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DECIDABILITY AND UNDECIDABILITY OF THEORIES OF
ABELIAN GROUPS WITH PREDICATES FOR SUBGROUPS

Walter Baur!

0. Introduction

Let n> 1, k £ 5 be natural numbers and let T(n, k) be the first-order
theory of the class of all structures <A, Ay, ", Ax-,, wWhere A4 is an
n-bounded abelian group (i.e. nA =0) and Ao, -, A,_, are arbitrary
subgroups of A. In the present paper the following results concerning
decidability of T(n, k) are ‘obtained: (i) T(n, 5) is undecidable, (ii) if n
contains a square then T'(n, 4) is undecidable, (iii) if n is squarefree then
T(n, 3) is decidable. A trivial consequence of (ii) is that the theory of
abelian groups with four distinguished subgroups is undecidable 2

Terminology: ‘group’ means ‘abelian group’ except where stated other-
wise. ‘Countable’ means ‘finite or countably infinite’. For all undefined
notions from logic we refer to [5].

1. Undecidability

The first-order language L of abelian groups consists of a binary
function symbol + and a constant 0. Let f,, f; be two unary function
symbols and put I, = L U {f,, fi}. For n = 1 let T;(n) denote the theory
of all structures {A, f,, f;» where A is an n-bounded abelian group and
fo, f1 are arbitrary automorphisms of A.

TuaeorREM 1: T(n) is undecidable for all n > 1.

Proor: Let G be a (noncommutative) finitely presented 2-generator
group with undecidable word problem (see e.g. Higman [2]). Assume
! Supported by Schweizerischer Nationalfonds.

2 See postscript.
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that G is the quotient of the free group on the generators f,, f; modulo
the normal subgroup generated by ¢, - - *, t,,~ ; Where each ¢, is a word in
fO’ fla fO_lﬁ flﬁl'

Consider f,!, f;"! as new function symbols and let T,(n) be the
theory in the language L, U { f;~!, f;”'} obtained from Tj(n) by adding

Vx(fofo—l(x) = fi fl_l(x) = X)

as a new axiom. T,(n) is an extension by definitions of T;(n) and therefore
it suffices to show that T,(n) is undecidable.

Since G has undecidable word problem it suffices to show that for any
word t in fy, fi, fo !, fi ! the following two statements are equivalent

() To(n) VXN 4 <mt,(x) = %) = ¥x(t(x) = X),

(ii) t = e in G (e is the neutral element of G).

Clearly (ii) implies (i). To prove the other direction assume ¢ # e in G.
Let Z be the ring of integers and put Z, = Z/nZ. Let A be the additive
group of the group ring Z,[ G] and define two automorphisms of A by
f*(a) = fi-a (i=0,1). Let A be the unique expansion of {4, f5!, f{*>
to a model of T,(n). Since G operates faithfully on A4 we have
Ak Ix(t(x) # x), but clearly U E Vx(/\”<mtu(x) = x). Hence (i) does not
hold and Theorem 1 is proved.

Let Py, -, P, be five unary predicate symbols. Forn > 1 and k £5
let T(n, k) denote the Ly {Py, -, P,_,}-theory of all structures
{A, Ag," ", Ak, where A is an n-bounded group and 4, -, 4,_; are
arbitrary subgroups of A.

THEOREM 2:
(i) T(n, 5) is undecidable for all n > 1,
(ii) if n contains a square then T(n,4) is undecidable.

Proor: (i) By Theorem 1 it suffices to give a faithful interpretation of
Ti(n) in a finite extension T'(n) of T(n, 5). T'(n) is obtained from T(n, 5)
by adding the following new axioms

(1) Vx3!ly31z(P5(y) & Pu(z) & x = y+2),

() Vp(P3(y) = 312(Py(2) & Py+2) (i=<2),

() Vz(Py(2) » AW(P3(y) & Py+2)) (i =2).

A model of T'(n) is nothing else than an n-bounded group A together

with a direct sum decomposition 4 = A; @ A4, and the graphs of three
isomorphisms between A5 and 4,.
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Rather than giving the formal details of the' interpretation we show
how to get a model of Ti(n) out of a model of T'(n) and that we get all
models of Tj(n) in this way.

Let AW =<A, Ay, -, A4y be a model of T'(n). The axioms of T'(n)
guarantee that the maps gy, 9, : A3 —» A5 defined by

g{a) = @' < Wk Py(a) & Ps(d) & 32(P4(2) & Pla+z) & Py(d +2))
(i =0,1)

are well-defined automorphisms of 45. Therefore (A5, go, g, is a model
of Ti(n).

Conversely assume that B = (B, g,, g;> is a model of T;(n). Define
A=B® B, A, = graph (go), A; = graph (g,), A, = {<b, b)|be B}, A5 =
left copy of B in A, A, =right copy of B in A. Obviously
A = A, Ay, "+, Ay is amodel of T'(n) and the model of T;(n) associated
with A in the way described above is isomorphic to B.

(ii) Let p be a prime number such that p*n and p**! 4 n for some
k > 1. We interprete T'(p) faithfully in a finite extension T of some
extension by definition of T(n, 4). Let T be the theory obtained from
T(n, 4) by adding (2), (3) and

(4) Yx(Py(x) & (p""'|x & px = 0)),
(5) Vx((P3(x} & Py(x)) = x = 0).

Let <A4, Ay, -, A4) be a model of T. B= A; ® A, can be considered as
a subgroup of 4, by axiom (5). From (2), (3), (4) it follows that

(B,Ay N B, A; N B, A, N B, A5, A,>

is a model of T'(p).

Conversely assume that B = (B, By, -, B,> is a model of T'(p).
Embed B, in a direct sum A’ of cyclic groups of order p* such that
B, =p*" !4’ and consider B in the obvious way as a subgroup of
A=B;® A" Then

QI = <A, Bo, Bl’ Bz, B3, B4>

is a model of T and the model of T'(p) associated with 2 in the way
described above is isomorphic to B. Again it should be clear now how
the interpretation works.

Since T(4, 4) is a finite extension of the theory of abelian groups with
four predicates for subgroups we obtain
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COROLLARY 1': The theory of abelian groups with four predicates
denoting subgroups is undecidable.

Kozlov and Kokorin [4] showed that the theory of torsionfree
abelian groups with one predicate denoting a subgroup is decidable.
The next corollary answers a question of [4]. It follows from the fact
that every group is a quotient of a torsionfree group.

COROLLARY 21: The theory of torsionfree groups with five predicates
denoting subgroups is undecidable.

2. Decidability

This section is devoted to the proof of the following
THEOREM 3: If n is a squarefree positive number then T(n, 3) is decidable.

Assume n = py - p_; > 1 squarefree, p; prime. (If n = 1 the theorem
is obvious). Since every model A of T(n,3) is a direct product
A= Hi<k91,- where ; is a model of T(p;, 3) (see e.g. Kaplansky [3])
it suffices to prove that T(p, 3) is decidable for any prime number p,
by the Feferman-Vaught-Theorem [1].

Let p be an arbitrary prime number fixed for the rest of the paper.
A model of T{p, 3) is nothing else than a vectorspace U over the field K
with p elements together with three subspaces U,, U,, U,. In the
following ‘vectorspace” always means ‘vectorspace over K. Before
starting with the proof we introduce some terminology.

Let U be a subspace of the vectorspace V and let B = (x,),<, (4 an
ordinal) be a sequence of elements x,€V. We say that B is linearly
independent over U (a basis of V/U resp.) if the sequence (x,+ U),, is
linearly independent in V/U (a basis of V/U resp.). Let B’ = (x;), <, be
another sequence from V. Bw B’ denotes the sequence (y,), <+, Where
Ve=X, fa<iand y,,,=x,ifa < A

With any countable model U = U, Uy, U;, U,> of T(p,3) we
associate nine vectorspaces Vy, -, V;, V as follows .

Vo = U/Ug+U,+ U,
I/l = U0+U1+U2/U1+U2

V, Uog+U,+U,/Uy+U,

! See posiscript.
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Vs = Ug+ U+ U,/Up+ U,y
Vi=UynUy/UgnU; n U,

Vs =UgnUy/UynU; nU,

Ve =U nUy/UsnU; nU,

Vo, =UgnU; n U,

V =Uygn (Ui +U(Ug n U +Uy 0 Uy)

For i < 8 put x; =dim V;, kg = kg = dim V, Inv (U) = {xy, ", Kg).
LCt BO = (xo,a)a<xoa Y B7 = (x7,oz)a<x7a B = (xu)a<xs be Sequences
from U such that

(1) B; is a basis of V; (i < 8),
(2) B is a basis of V,
(3) B;y,; €U, for i <3.

Clearly such sequences exist. For every a < kg choose xg ,e Uy, x5 ,€U,
such that x, = xg ,+ X9 ,. This is possible since B< U;+U,. Put
BS = (XB,u)zx<x8 and B9 = (x9,a)a<l<9‘

Lemma 1:

(i) By w - W By is a basis of U,

(i) By w B4 w Bsw B; W B generates Uy,
(iii) B, w B, w B¢ w B, w Bg generates U,
(iv) B3 w Bsw Bgw B, w By generates U,.

Proor: First we show that B, w - - w By is linearly independent. Let

*) Lyi=0

i<9
where y; = Y, <,,a;,X;, and a;, = 0 for all but finitely many «. We have
to show that g;, =0 for all i £9, all « < x;.

Since all summands in (*) except possibly y, lie in Uy+ U+ U, we
obtain a, ,=0 for all « <k, by linear independence of B, over
Uo+U;+U,.

-Since the remaining summands except possibly y; lie in U, + U,
we conclude a, , = 0 for all « < k, as above.

Next note that yge Uy+ U, by construction of the xg ,’s. Therefore
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all the remaining summands except possibly y, lie in Uy+ U, and hence
a,=0forall « < k,. a3 , =0 is shown in a similar way.
(*) now looks as follows

VatVs+Ye+Vai+ Y ag o Xg ot ), 9,4X0,4 = 0.
Replacing x5 , by x,—x,, , We obtain
Y ag o XgtYatys+ys = Y (ag o— a9 )Xo 2 — V-

The right hand side lies in U, whereas the left hand side lies in U,.
Since y,+ ys+y; liessin Uy n U+ Uy U, we obtain

Y ag X, €Uy nUi+Uy N U,.

Hence ag ,=0 for all « <kg by linear independence of B over
UynU,+UynU,. ag , = 01is shown in a similar way.

The proof that the remaining a;,’s are = 0 is left to the reader.

Next we prove (iii). Obviously the subspace generated by the B;’s
mentioned in (iii) is contained in U,. Let ye U,. Since B, is a basis of
V, and B, < U, there exists a linear combination y, of the x, ,’s such
that y—y,eU, n(Uy+U,). Write y—y, = zo+2, where z,€ U,,
z,€U,. Note that z,e Uyn(U,+ U,). Since B is a basis of V there
exists a linear combination ) ,a,x, such that

Zog— Y, A%, = u+u
for some ueUgn U, WeUynU,. Put yg = » a,xg ,. Since
0 1 4] 2 8 a’V8,a
xa = x8,a+x9,a

we obtain

Y=YV2—Vs = 20— Ys+ 12

u+W' + Y, a,xq, ,+2,).

The expression in the bracket clearly lies in U, . Since u and the left hand
side both lie in U, we conclude

y=y,—yg€eUyn U;+U; nU,.
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This together with the trivial fact that B, w Bgw B, generates
UonU;+U,; nU, implies (iii).

(iv) is shown in a similar way and (ii) is obvious. (i) follows from what
has been proved above and the fact that By is a basis of V.

LemMMA 2: Let W =U,U,, Uy, Uy, W =U,U,, Uy, U, be
countable models of T(p, 3). Then W = W if and only if Inv (W) = Inv (A).

PrOOF: Clearly U =~ A" implies that A, A’ have the same invariants.

Conversely assume Inv () = Inv (). Choose sequences By, -, B;, B
in W(By,: -, B;, B" in W) such that (1), (2), (3) before Lemma 1 hold.
Form Bg, By (Bjg, By) according to the instructions before Lemma 1.
Note that length (B;) = length(B;) for all i<9 because of
Inv (A) = Inv (W). Define a map f from the union of the B;’s onto the
union of the B/’s by mapping the «* elements of B; onto the ™ element
of B;. By (i) of Lemma 1 f extends to an isomorphism g : U — U’. Since
g(B) = B’ by construction, it follows from Lemma 1 that g(U;) = Uj,
<2

LemMA 3: For any 9-tuple {x," -, kg of cardinals k; £ w there exists
a countable model W of T(p, 3) such that Inv (A) = {xy," ", Kg).

Proor: Let V,,- -, V, be vectorspaces such that dim ¥, =k; if i <8,
dim V, = k. Choose a basis (x,),<,, Of Vg and a basis ()<, Of Vo.
Put U = ®,<oV; and consider the I7’s in the obvious way as subspaces
of U. Let V be the subspace of U generated by {x,+ y,l < g} and put

Up=WN+Ve+Vs+ V74V,
U,
Uy = Va+ Vst Vet+V,+ V.

Vot Vot Vs+Vo+ Vs,

A straightforward computation shows that Inv ((U, Uy, U,, U,)) =
(Ko, "5 Kg .

PrOOF OF THEOREM 3: Let ¢;, (i<9, new) be Lu{P,, Py, P,}-
sentences such that for any model A of T(p, 3) the following holds

Ak @,<dmV,=n (i < 8, new),
UE@g,<=dimV = n (n € w).

Such sentences can be constructed without difficulties. ¢, , e.g. looks
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as follows

Ix0," " Xu— 1 VY0, V1> V2(Po(yo) & P1(y1) & Py(y,)

- A erxv # Yo+ Yi+V2)
0srv<p v<n
(ro, s tn-1>7F0

In order to prove Theorem 3 it suffices to show that the set of all sentences
¢ which are consistent with T(p, 3) is recursively enumerable.
For any 9-tuple & = <{x,," -, kgy of cardinals k; < w put
T = T(p, 3) U {Quli < 9,n S x5} U {71 @1 e1lk; < 0},

Note that T is consistent and N,-categorical, by Lemmas 2, 3. Therefore
@ is consistent with T(p, 3) if and only if ¢ holds in some countable model
of T(p, 3) if and only if there exists a ¥ such that T:F ¢. This proves
Theorem 3.

RemARK: If p is a prime number then T(p, 3) is decidable whereas
T(p, 5) is undecidable.

Question: Is T(p, 4) decidable?

Postscript: T(p®, 1) is undecidable (to appear in Proc. Amer. Math. Soc.).
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