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Let (Xo, xo) be germ of a n-dimensional complex isolated hypersurface
singularity with Milnor number y and let p : X - S be a suitable represen-
tative of a semi-universal deformation of Xo. Denote by 0394 c S the

discriminant variety of p. In this paper we construct a kind of period
mapping from the universal cover of SB0394 to 03BC. We prove that this

mapping is nonsingular if Xo is quasi-homogeneous and 1 is not eigen-
value of its monodromy automorphism (actually, this last hypothesis
can be weakened). The proof hinges on an explicit description of the
Gauss-Manin connection for such deformations, which is due to

Brieskorn and Greuel.

Using this result we recover in the last section Brieskorns description
of the discriminant variety of a rational singularity.

1 wish to mention Brieskorns name once more to thank him for his

comments on an earlier draft of this paper, leading to corrections of
several mistakes.

1. Formulation of the main result

(1.1) Let (Xo, xo) be a germ of a n-dimensional complex hypersurface
which has an isolated singularity at xo. Such a singularity admits a
semi-universal deformation. This is a cartesian diagram of holomorphic
mapgerms

and characterized by certain properties (see for example [10]).
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A representative of p can be obtained as follows. Suppose that xo is the
origin of n+1 and that Xo is defined by a holomorphic function f : V - C,
where Tl is a neighborhood of 0 ~ Cn+1. Let ~1,···~l be monomials
which project onto a C-basis of the artinian ring

and define g : V x l ~  by g(z, u) = f(z)+u1 ~1(z) + ··· + ul 01(z) and
F : V x  ~  x Cl by F(z, u) = (g(z, u), u). Let 2: denote the critical set
of F. Choose a polycylindrical neighborhood .1 n + 1 x d l of (0, 0) ô V x C‘
such that

(i) (~0394n+1  0394l) ~ 03A3 = 
(ii) (0394n+1 {0}) ~ 03A3 = {(0,0)}

(iii’) F-1(0, u) intersects ~0394n+1  0394l transversally for all u ~ 0394l. Then
there is a disc d 1 in C centered at 0 such that (iii’) can be
strengthened to

(iii) For all (t, u) ~ 0394 1 x A 1, F-1(t, u) intersects ~0394n+1 x 0394l transversally.

Put X = (n+1  l) ~ F-1(1 l), S = 1  l and let p : X ~ S be the
restriction of F. Note that the sets X and S obtained in this way form

neighborhood basis of (0, 0) E en + 1 x C’ and (0, 0)eC x C’ respectively.
Hence both X and S may be taken smaller if future operations make this
necessary. In such a case we will do this without further comment.

Since pll is a proper map, it follows from Grauert’s theorem that

A : = p(Z) is a subvariety of S. For a generic choice of u E L1z, 03941 x {u}
intersects A in

distinct simple points [3]. Hence L1 may be defined by an element h E T(OS)
of the form h(t, u) = tm + a1(u)t03BC-1 + ... + alL(u).
The ideal (~g/~z0, ···, ~g/~zn) defines 1 as a smooth subvariety of X,

and since p*(h) vanishes on 1 there exist 03BE0,···,03BEn~ 0393(OX) such that

We also introduce S’ : = SB0394, X’ : = p -1 (S’) and let p’ : X’ ~ S’ denote
the restriction of p. p’ defines a C°°-hbrebundle, and it is known that
a typical fibre Xs : = p-1(s) (s E S’) has the homotopy type of a wedge of
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/1 n-spheres; in particular Hn(Xs, Z) is a free Z-module of rank 03BC[7].
1tl(S’, s) acts on Hn(Xs, Z). Let n : S’ - S’ denote the regular covering of
S’ which is associated to the kernel of this representation of 03C01(S’, s).
We so obtain a Cartesian diagram

Let 03C9 ~ 0393(03A9n+l+1X) and 03B1 ~ 039303A91+lS) and assume that a vanishes nowhere
on S. The ’quotient’ of w and a defines a family of n-forms on Xs(s e S’)
as follows. Let U be a neighborhood of s in S’ such that p -1 U admits a
retraction r:p-1 U ~ Xs coming from a trivialisation. Then there is a
unique n-form cv(s) on X, such that w = p*(a) n r*(w(s)) on p-l U.

It is easily verified that cv(s) doesn’t depend on a specific choice of r
and U, and that 03C9(s) is holomorphic (in particular closed) on Xs. This
family of n-forms pulls back to a family .
Now fix a s0~S’ and choose a basis (03B31(s0), ···, 03B303BC(s0)) of Hn(Xs0, Z).

By the absence of monodromy over S’, (03B31(s0),···,03B303BC(s0)) displaces
canonically to basis (03B31(s),···, 03B303BC(s)) of Hn(X, Z) (~S’). Then the map
Pk : S’ ~ C" which calculates the periods of hk(03C0()) · 03C9():

is holomorphic.
If we suppose that Xo is quasi homogeneous, that is

for certain positive rational numbers ce , ..., cn, then

So dime S’ = /1 in that case. For convenience we abbreviate

r = co + ... + cn and we define d03BB e Q by
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Our main result is

(1.2) THEOREM : Suppose (X0, xo) quasi homogeneous, w(xo) =1= 0 and

pk + r, d 1 + r, ···, dl + r all different, f ’rom 1. Then there exists a neighborhood
W of so in S such that Pk|03C0-1(W) is locally biholomorphic.

(1.3) R EMARK: It is known that exp (2nir), exp 2ni(d). + r) (À = 1, ···, l)
are the eigen values of the monodromy transformation of f [3].
By iterated suspension of f (i.e. replacing f(z) by f(z) + z2n+1 + ’ ’.. + z2n+m

for some m~N) we can always attain that r, d1+r, ···, dl+r all

differ from 1. Suspension doesn’t change S and 0394.

(1.4) The condition a = dt n du1  ···  du, doesn’t restrict the general-
ity of (1.2). We shall therefore assume this in the sequel.

2. The Gauss-Manin connection and some preliminaries

(2.1) For the moment we drop the assumption that (Xo, xo) is weighted
homogeneous and start with recalling the definition of the Gauss-Manin
connection in several sheaves, as it has been given by Greuel in his thesis
under more general conditions. Our main reference for this will be [6].

Over S’ we have a presheaf defined by U  Hn(p-1U, C). The sheaf
:Yf 0 of its local sections admits the canonical algebraic description as
the cohomology of a relative de Rham complex :

In this context, Yf 0 admits the canonical extension

over S. For making explicit calculations two auxiliary sheaves of s-
modules are very useful:

and

Clearly H embeds in H’. Following Greuel, we define a OS-homomor-
phism 1’ - Jf by 03BE  p*(a) A 03BE. It follows from a generalized de Rham
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lemma that this map is injective. We shall consider this injection as an
inclusion. H, e’ and H" turn out to be coherent sheaves of rank y and
the last two are free as well. Using (1.1.2) one easily verifies that he’ (-- e
and hH" c H’. The presheaf U  Hn(p-1U, Z) determines an integral
lattice in Yf o. It is clear that there is then a unique integrable connection
Vo : H0 ~ Yf 0 Q9 Ql whose horizontal sections are generated by the
integral lattice. Vo may be characterized more intrinsically by the
following property. If 03BE E Yf 0 and y is a local section of the presheaf
U  Hn(p-1 U, Z), then d(03B3 03BE) = 03BE.
An extension of ~0 to a connection V in Yt can be obtained at the cost

of having the coefficients of V acquire simple poles along J. Then V obeys
the following algebraic description. Let 03BE~p*03A9nX represent [03BE]~H.
d[03BE] = 0 implies d( = dg A ao + l03BB=1 du). A aÂ for certain 03B10,···, al E p, Qx.
Let 03B103BB denote the projection of YÂ in 1’. Then Greuel defines

and he verifies that with this definition of V, V is an extension of Vo
indeed. The inclusions hYC’ c:Ye, hH" c-- e and the Leibniz rule
allow us to extend V in a canonical way over e’ and H".

Now we take up the situation of (1.2) again, and we define a (9s-
homomorphism c : p*X ~ H" by sending ~~p*OX to the projection
of cpdz  du in YC". We then have

PROOF : Since H"so is free, it suffices to show that c(1), ···, c(~l) map onto
a C-basis of H"(s0).

Let 0 E ker (c). Then ~dz A du c- p*03A9l+1S A d(p* 03A9n-1X), i.e.

with 03C8 e S and f3 e d(p* 03A9n-1X). It follows that ~ e (···, og/ozn)P* OX.
So the natural projection

1 For any sheaf F of Os-modules, Fs denotes the stalk of F at a point SE Sand
F(s) : = 3F, ~s, c the fibre of F over s.
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factorizes via c over e"(so). Then the induced map

must be an isomorphism, since it is a surjective homomorphism of
C-vectorspaces, whose source and target have the same dimension y.
Since 1, ~1, ···, Çi project onto a basis of this target, the lemma follows.
We let K denote the field of fractions of OS,so, and we define for any

integer k an element qk E K as follows. Write

(with 03C903BB~K·H"s0) and  (with fÀKEK, and where
we have put ~0 : = 1 for notational convenience). We then pose

qk : = det (f03BBk).

(2.3) PROPOSITION : If 03BCK+r ~ 1, and d03BB+r ~ 1 for all À, then qk h is
a unit of OS,s0. W e postpone the proof of (2.3) to Section 3 but we show
how (2.3) implies (1.2).

Since h. Je" c Jf, there exists a 03BE ~ p*03A9nX such that hcv = p*(a) /B ,.
The restriction of h-103BE to a non singular fibre Xs is just co(s) as defined
in (1.1). Since we have d(03B303BE) = Jy V" Pk is of maximal rank as a multi-
valued mapping on S’if and only if

defines a vector bundle isomorphism outside J. And this is the case if and
only if ~c(hk) E Hom (03A91S*, hk-1H") defines a vectorbundle isomorphism
outside J. Because qk ~ K describes the determinant of h-k~c(hk) with
respect to the basis (~/~t, ~/~u1, ···, êlôul) and (c(~0), ···, c(~l)), proposi-
tion (2.3) implies (1.2) as stated.

3. Proof of proposition (2.3)

We first derive an explicit description of V. We will use abbreviations
like du for du 1 A ... A du, and dzi for dzo A ...  dzi - i  dzi+1  ···  dzn .

(3.1) LEMMA: Let ~ ~ 0393 (OX). Then
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where we have abusively written h, (ôhlat) etc., instead of p*(h), p*(ôhlat).

PROOF : It follows from (1.1.2) that we can write

We put 03BE :  By (1.1.2) 03BE projects into :Ytso and its
image is just h2c(~) under the ’inclusion’ H c H". In order to determine
~h2c(~) we compute

(Here, as well as below, we use the chain rule :

The term

equals
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Since

we can write with

and

Then

and

Substitution of

in the righthand side of (3.1.2) yields
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Following the discussion in Section 2, dg  du  03BE03BB projects onto the
coefficient of du03BB (dt if 03BB = 0) in ~h2c(~). Then the lemma follows from
(3.1.1), (3.1.3) and the Leibniz formula.

LEMMA: The ji’s in (1.1.2) can be chosen such that

PROOF:

Since {~g/~z0, ···, ôg/ôzn, u1, ···, ull forms a set of parameters of X,xo,
there exists a skew symmetric matrix (Aij) with coefficients in X,x0
such that for all i

Then

are as required.

From now on, we suppose that the ji’s are as in (3.2).
Let L denote the line in S defined by (u1, ···, ul). We can use t as a

coordinate for L.

(3.3) LEMMA: Suppose that I1k + r =1= 1 and dÂ + r =1= 1 for all À. Then the
restriction of h. qk to L is holomorphic and hqk(s0) ~ 0.

PROOF : We first list some congruences
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Since the tangent cone of L1 at so is defined by dt [11], we also have

Define ~ ~0393(X) by 03C9 = cp dz 1B du. By the Leibniz rule we have

Then a simple computation using (3.1) and the congruences above shows
that ’the coefficient of dt/h in h-k~c(~hk) equals

and the coefficient of du03BB/h in h-k~(~hk) equals

H"s0 is in a natural way a p* X-module, and as such zi (i = 0, ···, n)
acts in a nilpotent manner on the fibre

Hence, if we write h-k~c(~hk) = 03A303BBf03BBOc(~03BB) Q dt + 03A303BB,kf03BBkC(~03BB) 0 duK,
with fÀK in the quotient field of L,0, then

where N is a matrix with coefficients in L, o and nilpotent for t = 0.
It follows that qkh|L = tll det (f;.,J is holomorphic in so, where it takes the
nonzero value ~(0)(03BCk-1+r)(-d03BB-r+1).

Since 7il(S’, s) acts via + id on IBIlHn(Xs, Z), 03B4 : = det2 (03B3i(s)c(~j) will
be a holomorphic and univalued function on S’. It follows from the

regularity theorem [5] that ô extends meromorphically over X. In fact
we have
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(3.4) PROPOSITION : div (03B4) = (n - 1)A.

PROOF : We restrict £5 to the line L, and prove that 03B4|L vanishes of order
03BC(n-1) at so. This suffices, since L intersects 11 with multiplicity y at so.
It follows from (3.1) that

and

Since it follows that

and

where the aK;.’ s are constants.
So up to a constant factor 03B4|L(t) equals t2(03BC(r-1)+d1+···+d1). Since 03B4

does not vanish outside L1, this constant must be nonzero. In the appendix
it is proved that 2(p(r - 1) + d 1 + ··· + dl) = 03BC(n-1), and this will com-
plete the proof.

(3.5) Let s1 be a simple point of L1. Then X Sl has only one singular
point, x 1 say, and xi is an ordinary double point. Let us choose
neighborhoods X1 of x1 ~ X and S1 of s 1 E S 1 and z’ , z’c- T(X1),
v0, ···, vl ~0393(S1) such that the following conditions are satisfied.

(i) pX1 ~ S1 and (Xi, S 1 ) satisfies the conditions (1.1)-i, ii, iii.
(ii) {v0, ···, vl} is a set of coordinates for Si 

(iii) {z’0, ···, z’, p*v1, ···, p*vll is a set of coordinates for X1, and it
maps X1 onto a subset of n+1 x el which contains the poly-
cylinder {|z’|2 ~ 1, |p*(v1)|2 + ··· + |p*vl+2 ~ 1}

Let A l denote the open unit ball of C’ and define a mapping
o- : [0, 1) x 0394l ~ Si by 03C3(03C4, w) = (TI W1, ···, Wl).
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(3.6) LEMMA : Let {0393(03C4, w) ~ Hn(X03C3(03C4, w), Z) : (T, w) ~ (0, 1) x 0394l} be a con-
tinuous family of cycles, and put

Then

(a) I is bounded if n &#x3E; 1 and I = 0( - log T), T - 0 if n = 1
(b) oI/ow;. = 0( - log T), T ~ 0
(c) ~I/~03C4 = 0(03C4-1), 03C4 ~ 0
(d) If 0393(03C4, w) ‘vanishes’ as 03C4 ~ 0, then I is of the form J(T, W)03C41 2(n-1),

where J extends to a real analytic function on [0, 1) x Lt1.

PROOF : Suppose first that 0393(03C4, w) doesn’t intersect the vanishing cycle
in Hn(X03C3(03C4, w), Z) which corresponds to x 1 ~ Xs1. Then it is easily seen that
{0393(03C4, w)} is homologous to a family of cycles which extends over [0,1) x Lt1 
and avoids 1. We continue to denote this family by {0393(03C4, w)}. Since 03C9(s)
is a well-defined n-form on XsB03A3 for all s, the first three clauses of (3.6)
follow immediately in this case.
Now let Y denote the subset of X 1 defined by |z’|2 ~ 1 and

|p*v1|2 + ... + |p*vl|2  1. We put z’j = xj + iyj. Then the vanishing cycle
in Hn(X03C3(03C4, w), Z) can be represented by the oriented n-sphere b(T, w)
defined by |x|2 = i, y = 0 and w03BB = p*vÂ (À = 1,···,l). Its dual, generating
Hn(Y03C3(03C4, w), ~Y03C3(03C4, w); Z) can be represented by the (suitably oriented) n-disc
8(T, w) which is defined by x5 = lyI2+T, Xj = 0 for j &#x3E; 0, yo = 0,
|y|2 ~ (l-T)j2 and w03BB = p*v03BB (À = 1, ···, 1).
Let m be the intersection number of 0393(03C4, w) and 03B4(03C4, w). Then we may

assume that the restriction of r(T, w) to Y6(i, w) equals m8(T, w). The same
argument used for the case m = 0 proves that the function

0393(03C4, w)ByW(ú(T, w)) as welili as its derivatives is bounded. So we only need
to consider the integral I’(i, w) : = 03B5(03C4, w) cv(6(i, w)). To this end we observe
that 

Hence 03C9(v)| Y n X’ is of the form 03C8(v1, ···, vl, z’)v-0 , where
t/1 is some holomorphic function on Y If we use {y1, ···, yn} as coordinates
for 8(r, w), then the restriction of w(a(1’, w)) to 03B5(03C4, w) becomes

We have to integrate this form over the ball y21+ ··· + y2n ~ (1 - T)/2.
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Hence we have

where Sr denotes the sphere of radius r in (y 1 , ..., yn)-space and d6 its
volume-form.

It follows from (3.6.1) that 7’(r, w) has the form

where 2 is some real-analytic function on [0, 1)  0394l. For n ~ 2, the
righthand side of (3.6.2) is clearly bounded. This proves the first part of (a).

Clause (b) follows from

and the last part of (a) is proved in the same way. (c) follows from

To prove (d), we note that the restriction of 03C9(03C3(03C4, w)) to 03B4(03C4, w) equals
. so

For notational convenience we shall now write uo instead of t, and
we put

Since 03C01(S’, s) acts via + id on 03BCHn(Xs, Z), 8k is a holomorphic univalued
function on S’.
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(3.7) PROPOSITION: 03B5k extends meromorphically over S and

PROOF : The meromorphy property follows from the regularity theorem

[5]. Now let si be any simpie point of L1 and choose 6 : [0, 1) x 0394l ~ S
as in (3.6) above. Let {(03B31(03C4, w),..., 03B303BC(03C4, w) :(03C4, w)~(0, 1) x 0394l} denote

a continuous family of basis of Hn(X03C3(03C4, w), Z) induced by the multi-
valued basis (03B31(s), ···,03B3l(s)). For calculating 8k, we may assume that

03B31(03C4, w) = 03B4(03C4, w). Up to an invertible real analytic function h(03C3(03C4, w))
equals i. It then follows from (3.6) that

This implies that lim03C4~0 03C4-(n- 2)03B5k(03C4, w) = 0. Since Ek is meromorphic along
j, it follows that div(03B5k) ~ (n-3).1.

PROOF OF (2.3). Consider the equality Ek = q2k03B4. It follows from (3.4)
and (3.7) that div (qk) ~ d . Hence qk h is holomorphic at so and following
(3.3), qk h(so) =1= 0.

4. Rational singularities

In this section we assume that (X,., xo) is a rational singularity [1]
and we take n = 2 and k = 0. Then g becomes quasi-homogeneous and
so we may take X = C3 x Cl and S = C x Cl. Brieskorn has shown how

(S, J) can be described in terms of the action of 03C01(S’, s) on Hn(Xs, C) [4].
We will show that this can also be derived from the preceding.

(4.1) First note that we actually constructed multivalued mappings
Pk from S’ to Hn(Xs, C), rather than to CIL (for in the last case we
needed a specific basis of Hn(Xs, Z)). An alternative way of making
Pk univalued is passing to a quotient of its target : Put V : = Hn(X s, C) and
G : = Im (03C01(S’, s) - Aut V). We so obtain a univalued mapping

Since (Xso, xo) is rational, (K G) is a finite Weyl group. Before pro-
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ceeding, we first recall a few properties of such groups.
(i) There exist algebraically independent G-invariant polynomials

03B11, ···, a, on V such that 03B11, ···, a, generate all G-invariant polynomials
on F In particular (al’ ..., ail) : V - C" realizes V - V/G.

(ii) The number of reflections among the elements of G equals CI1/2,
where C denotes the Coxeter number of G.

(iii) Let 4 ’ denote the discriminant of the natural projection V ~ V/G
and let D be a polynomial on Tl that defines the union of hyperplanes
fixed by any reflection in G. Then D2 is G-invariant and if J ~ C[03B11, ···, ail]
is such that

then J defines L1’ as a reduced hypersurface in C".
These properties can be found in [2, Ch. V]. Property (iv) below was

already noted in [9] and can be proved by checking cases.
(iv) C = (r- 1)-1.
It follows from (i) that V/G admits a complex structure making

V - V/G holomorphic and V/G : C03BC. Hence Po : S’ ~ V/G is holo-

morphic as well.

(4.2) LEMMA: Po extends holomorphically .over S.

PROOF: Let s 1 be a simple point of L1 and let S, be a neighborhood of
s in S as in (3.5). Let {y(s) ~ Hn(Xs, Z) : s E S1B0394} be a multivalued section.
Since the automorphism of Hn(Xs, 1) induced by a generator of 03C01(S1 B0394, s)
is a reflection (given by the Picard-Lefschetz formula), (03B3(s)03C9(s))2 is a

univalued function on S1B0394. The regularity theorem asserts that it

extends meromorphically over S 1. It follows from (3.6-(a)) that this
extension is in fact holomorphic. Hence Po admits a holomorphic
extension along the simple point-set of L1. Since the singular part of L1
is of codimension 2 in S, Po extends holomorphically over all of S.

(4.3) THEOREM : Po is an isomorphism which maps L1’ onto L1.

We prove this via the following lemma.

(4.4) LEMMA: Let L denote the line in S defined b y (u1, ···, ul). Then
p0(t, 0, ···, 0) = (c1tr-1, ···, c03BCtr-1) on L with (c1, ···, c03BC) ~ 03BCB{0}.

PROOF: Let (p1(t), ···, p03BC(t)) denote the restriction of Po to L. It then
follows from (3.5) that pa satisfies a differential equation
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This obviously proves that pa = Ca tr - 1 for some c03B1~C. Since Po is local
isomorphism on LB{0}, the c,’s cannot all vanish. 

PROOF oF (4.3). It follows from (4.1)-iii and (4.4) above that the multi-
plicity of P-10(0394’) at so will be at most (r-1)·2{reflections in G}. By
(4.1)-ii, iv this equals (r -1)2. C03BC/2 = 03BC. The multiplicity of L1 at so equals
Il. It follows from (3.6)-(d)) and (4.1-iii) that Po maps L1 into L1’. Since

both L1 and L1’ are weighted homogeneous, we then must have that
P-10(0394’) defines L1 as a reduced variety.

Since r &#x3E; 1, theorem (1.2) applies, and it follows that the branch locus
B of Po is a union of components of L1’. If B~, P01(L1’) does not define
L1 as a reduced variety. Hence B = 0 and the theorem follows.

Appendix

In this appendix we shall prove that

We first make some observations.

Since c0, ···, en are positive rational numbers, we can write ci = wi/N
with wi, N~N. Since f = Li cizi(d f /ozJ, f must be a C-linear combina-
tion of monomials zj00··· znn with 03A3iwiji = N.
By putting deg zi = wi we make C[z0,···, Zn] into a graded C-algebra.

Note that with this grading d03BB = N-’ deg (~03BB).
For any graded C-module .91 = , one has the Poincaré series

of A [2, Ch. V, § 5],

These series have the obvious property that they multiply with respect
to tensor products.
Let W denote the C-module C’ 1 + ~1 + ··· + Col, equipped with

its natural grading. Then it is clear that
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Hence (A.1) may be written as

Proof of (A.2). Since projects onto a basis of

it follows from the Weierstrass preparation theorem that {1, ~0,···, ~l}
générâtes C[z0, ···, zn] freely as a C[~f/~z0, ···, ~f/~zn]-module. So we
have

as graded C-modules, which can also be written as

It follows that

The right hand side of this formula equals

and if we take the logarithmic derivative of this and evaluate at T = 1,
we obtain the desired result.
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