W. J.: Topics in Number Theory, Vol. I. Addison-Wesley (1958).
(Oblatum 22-XI-1974)

[^0]: ${ }^{1}$ In the case of φ_{j}, j arbitrary, and σ_{j}, j odd, somewhat stronger results than the ones we give may be obtained by much deeper methods, cf. [2, pg. 167] In the case of σ_{j}, j even, our results are new. In all cases, our methods appear to be much simpler than those of [2].

