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1. Introduction

We shall in the following work deal with the problem of constructing
(global, flat) deformations of determinantal subschemes of affine spaces.
Our main contribution is the construction of deformations, such that
the generic member of each flat family has a stratification consisting of
determinantal schemes, each member of the stratification being the
singular locus of the preceding. With the exception of the determinantal
schemes of codimension one, a stratification of the above type is generally
the best structure that can be obtained. Indeed, T. Svanes has proved
(in [17]) that with the above exception, the natural stratification of a
generic determinantal variety, given by determinantal subvarieties

corresponding to matrices of successively lower rank, is rigid. Hence
all members of a family deforming a generic determinantal variety, have
the same stratification. The determinantal subschemes of codimension

one in an affine space are simpler. Indeed, by a particular case of Bertini’s
theorem, they can be deformed into smooth schemes.
The most spectacular consequence of our construction and a globaliza-

tion (due to M. Schaps [16]) of a well known result by L. Burch, is the
result that every Cohen-Macaulay scheme of pure codimension two in an
affine space of dimension less than six can be deformed into a smooth

scheme. This result was first treated by M. Schaps in her doctoral
dissertation [16]. Another construction of a splitting of points in the
plane into distinct simple points can be found in J. Briancon and A.
Galligo’s article [3], however, the existence of such deformations

already follows from the work of J. Fogarty [8].
Consider a morphism
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of smooth varieties and a subvariety D of M. Denote by Y the scheme
theoretic inverse image f -’(D) of D by f One way of obtaining a family
of subschemes of X parametrized by a variety G and having Y as a
member, is by constructing a morphism

such that for some rational point e of G the restriction of F to (e  X) ~ X
coincides with the morphism f. Then the resulting morphism

induced by the projection of G x X onto the first factor determines such
a family. Indeed, by the associativity formula the fiber

of qD at a point g of G is isomorphic to the subscheme

of g x X, where fg denotes the restriction of the morphism F to the scheme
(g x X). In particular the fiber qD ’(e) is isomorphic to the scheme

Y = fé 1 (D).
In sections 2 and 3 below we shall deal with two different aspects of

the family qD. First we consider the singular locus of the generic fiber of
qD, in other words we study the transversality of the morphisms f. with
respect to the regular locus of the scheme D. By a method used in
S. L. Kleimans article [12] we prove a generalization and sharpening of a
transversality theorem presented there ([12], Theorem 10). One difference
between our version and the one in Kleimans article, which is essential
for the application of the result to determinantal varieties in positive
characteristic, is that the scheme G need not be a group scheme acting
on M. Another difference is that we not only prove that in general
the morphism fg is transversal to the complement (D - D’) of the singular
locus D’ of D, but that in general f-1g(D) is nonempty whenever
dim (D) + dim (X) - dim (M) is non-negative. Then we impose conditions
on F and D assuring that the morphism qD is flat in a neighbourhood of
the fiber qD 1(e) = Y, the crucial requirement being that D is Cohen-
Macaulay. Together with the transversality theorem we obtain a useful
criterion for qD to induce a deformation of Y with ’nice generic fibers’.
Given a morphism f : Ap ~ Aq of affine spaces. We construct in section

four a morphism F : G x Ap ~ Aq, where G is a smooth variety with a
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distinguished point e, such that the morphism f coincides with the
restriction of F to the scheme (e x Ap) ~ Ap and such that F satisfies
the conditions imposed on the corresponding morphism in the criterion
described above. There are several possible choices of the scheme G and
the corresponding morphism F satisfying the requirements of the

criterion, the particular one presented here is also used in M. Schaps’
work mentioned above.

In Section 5 we apply the results of the previous sections to obtain
deformations of determinantal subschemes of affine spaces. We like to

point out that in this context the crucial property of determinantal
schemes is that they are Cohen-Macaulay schemes. In Section 5 we also
treat the exceptional case of determinantal schemes of codimension one.

2. A transversality theorem

Fix an algebraically closed field k.

THEOREM 1 : Let G, X and M be regular, irreducible algebraic schemes
and

a morphism. Given rational points x and m of X and M, we denote by
G(x, m) the fiber of the morphism FI(G x x) at the point m.

Then the morphism F induces a natural morphism

from the scheme G(x, m) to the scheme

of homomorphisms from the tangent space Tx(X) of X at x to the tangent
space Tm(M) of M at m.
Assume that for each pair of rational points x and m of X and M the

following conditions are satisfied:
(*) The morphism FI(G x x) : G - M is faithfully flat.

(**) The morphism T(x, m) is flat.
Then for each unramified morphism h : D ~ M from an irreducible

scheme D to M, there exists an open dense subset U of G, such that for
each rational point g of U the scheme (g x X) x MD is of pure dimension
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dim (X) + dim (D) - dim (M) (empty if dim (X) + dim (D) - dim (M) is

negative), here g x X is considered as an M scheme via the morphism
F|(g x X). Moreover, let D’ denote the singular locus of the scheme D.
Then (g x X) X M D’ is the singular locus of , the scheme (g x X) x MD.

In particular the morphism h = F|(g  X) is transversal to the

morphism hlL1 for each rational point g of U, here d denotes the com-
plement of D’ in D.

REMARK: The condition (*) implies that F is faithfully flat. In fact, since
the morphism F|(G x x) is faithfully flat for each rational point x of X
it follows that G(x, m) is of pure dimension equal to dim (G) - dim (M)
for all rational points m of M (A-K, V, (2.10) or EGA IV2, (6.1.4)).
However, the scheme G(x, m) is clearly isomorphic to the fiber of the
projection (G x X) x Mm ~ X at x. Since the product G x X is irreducible
(EGA, IV 2 , (4.5.8)) it follows that the fiber (G x X) x Mm of F at m is of
pure dimension dim (G) + dim (X) - dim (M) (A-K, V, (2.10) or EGA,
IV2 (6.1.4)). Consequently, since M and G x X are regular schemes
(EGA, IV2) (6.8.5), the morphism F is flat (A-K, V, (3.5) or EGA IV2,
(6.1.5)).

PROOF : We first prove that for each rational point g of an open dense
subset U 1 of G, the scheme (g  X)  M0394 is empty or regular of pure
dimension dim (X) + dim (D) - dim (M).
The morphism F determines a map T(G x X) ~ F*T(M) of tangent

sheaves and consequently, a map a : p*2T(X) ~ F* T(M), of locally free
sheaves, where P2 denotes the projection of the product G x X onto
the second factor. Pulling back the map a by the morphism (idG x X X (h|0394)),
we obtain a map

of locally free sheaves on (G x X) x M0394, here px and pj denotes the projec-
tions onto X and J.

Note that, given rational points x and d of X and J, the morphism
T(x, h(d)) is obtained in the following way: Restrict T to a map

l*Tx(X) ~ l* Tm(M) of locally free sheaves on G(x, h(d)) via the inclusion
(G x x) x Md ~ (G x X) x M D, here 1 denotes the structure morphism of
G and m = h(d). We deduce a map l*Tx(X) ~ l*Tm(M) ~ 0G(x, h(d)) into
the structure sheaf of G(x, h(d)) and consequently a section
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The morphism T(x, h(d)) is the composition of s with the projection

Since the morphism h is unramified, the corresponding map
T(4 ) - (h|0394)*T(M) of tangent sheaves on A is locally split (A-K, VI, (3.6)
or EGA IV4, (17.3.6)). Pulling back this injection by the projection pa
we obtain a locally split map i : pâ T(0394) ~ p*0394(h|0394)*T(M) of locally free
sheaves on the scheme (G x X) x Md. Denote by S the support of the map
obtained by composing T with the quotient map

We shall determine the dimension of the scheme S. Fix rational points x
and d in X and J. Then a rational point (g, x, d) of the scheme

G(x, h(d)) ~ (G x x) x M d is in S if and only if the composite map

is not injective. However, it is well known that the (determinantal)
subscheme of Hom (Tx(X), Tm(M)/iTd(0394)) of homomorphisms of rank less
than min (dim (X), dim (M) - dim (D)) is irreducible and of codimension
dim(X)+dim(D)-dim(M)+1) (eg. [13], (4.13) p. 425). Since the

morphism T(x, h(d)) is flat by assumption, it easily follows that

S n G(x, h(d)) is either empty or of pure codimension equal to

dim (X) + dim (D) - dim (M) + 1 in G(x, h(d)) (A-K, V, (2.10) or EGA IV2 ,
(6.1.4)).
We noted above that G(x, h(d)) is of pure dimension dim (G) - dim (M).

Consequently S n G(x, h(d)) is empty or of pure dimension

However, S n G(x, h(d)) is the fiber of the morphism S - X x D induced
by the projection (G  X)  MD ~ X  D. Hence each component of S
is of dimension less than dim (G) (A-K, V, (2.10) or EGA, IV2, (6.1.4)).

Consider the morphism

induced by projection of G x X onto the first factor. Since S is of dimen-
sion less than dim (G) there is an open dense subset U 1 of G contained
in the complement of the image of S by qD .
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Let g be a rational point of U1 and let x’ and d’ be a pair of rational
points of X and D such that the relation F(g, x’) = h(d’) holds. Then the
vector space Th(d)(M) is spanned by the images of the subspaces Tx(X)
and Td(0394) by the maps T(x’, h(d’)) and i. It follows that the fiber

(g x X) x M D of qD at g is regular of dimension dim (X) + dim (D) - dim (M)
at the point (x’, d’). In fact, this is a local matter and since h is unramified
we may assume, after passing to the completions, that D is a closed
subscheme of M (A-K, VI, (3.7) or EGA, IV4, (17.4.4)) the result then
follows from EGA, IV4, (17.13.2).
We now prove that there exists an open dense subset U’ of G such that

for each rational point g of U’ the scheme (g x X) x M D is nonempty and
of pure dimension dim (X) + dim (D) - dim (M).
By the remark following the theorem the morphism F is faithfully flat.

Hence the morphism qD obtained by base extension by h is faithfully flat.
It follows that (G x X) x M D is of pure dimension

(A-K, V, (2.10) or EGA, IV2, (6.1.4)). Let U2 be an open dense subset of
G over which qD is flat (A-K, V, (5.2) or EGA, IV2, (6.9.1), then at each
point of U2 , the fiber of qD is empty or of pure dimension equal to
dim (D) + dim (X) - dim (M) (A-K, V, (2.10) or EGA, IV2, (6.1.4)).
Assume that dim (X) + dim (D) - dim (M) is not negative. Then it

follows from the first part of the proof that there exists a rational point
(g, x, d) of G(x, h(d)) not contained in S and that the local ring of the
fiber qD 1(g) = (g x X) x MD is regular and of dimension

at the point (g, x, d). Hence the fiber of qD at g has a component Y of
this dimension. Denote by H an irreducible component of the scheme
(G  X )  MD whose intersection with the fiber q"D 1(g) has Y as a

component and by G’ the image of H by qD. Then every component of
each fiber of the morphism (qD|H) has dimension at least dim (H) - dim (G’)
(A-K, V, (2.10) or EGA, IV2, (6.1.4)). In particular

that is dim (G’) ~ dim (G). Consequently the closure of G’ is the scheme
G and since G’ is constructible it easily follows that there exists an open
dense subset U3 of G contained in G’. For each point g in U3 the fiber of
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qD at g is nonempty. 
satisfies all theWe have proved that the subset U = U1 n U2 n U3 satisfies all the

assertions of the theorem except the assertion that (g x X) x M D’ is

exactly the singular locus of (g x X) x M D. This last assertion follows
(after passing to the completions) from the following general result.

LEMMA : Let f : X - M be a morphism of regular irreducible algebraic
schemes. Moreover, let D be an irreducible closed subscheme of M.
Assume that the scheme X x M D is of pure dimension

Then every point of X x MD, which maps to a singular point of D by
the projection onto the second factor, is itself singular.

PROOF : Consider the cartesian diagram

Denote by I the ideal in the structure sheaf f9 M of M defining the closed
subscheme D of M and by J the ideal in f9x defining the closed subscheme
X x M D of X. Then we have a commutative diagram of coherent sheaves
on X  MD,

(EGA, IV4, (17.13.1.2)).
The horizontal lines are exact (A-K, VI, (1.8) or EGA, IV4, (16.4.21))

and since the above diagram is cartesian, it is easily verified that the left
vertical map y is surjective (EGA, IV4, (16.2.2, (iii))).

Let d be a singular point of D. Then dim (03A91D(d)) is greater that dim (D)
(A-K, VII, (6.4) or EGA, IV4, (17.15.5)). Hence at d the image of a(d)
is of dimension less than dim (M) - dim (D). Let X be a point of X
satisfying the relation f (x) = d. Since the map y is surjective, it follows
that the image of fi is of dimension less than dim (M) - dim (D). Con-
sequently dim 03A91X  MD(x) is greater than dim (X) + dim (D) - dim (M),
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and since X x M D is of pure dimension dim (X) + dim (D) - dim (M) by
assumption, it follows that x is a singular point of X x M D (A-K, VII, (6.4)
or EGA, IV4, (17, 15.5)).

COROLLARY (S. L. Kleiman [12], Theorem 10) : Let G be an integral
algebraic group scheme and M a regular algebraic scheme with a transitive
G-action. Moreover let f : X - M and h : 0394 ~ M be unramified morphisms
of regular, irreducible algebraic schemes.
Assume that for each rational point m of M the induced homomorphism

from the stability group of G at m to the general linear group of the
tangent space of M at m, is surjective.

Then there exists an open subset U of G such that for each rational
point g of U, the fibered product (g x X) x M0394 is regular of dimension
dim (X) + dim (L1)-dim (M) (empty if dim (X) + dim (L1)-dim (M) is less
than zero).

PROOF : Consider the surjective morphism

obtained by composing the morphism (idG  f) : G  ~ G  M with
the action G x M - M of G on M. To prove the corollary it is sufficient
to verify that the morphism F satisfies the conditions (*) and (**) of the
transversality theorem.

Let x and m be rational points of X and M and denote by Fx the
restriction of the morphism F to the scheme (G x x)  G. Since the
scheme M is irreducible there is an open dense subset M’ of M such that

the morphism Fx is flat over M’. (A-K, V, (5.2) or EGA, IV2, (6.9.1)).
Consequently the morphism F xlF; 1(gM’) : Fx 1(gM’) ~ gM’ is flat for

all rational points g of the scheme G. Since the group G acts transitively
on M the sets gM’, as g runs through the rational points of G, form an
open covering of M. Hence the morphism Fx is flat.
The morphism

is the composite of the following three morphisms :
(1) The isomorphism G(x, m) ~ G(m) given by g ~ gg’ where g’ is a

rational point of G satisfying the relation g’m = f (x).
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(2) The surjection G(m) ~ Gl(Tm(M)).
(3) The morphism Gl(Tm(M)) ~ Hom (Tx(X), Tm(M)) given by a - 03B1  t,

where t is the map Tx(X) ~ Tm(M) of tangent spaces determined
by the morphism f. Since f is an unramified morphism and X
and M are regular, the map t is injective, (A-K, VI, (3.6) or EGA,
IV2, (17.3.6)).

It easily follows that the third morphism maps Gl(Tm(M)) onto the open
subset of Hom (Tx(X), Tm(M)) consisting of all injective homomorphisms.
By the argument we used above to prove that the morphism F|G x x)

is flat it easily follows that the second and third morphism above are flat.
Hence the morphism T(x, m) is flat.

3. Déformations of Cohen-Macaulay schemes

LEMMA: Let G, X and M be irreducible, regular algebraic schemes and

a faithfully flat morphism. Moreover, let D be an irreducible Cohen-

Macaulay subscheme of M. Denote by G’ the subset of G consisting of
the points g of G such that the inverse image f-1g(D) of D by the morphism
h = FI(g x X) is of pure codimension codim (D, M).

Then, for each rational point g of G’, the morphism

induced b y projection of G x X onto the first factor is flat along the fiber
qv 1(g).

PROOF : The scheme G x X is regular and irreducible since G and X
are regular and irreducible and the ground field is algebraically closed
(EGA, IV2, (4.5.8) and (6.8.5)). Since the morphism F is faithfully flat it
follows that the scheme F-1(D) is of pure codimension codim (D, M)
in G x X. (A-K, V, (2.10) or EGA, IV2, (6.1.4)). Hence, since D is a
Cohen-Macaulay scheme, we conclu de that F-1(D) is a Cohen-Macaulay
scheme [10] Lemma 9, p. 160.
The fiber 9 x G(G x X) x M D of qD at g is isomorphic to the scheme

f-1g(D)  (g x X)  M D, by the associativity formula. Hence for all points
g of the set G’ the fiber q-1D(g) is of dimension dim (X) + dim (D) - dim (M)
by our dimension assumption. Since G is regular and the scheme F-1(D)
is Cohen-Macaulay of pure dimension
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it follows that the morphism qD is flat along each fiber qD 1(g) for all
points g in G’. (A-K, V, (3.5) or EGA, IV2, (6.1.5)).

THEOREM 2: Let G, X and M be irreducible, regular algebraic schemes
and

a morphism. Moreover, let e be a distinguished point of G and let

be a sequence of irreducible subschemes of M.
Denote by V the open subset of the scheme F-1(D) = (G x X) x MD

where the morphism

induced by the projection of G x X onto the first factor, is flat (A-K, V,
(5.5) or EGA, IV3, (11.1.1)). Moreover, for each rational point g of the
scheme G, we denote by fg the restriction of the morphism F to the scheme
(g x X)  X.
Note that by the associativity formula, the fiber

is isomorphic to the inverse image f-1g(D) = (g x X) x ¿B! D of D by f9.
Assume that the following conditions hold :

(i) The morphism F satisfies the conditions (*) and (**) of the trans-
versality theorem.

(ii) f-1e(D) is a subscheme of X of pure codimension codim (D, M).
(iii) D is a Cohen-Macaulay scheme.
(iv) Di-1 is the singular locus of the scheme Di for i = 1,···, e.
Then the fiber qD 1(e) is contained in JI: Moreover, there exists an open

dense subset U of G such that for each rational point g of U the following
assertions hold :

(a) The fiber q-1D(g)  f-1g(D) is contained in V.
(b) Each scheme f-1g(Di) in the sequence



283

is of pure codimension codim (Di, M) in X (empty if codim (Di, M)
is greater than dim (M)).

(c) f-1g(Di-1) is the singular locus of the scheme f-1g(Di) for
i = 1, ..., c.

PROOF: By the remark following the transversality theorem we have
that F is faithfully flat. Consequently, by the assumption (ii) and (iii),
it follows from the lemma above that the fiber qD 1(e) is contained in JI:

Since F satisfies the conditions (*) and (**) of the transversality theorem
and since Di - 1 is the singular locus of the scheme Di it follows from the
transversality theorem that there exists an open dense subset Ui of G
such that for each rational point g of Ui the scheme f-1g(Di) is of pure
codimension codim (Di, M) in X and that f-1g(Di-1) is the singular
locus of the scheme Di. In particular the fiber q-1D(g)f-1g(D) is of pure
dimension dim (X) + dim (D) - dim (M). Hence we conclude, as in the
first part of the proof, that the fiber q-1D(g) is contained in V. Consequently,
the assertions (a), (b) and (c) hold for each rational point in the open
dense subset U = U 1 n ... n Uc of G.
The situation is simpler when the ground field k is of characteristic

zero. Then we have the following transversality result (see [12], Theorem
(2)).

PROPOSITION : Assume that the ground field k is of characteristic zero.
Let G be an integral algebraic group scheme and M an algebraic scheme

with a transitive G-action. Moreover, let f : X ~ M and g : 0394 ~ M be
morphisms of irreducible, regular algebraic schemes.
Then there exists an open dense subset U of G such that for each rational

point g of U the fibered product (g x X) x ML1 is either empty, or regular
of pure dimension dim (X) + dim (L1)-dim (M).

THEOREM 3 : Assume that the ground field k is of characteristic zero.
Let G be an integral algebraic group scheme and M an algebraic scheme

with a transitive G-action. Moreover, let f : X ~ M be a morphism of
irreducible, regular algebraic schemes and let

be a sequence of irreducible subschemes of M.
Assume that the following conditions hold:
(i) f-1(D) is a subscheme of X of pure codimension equal to

codim (D, M).
(ii) D is a Cohen-Macaulay scheme.
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(iii) Di - 1 is the singular locus of the scheme Di, for i = 1, ..., c.
Then there exists a faithfully flat morphism

from an algebraic scheme V to an open dense subset W of G and an open
dense subset U of W such that the following assertions hold :

(a) W contains the identity e of G and q-1(e) is isomorphic to f -’(D).
(b) For each rational point g in U the fiber q-1(g) is isomorphic to the

scheme f,-’(D), where fg is the morphism X ~ M given by x ~ gx.
(c) For each rational point g in U each scheme f-1g(Di) in the sequence

is empty or of pure codimension equal to codim (Di, M) in X. More-
over f-1g(Di-1) is the singular locus of f-1g(Di) for i = 1, ..., c.

PROOF : Consider the surjective morphism

obtained by composing the morphism (idG  f): G  X ~ G  M with
the action G x M ~ M of the group G on M. Like in the proof of the
corollary to the transversality theorem we show that the morphism
F|(G x x) : G ~ M is flat for all rational points x of X. Hence F is faithfully
flat by the note following the transversality theorem.

Let V be the open subset of the scheme F-1(D) = (G x X) x M D where
the morphism

obtained by projection of G x X onto the first factor, is flat (A-K, V, (5.5)
or EGA, IV3, (11.1.1)). Moreover, let W be the image of Tl by qD. Then
W is open since qDI V is flat (A-K, V, (5.1) or EGA, IV2, (2.4.6)). Then
Theorem 3 follows from the above proposition and the lemma of this
section by the same procedure as Theorem 2 followed from the transver-
sality theorem and the above lemma.

4. Construction of deformations of affine schemes

PROPOSITION : Let f : Ap~Aq be a morphism of affine spaces of
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dimensions p and q. Denote by G the affine space of (p + 1) x q-matrices,
and by e the rational point of G corresponding to the matrix with all
entries equal to zero.

Then there exists a morphism

satisfying the conditions (*) and (**) of the transversality theorem and
such that the morphism f is the restriction of F to the scheme (e x Ap)  Ap.

Construction of F (M. Schaps)
Put Ap = Spec k[X1,..., XJ and Aq = Spec k[Y1,..., Yq]. Denote by

fj(X) the image of Y by the homomorphism of polynomial rings
k[Y1,..., Yq] ~ k[X1,..., Xp] corresponding to the morphism f. More-
over, put G = Spec k[U1,1, U1,2,..., Up,q, V1, ..., Vq]. Define a homo-
morphism of polynomial rings

by

We let F be the morphism of affine spaces corresponding to 03A6.

PROOF OF THE PROPOSITION : Let x = (x1, ···, x,) be a rational point of
Ap. Then the fiber G(x, m) of the morphism FI(G x x) : G ~ Aq at a
rational point m = (y1, ···, yq) of Aq is the closed subscheme of G defined
by the ideal 7 generated by the elements (03A3pi=1 Ui,jxi + Vj+ Jj(x)-y)
for j = 1,..., q. Clearly the morphism

defined by sending Ui,j to the indeterminate U’i,j and Vj to

is an isomorphism, having the morphism defined by sending U’i,j to Ui,j
as an inverse. Since the schemes G and Aq are regular it follows that the
morphism F|(G  x) is flat (A-K, VII, (4.7) or EGA, IV1, (17.3.3)) and
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even smooth (A-K, VII, (4.8) or EGA, IV1, (17.3.3)).
To determine the morphism T(x, m) we choose the basis êlêxj of the

tangent space 7§(/EP) and the basis ~/~Yj of Tm(Aq). We introduce coordi-
nates into the scheme

with respect to this choice of basis and denote by Wi,j the corresponding
coordinate functions. The morphism T(x, m) is then given by the ring
homomorphism

sending the indeterminate Wi,j to (Ui,j+(~f/~xi)(x)). Taking the com-
posite of this homomorphism with the ring homomorphism defining
the above isomorphism Ap·q ~ G(x, m), we easily conclude that T(x, m)
is an isomorphism.

5. Applications to determinantal schemes

Denote by M(a, b) the affine (a · b)-dimensional space of all (a x b)-
matrices. Moreover, denote by Dc(a, b) the generic determinantal scheme
of all (a x b)-matrices whose minors of order c all vanish, here a, b and c
are positive integers and c _ min (a, b). Put

then Dc(a, b) is the closed subscheme of M(a, b) defined by the ideal
generated by the determinants of all (c x c)-submatrices of the (a x b)-
matrix [Xi,j]:
We shall need the following facts about generic determinantal schemes :

(a) Dc(a, b) is an irreducible algebraic variety of codimension

(a - c + 1)(b - c + 1) in M(a, b) (see eg. [13], (4.13), p. 425.)
(b) Dc-1(a, b) is the singular locus of the scheme Dc(a, b). (Although

this result seems to be part of the folklore on determinantal
schemes it is difficult to find good references. One may obtain a
proof by combining Theorem (4.10) (p. 424) with Corollary (6.3)
p. 428 of [13]).

(c) Dc(a, b) is a Cohen-Macaulay scheme. ([6] Theorem 1, p. 1023.
Similar algebraic proofs of a more general result can be found in
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[11], Corollary (3.13), p. 53, [14] Theorem 12, p. 7, and [15].
A beautiful geometric proof can be found in [9] Theorem 2, p. 7).

Let X = Spec A be an affine scheme and M = [ai, j] an (a x b)-matrix
with entries from A. We denote by D,(M) the scheme where the minors
of M of order c vanish. That is D,(M) is the closed subscheme of X
defined by the ideal generated by the determinants of all (c x c)-sub-
matrices of M. We say that the scheme D,(M) is determinantal if it is of
pure codimension (a - c + 1)(b - c + 1) in X (empty if (a - c + 1)(b - c + 1)
is strictly greater than dim (X)).

Clearly, a subscheme Y of X is determinantal if and only if there exists
a morphism

such that Y is the scheme theoretic inverse image of a generic deter-
minantal subscheme D,(a, b) of M(a, b) and Y is of pure codimension
(a-c+ 1)(b-c+ 1) in X.

THEOREM 4: Let M be an (a x b)-matrix with entries in a polynomial
ring k[X1, ···, Xp]. Assume that the subscheme Dc(M) of

where the minors of M of order c vanish, is determinantal (that is a sub-
scheme of Ap of pure codimension (a - c + 1)(b - c + 1)).

Then there exists a faithfully flat morphism

from an algebraic scheme V to a regular, irreducible algebraic scheme W
of dimension (p + 1)ab and an open dense subset U of W such that the
scheme Dc(M) is isomorphic to the fiber of q at some rational point of W
and such that for each rational point g of U the following assertions hold :

(a) There exists an (a x b)-matrix M(g) with entries in the polynomial
ring k[X1, ···, X,] such that the fiber q-1(g) is isomorphic to the
scheme D,(M(g».

(b) Each scheme Di(M(g)) in the sequence

is a determinantal subscheme of the affine space
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(c) Di-1(M(g)) is the singular locus of the scheme Di(M(g)) for
i= 1,···,c.

PROOF: By assumption Dc(M) is a determinantal subscheme of Ap.
Hence there exists a morphism

such that the scheme D,(M) is the inverse image of the generic deter-
minantal scheme Dia, b). Put q = a. b. Denote by G the (p + 1). q-
dimensional affine space of all (p + 1) x q-matrices and by e the rational
point corresponding to the matrix with all entries equal to zero. Then
it follows from the proposition of section 4 that there exists a morphism

satisfying the conditions (*) and (**) of the transversality theorem and
such that the morphism f is the restriction of F to the scheme

(Ap x e)  Ap. Because of the facts (a), (b) and (c) above, about generic
determinantal schemes, and the assumption that D,(M) is a subscheme
of Ap of pure codimension (a - c + 1)(b - c + 1) we can apply Theorem 2
to the sequence

of subschemes of M(a, b). Let W be the image of V by the morphism qD
of Theorem 2. Then induces a morphism

and W is an open subset of G since the morphism (qnIV) is flat. (A-K, V,
(5.1) or EGA, IV2, (2.4.6)). Then the assertions of Theorem 4 follow
immediately from the corresponding assertions of Theorem 2.

Let Y be an algebraic scheme. A faithfully flat morphism q : V - W
of algebraic schemes such that Y is isomorphic to the fiber of q at some
rational point of W we call a (global) deformation of Y We state the
next result in this terminology.

COROLLARY : Let Y be a Cohen-Macaulay subscheme of pure codimen-
sion two in a p-dimensional affine space AP = Spec k[X1, ···, Xpl.
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Then there exists a deformation

of Y, where W is a regular scheme of dimension n(n -1) for some integer n,
and an open dense subset U of G such that for each rational point g of U
the following assertions hold:

(a) There exists an (n -1) x n-matrix M(g) with entries in the polynomial
ring k[X1, ···, Xp] such that the fiber q-1(g) is isomorphic to the
scheme Dn - 1 (M(g)).

(b) Each scheme Di(M(g)) in the sequence

is a determinantal subscheme of Ap (that is, a subscheme of AP of
pure codimension (n - i + 1)(n - i)).

(c) Di-1(M(g)) is the singular locus of the scheme Di(M(g)) for
i = 1,..., n.
In particular the scheme Dn-2(M(g)) is of codimension six in AP,
hence empty if p is less than six. Consequently, a Cohen-Macaulay
subscheme of pure codimension two in an affine space of dimension
less than six has non-singular deformations.

PROOF : The corollary follows immediately from the theorem and
from the following well known result.

LEMMA: (M. Schaps’ globalization of a theorem of L. Burch [5]
Theorem 5, p. 944). Let Y be a Cohen-Macaulay subscheme of pure
codimension two in a p-dimensional affine space Ap = Spec k[X1, ···, Xp].

Then for some integer n there exists an (n-1) x n-matrix M with
entries in the polynomial ring k[X1, ···, X,] such that Y is isomorphic
to the scheme Dn- 1 (M) where the minors of M of order (n-1) vanish.

PROOF : Denote by I the ideal in the polynomial ring P = k[X1, ···, Xp]
defining the subscheme Y of AP = Spec k[X1, ···, Xp]. Choose a partial
resolution Pr  P ~ P/I ~ 0 of the quotient ring PlI, where P" is the
direct sum of P with itself r-times. Let Q be a maximal ideal in P con-
taining I. Since PQ is a regular local ring of dimension p we have that
depth (PQ/IPQ) + proj. dim (PQ/I PQ) = p (A-K, III, (5.19) or EGA, IV1
(17.3.4)). Moreover, we have that depth (PQ/IPQ) = dim (P Q/IP Q) = (p - 2)
since Y is Cohen-Macaulay of pure codimension two. Hence the kernel
of the homomorphism aQ : PrQ ~ PQ is locally free (A-K, III, (5.2)).
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We conclude that the kernel K of the homomorphism a is a projective
P-module. By a well known result from algebraic K-theory every
projective module over a polynomial ring P can be imbedded in a free
module with a free complement (in fact this follows easily from the result
that the Grothendieck group Ko(P) of P is canonically isomorphic to
the integers [2], chapter XII, Theorem (3.1)). Hence we may write
K ~ Pm = pn-l for some integers m and n. Denote by 13 the homo-
morphism Pm E9 Pr ~ P which is zero on Pm and coincides with a on Pr.
Then clearly the kernel of 13 is the free module pn-1. Consequently we have
an exact sequence

Localizing at the prime ideal (0) of P we see that m + r = n.
Let [ai, j] be the (n-1) x n-matrix representing the homomorphism

y with respect to a choice of basis e1, ···, en-1 and f1, ···, fn of Pn -1 and
P". Denote by à : Pn ~ P the homomorphism sending f to the deter-
minant of the (n -1 ) x (n -1 )-matrix obtained from the matrix [ai, j] by
omitting the i’th column and denote by J the image of ô. We easily check
that the composite (5 ’ y is the zero homomorphism (indeed, this corre-
sponds to the fact that the determinant of the n x n-matrix, obtained by
adding to the matrix [ai,j] one of its rows, is zero). Hence there exists
a homomorphism I ~ J such that the composite homomorphism
Pn ~ I ~ J coincides with (5. To prove the lemma it suffices to show that

the ideals 7 and J are the same. This can be accomplished by following
the original proof by Burch ([5] proof of Theorem 5, p. 944), however,
we prefer to present a proof which follows closer to a method used by
D. A. Buchsbaum to study ideals of projective dimension one ([4]
section 3, p. 268).
By assumption the scheme Y is of pure codimension two in the affine

space Spec P. Hence the length depth, (P) of the longest P-regular
sequence contained in 7 is equal to two. It follows that Extip (P/I, P) is
zero for i = 0, 1. (A-K, III, (3.8)). Hence, by the long exact sequence of
Ext’s derived from the short exact sequence 0 ~ I  P ~ P/I ~ 0, we
conclude that the homomorphism Hom (e, idp) : Hom (P, P) - Hom (I, P)
is an isomorphism. In particular, there exists a homomorphism
g : P ~ P making the diagram
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commutative. Since every homomorphism P ~ P is of the form f - f. 9
for some polynomial g of P we conclude that J is contained in a principal
ideal hP of P. Then, either h is an invertible element of P and hence 1
coincides with J, which is the desired result, or J is contained in a proper
principal ideal of P.
We shall exclude the last possibility. Choose a prime ideal Q of P not

containing the ideal 7. Then the inclusion 8Q : IQ ~ PQ is an isomorphism
and consequently the sequence 0 - Pn-1Q  PnQ ~ PQ ~ 0 splits. It easily
follows that the homomorphism £5Q : Pz - PQ is surjective (indeed, we
can choose a basis f’1,···,f’n of PQ, such that the elements f’1,···, fri-1 
is a basis of PQ 1. Then the element f’n maps to the unity of PQ by the
homomorphism 03B4). Consequently the ideal Q is not contained in the
support of the P-module P/J. We have thus proved that the support of
P/J is contained in the set of prime ideals containing 7. Hence the height
of the ideal J of P is at least equal to the height of the ideal I which is
two by our assumptions. Consequently J cannot be contained in a
proper principal ideal. This finishes the proof of the lemma.
To treat the exceptional case of determinantal schemes of codimension

one, we shall need the following version of Bertini’s theorem.

PROPOSITION : Let h be an element of the polynomial ring k[X1, ···, xpl.
Then there exists a deformation

of the scheme Y = Spec (k[X1, ···, X,]Ih), where W is a regular scheme
of dimension (p + 1), and an open dense subset U of W such that for each
rational point g of U the fiber of the morphism q at g is a regular scheme.

PROOF: Denote by ç the homomorphism k[Y] ~ [X1, ···, Xp] of
polynomial rings which sends the indeterminate Y to the polynomial h,
and let f : Ap ~ A1 be the morphism of affine spaces corresponding to
the homomorphism ç. Clearly, the scheme Y is the scheme theoretic
inverse image of the point (0) in Al by the morphism f.
Denote by G the affine (p + 1 )-dimensional space of (1 x p)-matrices

and by e the point corresponding to the matrix (0,···, 0). Then, by the
proposition of section four, there exists a morphism F : G x Ap ~ Al
satisfying the conditions (*) and (* *) of the transversality theorem and such
that the morphism f is the restriction of F to the scheme (Ap x e) ~ AP.
The assertion of the proposition then follows immediately from the
corresponding assertions of Theorem 2 (applied to the subscheme (0)
of A1).



292

COROLLARY : Let M be an a x a-matrix with entries in the polynomial
ring k[X1, ···, Xp]. Then the subscheme Da(M) of the affine space
Ap = Spec k[X1, ···, Xp], where the determinant of M vanishes, can be
deformed into a regular scheme.
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