Compositio Mathematica

A. J. Van der Poorten

A note on the zeros of exponential polynomials

Compositio Mathematica, tome 31, $\mathrm{n}^{\circ} 2$ (1975), p. 109-113
http://www.numdam.org/item?id=CM_1975_31_2_109_0
© Foundation Compositio Mathematica, 1975, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

A NOTE ON THE ZEROS OF EXPONENTIAL POLYNOMIALS

A. J. van der Poorten

1. Introduction

In a recent paper The Zeros of Exponential Polynomials [1], C. J. Moreno gave precise information as to the location of the strips containing the zeros of exponential sums of the shape

$$
\begin{equation*}
\sum_{j=1}^{m} p_{j} e^{\alpha_{j} z} \quad p_{j} \in \mathbb{C}, \alpha_{j} \in \mathbb{R} \tag{1}
\end{equation*}
$$

In particular he showed that the real parts of the zeros of exponential sums of the shape (1) are dense in the intervals of the real line which lie entirely inside a strip of zeros. Moreno conjectured that the appropriate generalisation of this density result would hold for exponential sums with complex frequencies $\alpha_{1}, \ldots, \alpha_{m}$. He remarks that it seems difficult to obtain generalisations of his result for exponential polynomials

$$
\begin{equation*}
F(z)=\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z} \quad p_{j}(z) \in \mathbb{C}[z], \alpha_{j} \in \mathbb{C} \tag{2}
\end{equation*}
$$

It is the purpose of this brief note to describe how the ideas employed by Moreno in [1] can be applied to obtain the generalisation of the results of [1] for exponential polynomials $F(z)$ of the shape (2). For brevity we avoid a detailed repetition of the results of [1] and also refer the reader to [1] for references to the relevant literature.

2. A simplification of the general case

It will be sufficient to suppose that we may write

$$
\begin{align*}
p_{j}(z)=p_{j} z^{\mu_{j}}\left(1+\varepsilon_{j}(z)\right), \quad p_{j} \neq 0, \quad(j=1,2, \ldots, m) \tag{3}\\
\quad \text { where } \varepsilon_{j}(z) \rightarrow 0 \text { as }|z| \rightarrow \infty .
\end{align*}
$$

Our remarks therefore apply to a somewhat wider class of functions (2) than just the class with polynomial coefficients.

We now recall the well-known result ${ }^{1}$ that zeros of (2) with large absolute value lie in strips in the complex plane where at least two of the terms $p_{k}(z) e^{\alpha_{k} z}, p_{l}(z) e^{\alpha_{l} z}$, are of similar size, dominating the size of the remaining terms. Indeed such strips lie perpendicular to the convex hull determined in the complex plane by the points $\bar{\alpha}_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{m}$, the complex conjugates of the frequencies.

For convenience write for $j=1,2, \ldots, m$

$$
\alpha_{j}=a_{j}+i b_{j} \quad a_{j}, b_{j} \in \mathbb{R}
$$

We make our remark precise as follows:
All but finitely many of the zeros of (2) lie in logarithmic strips of the shape

$$
I_{\theta, c}=\left\{z=x+t \exp i\left(\theta+\frac{c \log t}{t}\right): x_{0}<x<x_{1}, t_{0}<t<\infty\right\}
$$

where, $\theta, 0 \leqq \theta<2 \pi$ and c are such that:
(a) there exist $k, l(k \neq l)$ in $\{1,2, \ldots, m\}$ such that

$$
\begin{equation*}
\left(a_{k}-a_{l}\right) \cos \theta-\left(b_{k}-b_{l}\right) \sin \theta=0 \tag{4}
\end{equation*}
$$

and

$$
a_{k} \cos \theta-b_{k} \sin \theta \geqq a_{j} \cos \theta-b_{j} \sin \theta \quad \text { for all } j=1,2, \ldots, m
$$

Write

$$
s_{\theta}=\left\{j \in\{1,2, \ldots, m\}:\left(a_{k}-a_{j}\right) \cos \theta-\left(b_{k}-b_{j}\right) \sin \theta=0\right\} .
$$

(b) $c\left(\left(a_{k}-a_{l}\right) \sin \theta+\left(b_{k}-b_{l}\right) \cos \theta\right)-\left(\mu_{k}-\mu_{l}\right)=0$, and
(5) $c\left(a_{k} \sin \theta+b_{k} \cos \theta\right)-\mu_{k} \leqq c\left(a_{j} \sin \theta+b_{j} \cos \theta\right)-\mu_{l}, \quad$ for all $j \in S_{\theta}$.

We write

$$
S_{\theta, c}=\left\{l \in S_{\theta}: c\left(\left(a_{k}-a_{l}\right) \sin \theta+\left(b_{k}-b_{l}\right) \cos \theta\right)-\left(\mu_{k}-\mu_{l}\right)=0\right\}
$$

[^0]With k as above, we now write

$$
F_{k}(z)=z^{-\mu_{k}} e^{-\alpha_{k} z} F(z)=\sum_{l \in S_{\theta, c}} p_{l} z^{\mu_{l}-\mu_{k}} e^{\left(\alpha_{l}-\alpha_{k}\right) z}\left(1+\varepsilon_{l}(z)\right)+\delta_{k}(z)
$$

and observe that by virtue of the inequalities (4) and (5) if

$$
z=x+t \exp i\left(\theta+\frac{c \log t}{t}\right)
$$

then $\left|\delta_{k}(z)\right| \rightarrow 0$ as $t \rightarrow \infty$. Similarly, for $l \in S_{\theta, c}$ and $z \in I_{\theta, c}$ as above, we see by virtue of the equations (4) and (5) and some simple manipulation that

$$
\left|\exp \left(\left(\alpha_{l}-\alpha_{k}\right) z+\left(\mu_{l}-\mu_{k}\right) \log z\right)\right|=\left|\exp \left(\alpha_{l}-\alpha_{k}\right) x\right|\left(1+v_{l}(z)\right)
$$

where $\left|v_{l}(z)\right| \rightarrow 0$ as $t \rightarrow \infty$.Recalling that $\left|\varepsilon_{l}(z)\right| \rightarrow 0$ as $|z| \rightarrow \infty$ and hence as $t \rightarrow \infty$, we can summarise the situation as follows:

Write

$$
F_{k}\left(x+t \exp i\left(\theta+\frac{c \log t}{t}\right)\right)=f_{k}(x ; t)
$$

Then for every $\delta>0$ there is a $t_{0}=t_{0}(\delta)$ such that for $t>t_{0}$, $x_{0}<x<x_{1}$,

$$
\begin{equation*}
\left|f_{k}(x ; t)-\sum_{l \in S_{\theta, c}} p_{l}^{\prime} \exp \left(x\left(\alpha_{l}-\alpha_{k}\right)+i t \beta_{l}\right)\right|<\delta \tag{6}
\end{equation*}
$$

where the p_{l}^{\prime} are given by $p_{l} \exp i\left(\mu_{l}-\mu_{k}\right) \theta$ so that $\left|p_{l}^{\prime}\right|=\left|p_{l}\right|$, and a simple calculation shows that the β_{l} are given by

$$
\begin{equation*}
\beta_{l}=\left(a_{l}-a_{k}\right) \sin \theta+\left(b_{l}-b_{k}\right) \cos \theta+\gamma_{l}(t)= \pm\left|\alpha_{l}-\alpha_{k}\right|+\gamma_{l}(t) \tag{7}
\end{equation*}
$$

where $t \gamma_{l}(t) \rightarrow 0$ as $t \rightarrow \infty$.

3. Main result

It is now convenient to state the main result of this note.

TheOrem: Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be distinct complex numbers and

$$
F(z)=\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{k} z}, \quad p_{j}(z) \in \mathbb{C}[z], \alpha_{j} \in \mathbb{C}
$$

an exponential polynomial; suppose that the $p_{j}(z)$ are of exact degree μ_{j} respectively with leading coefficient p_{j}. Let θ, c and the index k be defined by the conditions (a) and (b) of section 2 . Let the numbers $\left|\alpha_{l}-\alpha_{k}\right|, l \neq k$, $l \in S_{\theta, c}$ be irrationals linearly independent over \mathbb{Q}. Then a necessary and sufficient condition for $F(z)$ to have infinitely many zeros near any curve

$$
C_{\theta, c, x}=\left\{z=x+t \exp i\left(\theta+\frac{c \log t}{t}\right): t_{0}<t<\infty\right\}
$$

is that

$$
\begin{equation*}
\left|p_{h} e^{x \alpha_{\mathrm{h}}}\right| \leqq \sum_{\substack{l \in S_{\theta}, c \\ l \neq h}}\left|p_{l} e^{x \alpha_{l}}\right|, \quad \text { all } h \in S_{\theta, c} \tag{8}
\end{equation*}
$$

Remarks:

(a) The linear independence condition on the α_{j} is stronger than is required for the truth of the theorem; but it avoids degenerate cases.
(b) By 'a zero near any curve $C_{\theta, c, x^{\prime}}$ we mean that if $x \in \mathbb{R}$ satisfies (8) then given any $\varepsilon>0$ there exists a x^{\prime} satisfying $x-\varepsilon<x^{\prime}<x+\varepsilon$ and a $t^{\prime}>t_{0}$ such that

$$
F\left(x^{\prime}+t^{\prime} \exp i\left(\theta+\frac{c \log t^{\prime}}{t^{\prime}}\right)\right)=0
$$

Proof: We can apply our argument to the function $F_{k}(z)=$ $z^{-\mu_{k}} e^{-\alpha_{k} z} F(z)$ which has the same zeros as $F(z)$ in the region under consideration. Our proof consists of indicating that the proof of [1], pages $73-74$, can be applied mutatis mutandis to this case. For the sufficiency argument we notice that the lemma of [1], pages 73-74, requires only a reformulation to apply to the function $F_{k}(z)$ and to the curves $C_{\theta, c, x}$ within the logarithmic strips $I_{\theta, c}$ mentioned in section 2. Moreover in section 2 we 'simplified' $F_{k}(z)$ to show in (6) that $F_{k}(z)$ behaves on the curves $C_{\theta, c, x}$ like the exponential sum

$$
\begin{equation*}
\sum_{l \in S_{\theta, c}} p_{l}^{\prime} \exp \left(x\left(\alpha_{l}-\alpha_{k}\right)+i t \beta_{l}\right) \tag{9}
\end{equation*}
$$

We may therefore apply the Kronecker-Weyl theorem so as to construct
a sequence $\left\{t_{n}\right\}$ with $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ so that the sum (9) $\rightarrow 0$ as $n \rightarrow \infty$ when we replace t by t_{n} in (9); it follows that

$$
F_{k}\left(x+t_{n} \exp i\left(\theta+\frac{c \log t_{n}}{t_{n}}\right)\right) \rightarrow 0
$$

as $n \rightarrow \infty$ as required. The linear independence condition guarantees the required linear independence of the β_{l} as given by (7).

The necessity argument of [1], page 73, applies similarly since by (6) $F_{k}(z)$ can vanish infinitely many times near the curve $C_{\theta, c, x}$ only if the sum (9) is arbitrarily small for some $t>t_{0}$ for all t_{0} sufficiently large. Finally, the sufficiency argument requires that $F_{k}(z)$ be bounded below on segments of the curves $C_{\theta, c, x}$ and again we can apply the argument of [1] page 76 to the sum (9). Alternatively the bound is available directly for $F(z)$ from the results of Tijdeman [2].

4. Remarks

The theorem of course includes the assertion of section 2 since, in all but degenerate cases, (8) will be satisfied by x in some intervals $x_{0}<x<x_{1}$. We have also proved the conjecture of [1], page 71, to the effect that when the coefficients $p_{j}(z)$ are constants p_{j} then near every line parallel to the sides of a strip of zeros of $F(z)$ lie infinitely many zeros of $F(z)$. Indeed the statement of the theorem is the natural generalisation of this conjecture to the case of coefficients $p_{j}(z)$ satisfying (3).

I am indebted to R. Tijdeman and M. Voorhoeve for some remarks that assisted in the construction of section 2 of this note.

REFERENCES

[1] C. J. Moreno: The zeros of exponential polynomials (1). Comp. Math. vol. 26 (1973) 69-78.
[2] R. Tijdeman: An auxiliary result in the theory of transcendental numbers. J. Number Th. 5 (1973) 80-94.

[^0]: ${ }^{1}$ See, say, the survey article R. E. Langer on the zeros of exponential sums and integrals; Bull. Amer. Math. Soc., 37 (1931), 213-239. A more recent source is D. G. Dickson, Asymptotic distribution of zeros of exponential sums; Publ. Math. Debrecen, 11 (1964), 295-300.

