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Introduction

M. Kozlov [6] and F. Solomon [10] considered the following model:
Let {03B1i}-~i~ be a doubly infinite sequence of independent identically
distributed random variables with values in [0, 1] and let

the 6-field generated by the ai . {Xt}t~0 is a sequence of integer valued
random variables with

Here {03B1i} represents the "random environment". Once this is chosen it
remains fixed for all time, and the process {Xt} is a random walk which
can move only one step to the right or left at a time. The probability of
the X process moving to the right depends on its last position and on the
environment. Alternatively, for fixed {03B1i} one can describe {Xt}t~0 as
the sequence of states of a birth and death process with birth, respectively
death parameters ai and 03B2i = i-03B1i. Note that {Xt} is not Markovian
when {03B1i} is not fixed. As a matter of fact, one finds out more and more
about the environment by taking more and more observations of X,.
A closely related model had been introduced on physical grounds by
Chernov [2] and Temkin [11].

In the above named papers the remarkable phenomenon was dis-
covered that one may have Xt ~ oo w.p.l. but (l/t)Xt ~ 0 -w.p.l. as well.
Le., it is possible that Xt grows indefinitely, but slower than linearly.
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In the above model this occurs when

(see [10]). It was conjectured by Kolmogorov and by the third author
that in these cases n-1/03BATn would have a stable limit distribution, where

and K is the unique positive number for which

This limit result would be equivalent to saying that t-"Xt has a certain
limit distribution which is closely related to that of n - 1/kTn (see the
theorem below). The purpose ofthis paper is to prove the above conjecture
under the hypothesis that log (03B20/03B10) has a non-arithmetic distribution.
Unfortunately [6] and [10] considered special examples in which

log (/3o/(Xo) does have an arithmetic distribution so that they were unable
to prove the conjecture. Our precise result follows. Note that it also gives
the limit distribution for Tn and Xt even when E(03B20/03B10)  1, i.e., when
K &#x3E; 1, in which case n-1Tn and t-1Xt converge with probability one to
a positive limit (see [10]).

THEOREM: Let {03B1i}-~i~ be independent identically distributed such
that

(1.4) there exists a 0  K  00 for which

(1.5) the distribution of log Po/oto (excluding the possible atom at - oc)
is non-arithmetic.
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Then, the following limit laws hold for Tn and Xt with 0  AK , Bi  00

suitable constants and L,(-) a stable law of index K(LK is concentrated on
[0, ~) i. f ’ K  1 and has mean zero if K &#x3E; 1) :

and

and

and

and
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and

REMARK 1 : The theorem remains valid if everywhere Tn is replaced by

T*n = # {t: Xt ~ nl = total time spent by the X process in (- oo, n].

REMARK 2: As the comments below and the proof in sect. 2 show,
the limit theorems for Tn are equivalent to limit theorems for certain
branching processes in random environment with immigration.

REMARK 3 : (1.3) allows P(03B20 = 01 = P{03B10 = 11 &#x3E; 0, i.e. the distribution
of log 03B20/03B10 may have an atom at - oo. It cannot have an atom at + oo
by (1.4). The precise meaning of (1.5) is that the group generated by

is dense in ( - ~, + oc).

We give an indication of the proof, whose details will be carried out
in the next section. Introduce,

Clearly

of steps to the right during
[0, Tn) - # of steps to the left during [0, Tn),

so that
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By definition of Uc and 7§ , U? = 0 for i &#x3E; n and

w.p.l. since Xt ~ co w.p.l. under (1.3) (see [10]). This implies

and it suffices to show that

converges to L,, in distribution after suitable normalization. Now fix

{03B1i} for the moment, so that conditionally on this {03B1i}Xt is a Markov
chain. Observe that a step from j to j -1 has to occur either between T
and the first step from j to j + 1 or between two successive steps from j
to j + 1. When Xto = j for some to, then the conditional probability,
given {03B1i} and Xo, ... Xt0, of going k times from j to j - 1 before the next
move from j to j + 1 is ajf3j. From this one can see that the conditional
distribution of Ul given A and Unj+1, Unj+2,··· Unn-1 is precisely the
distribution of the sum of 1+Unj+1 independent random variables
V1, V2,···, each with the geometric distribution

In other words, for fixed {03B1i} and n the sequence Un = 0, Unn-1,···, Ui
has the distribution of the first n generations of an inhomogeneous
branching process with one immigrant in each generation and with
offspring distribution (1.7) for all particles in the (n-j-1)th generation
(including the immigrant entering at time n-j-1.) (see [ 1 ], Ch. 6.7 or
[9], Ch. 7). When {03B1i} is random as well then Un = 0, Unn-1,···, Ui from
n generations of a branching process in random environment with one
immigrant each unit of time (see [1], Ch. 6.5). Since 03B1n-1,···, 03B11 have

the same joint distribution as 03B10,···, 03B1n-2 it follows that (1.6) has the
same distribution as

where Zo = 0, Z1, Z2,··· forms a branching process in random environ-
ment with one immigrant each unit of time and offspring distribution (1.7)
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for each particle (including the immigrant) present at time j. The environ-
mental variables ai are independent identically distributed. The equiv-
alence of the distributions of (1.6) and (1.8) was already discussed in [6]
and may be well known in the theory of birth and death processes. As
in [6] we introduce the stopping times

The vk are the successive times at which no offspring from previous
generations is left so that the Z, process starts afresh at those times with
one new immigrant. In particular the random variables ((vk+1-vk), Wk),
where

are independent and identically distributed (when the 03B1i are also random).
As we shall see J1 ~ E(vk + 1-vk)  00 so that

If we can show that Wo is in the domain of attraction of a stable law
of index K, then the theorem will follow from these observations by
standard arguments. Wo is the total number of particles which were born
before time v1. Its randomness is due to randomness in the environment

plus additional fluctuations in the number of progeny of each particle,
once the environment is fixed. It will turn out that the latter fluctuations

mainly have influence in the beginning and we will be able to approx-
imate Wk by random variables of the form Yk(Rk + 1) where all the

03B30,03B31,03B32,···,R0,R1,··· are independent, all the 03B3i have the same

distribution and all the Ri have the distribution of

Note that ilo = expected number of total progeny of the immigrant
at time 0, given ai, i ~ 0. It was shown in [5] that

for some 0  K  oo so that all the Ri are in the domain of attraction
of a stable law of index K. Once this point has been reached, the remainder
of the proof is straight sailing.
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2. Proof of theorem

Throughout this section all hypotheses of our Theorem will be in force
and we use the following notation: Zo = 0, Z1, Z2, ··· is a branching
process in random environment with one immigrant entering each
generation. When Z0,···,Zt, 03B10,···,03B1t are given, Zt+1 is the sum of

Z, + 1 independent identically distributed random variables which take
the value k with probability 03B1t03B2kt (k = 0, 1, 2, ...

(2.1) Z,, t = number of progeny alive at time t of the immigrant
who entered at time s, s  t.

Several times we use the representation

which is obvious from (2.1 ). The total number of progeny of the immigrant
at time s is denoted by

Finally we introduce the stopping time

The principal tool in the proof is
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LEMMA 1 : For some constant K &#x3E; 0

(2.9) is just a special case (with Qi - 1 and Mi ~ 0) of Theorem 5 in [5]
(Note that in the one-dimensional case this theorem is fairly simple and
one only needs Section 3 of [5].)

LEMMA 2: 

for suitable Kl, K2 &#x3E; 0, and Ev  00.

PROOF : Even though a simpler proof can be given in the special case
under consideration (where the ai are independent, identically distributed)
we prefer to give a proof which appears adaptable to more general
situations (e.g. where the ai form a finite Markov chain; the models in
[2] and [11] can be formulated in this way.) We divide the proof into
separate steps. Only the case E log mo &#x3E; - oo is treated in detail 1.

Step l. Let

Sn is a random walk whose increments have expectation ta  0 (by (1.3))
and Nk is the sequence of its successive downward ladder indices. We
have for any 03B8 ~ 0

Since

we may assume that 0 &#x3E; 0 is fixed such that

1 If P{m0 = 0) 0 then (2.10) is immediate from v = min {i : mi-l 1 = 01. If P(mo = 01 = 0,
but still E log mo = - oo, then one can take any negative number for a in the proof below.
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and hence

In particular

and EetN exists for |t|  |1 403B803B1|. By Bernstein’s inequality (sec[12], problems
10.12-10.14) this implies the existence of K3 , K4 &#x3E; 0 such that

In view of (2.11) it suffices to prove

for some constants Ks, K6 &#x3E; 0 (which do not depend on 03B10,03B11,···).

Step 2. Next we prove two estimates. Let

The for all k ~ 1, j ~ 0

The first inequality. in (2.13) is obvious. Also, by standard branching
process formulae
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and for

because Nk is a downward ladder index of Sn . It follows that

and since

we have

Also

and a fortiori

We take

so that the first factor in the right hand side of (2.17) is at least 1 2. Also,
by definition of Nk we must have SNk ~ SNk-l and hence

so that

Finally, therefore, the right hand side of (2.17) is at least
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which proves (2.13). (2.14) is much easier. In fact, by (2.15)-(2.16) the left
hand side of (2.14) equals

Step 3. We turn to (2.12). Fix k, and the sequence (Xa, 03B11,···. All the
probabilities in this step will be conditioned on this sequence being fixed
and for brevity we denote the corresponding conditional probabilities
by P. Take ko = k and if ka,..., ki have been found and ki &#x3E; 0, take

on the set {ZNki &#x3E; 01, and

If ki = 0 take ki + 1 = 0 as well. The occurrence of ki + 1 = 1 depends only
on the Zs,t with Nl ~ s  t ~ Nk. Since Zs1, t1, s1  t1 ~ Nki is independent
of all ZS2, t2 , Nki ~ S2  t2 we see from (2.14)

This estimate remains trivially valid on {ki = 01 as well. Because a  0

this implies the existence of a K7  oo and 03BB0 &#x3E; 0 such that

Consequently, for

Again using the conditional independence of Zs1,t1 and ZS2, t2 for given
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Finally v ~ Nk on the set where ZNki == 0 for some ki &#x3E; 0, so that

for some K5, K6 &#x3E; 0 which do not depend on the specific sequence {03B1i}.
This proves (2.12) and hence the lemma.
As an immediate corollary of Lemma 2 we have for all e &#x3E; 0, A &#x3E; 0

because

For the same reason
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PROOF : Taking into account that 

But Ys depends only on 03B1s, 03B1s+1, ··· and the numbers of offspring of
particles in generations s, s+1,···, whereas the event {03C3~sv} is

defined in terms of Z0,..., Zs. Thus Y and I[03C3~s  v] are independent
and Y has the same distribution as Yo, so that the last sum in (2.20) equals

Thus, if we can prove that

for some Kg  oo, then it follows that (2.20) is at most

for A~A0(03B5) (because Ev203BA+1  oo and 03C3(A) i oo in probability as
A - ~). Now observe that 11t = mt(1 + ~t+1) and consequently (with
z0,0 = 0)

the manipulations with these sums are justified because the sums only
run till v which is finite w.p.l. Again using the independence of (1 + 11t)
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and (mt-1, Z0,t-1, Zo, t) we have as above

By (2.9) there exists a K9  oo for which

and there results

(Jensen’s inequality; recall x ~ 2 in this lemma). We complete the proof
of (2.21) and the lemma by proving the convergence of the last series in
(2.23). For this purpose we observe that for t &#x3E; 2, when Zo,t -1 1 and
ah i ~ 0, are given, then Zo, t can be written as

where Vj represents the number of children of the jth particle among the
Z0,t-1 descendants at time (t -1) of the immigrant at time zero. The V
are conditionally independent and for each j

Thus

and
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Moreover

because Emô is a convex function of x which equals one at x = 0 and
x = x. For t = 1 we obtain

The convergence of the series in (2.23) is now evident.
Next we introduce

Su, = number of progeny alive at time t of the Z, particles present at 03C3

total progeny of the Z03C3 particles present at 6.

The interpretation of W as the number of particles born before v immedi-
ately shows that on {03C3  VI

(2.18), (2.19) and Lemma 3 and the fact that W ~ S03C3 therefore allow us
to write for sufficiently large A and x

We shall now compare S03C3 to Z03C3(1 +~03C3). We can expect these to be not
very different because Z03C3 ~ A is large (for A large) and S03C3 - Z, counts
the progeny of this large number of independent particles, and
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LEMMA 4: 

PROOF : We have on

Therefore, if k ~ 1

As in the argument leading to (2.24) we can write Z, as

where Vj represents the number of children of the jth particle of the
(t-1)st generation if j ~ Zt-1, and of the immigrant at time t -1 if

j=Zt-1+1. Again the conditional probability of {Vj=k} given
Z0,···,Zt-1 and 03B1i, i~0, is 03B1t-1 03B2kt-1 and the Vj are conditionally
independent. By Jensen’s and Minkowski’s inequality we get for

1 ~ k ~ 2, as in (2.24),

1 When the proof is completed we shall see that (2.27) actually has a finite limit as A - o0
(see Lemma 6, especially (2.35) and (2.36).
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It follows that

(for the one but last step, note that mt-1 is independent of I[t ~ v] =
I[t-1  v], and for the last step use (2.25)). (2.27) now follows from (2.29)
and Lemma 2 if 1 ~k~ 2. For K  1 we use the inequality

valid for ai ~ 0 and 0 ~ k1 ~ 1. Now

(Jensen’s inequality)

To estimate EW2 for x &#x3E; 2 we write

W = total number of particles born up till time v 

Thus, by Minkowski’s inequality and the independence of x and
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By Lemma 2

so that we merely have to prove EYo2  oo when K &#x3E; 2. But Yo = 03A3Z0,t,
so that

However, for fixed 03B10, 03B11, ··· Zo, is just an inhomogeneous branching
process with a geometric offspring distribution with mean mi for the
particles in the ith generation. The second moment for such a process can
be computed by standard methods for branching processes (see [1],
Ch. 1.2 or [9], Ch. 1.6).

Hence
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As in the proof of Lemma 3 we conclude from the convexity of x ~ Emô
that

so that indeed

LEMMA 5: 

for A ~ A1.

PROOF: This is quite analogous to the proof of Lemma 3. We have

and therefore

Just as in (2.20)-(2.23) we have on the set {03C3  v}
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Also, analogously to (2.24),

and

Finally, for a suitable K10  o0

for A~A1(03B5). (In one but last inequality we used the fact that

Z03C3~A.) Il

LEMMA 6: If k~ 2, then there exists a 0  K11  oo such that

PROOF : This is merely a combination of (2.26) and Lemma 5. Since

(2.26) and Lemma 5 give for A ~ A2(g)
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Since

(2.34) can be rewritten as

Consequently, it suffices to show that for each fixed A

However, (2.35) is immediate from (2.9), because the conditional distribu-

tion of ~03C3, given u  v and Z, is again the unconditional distribution
of ilo. Thus, by virtue of (2.9) and (2.27)

Also

From here on the proof of the theorem is standard. We already showed
in the introduction that the limit distribution of Tn is the same as that of

n+203A3Zt, provided the latter exists. But if we define, as in the
introduction, 03BDo=003BD103BD2,··· as the successive times at which
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and put

then the pairs {(vk+1-vk), Wk}k~0 are independent, all with distribution
of the (v, W) of (2.4) and (2.5), because (v, W) coincides with (v l - vo , Wo).
The limit distribution for 03A3nt=1Zt is therefore obtainable as the limit

distribution of the sum of a random number of Wk . Many theorems of
this nature are known (see for instance [7], [8] and [13]) and we therefore
only indicate how to handle case (ii) of our theorem, when x = 1. By
Lemma 6 and Theorem 7.35.2 in [4] or Theorem 17.5.3 in[3b] there
exists a constant 0  Cl  oo and a stable law L of index 1 such that

where

Let

Since, by Lemma 2

we have from renewal theory (see

as soon as C = C(e) is sufficiently large. Since the Z, and Wk are non-
negative

and for sufficiently large n
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This holds for any e &#x3E; 0 and therefore, by (2.37)

lim sup

In the same way one proves that L(1 203BC(x-1)) is a lower bound for

lim inf P{n-1(Tn-2C103BC-1nD(n03BC-1) ~ x} so that the limit theorem for
Tn in case (ii) follows, with A 1 = 2C103BC-1 and L1(x) = L(1 203BC(x-1)). To
obtain from this the limit theorem for X we observe that for any positive
integers t, y, F

Now

have the same distribution, because

and, even though T03B3+0393 is a stopping time there is no information on the
sample path obtainable from the fact that X reached y + T at some time;
indeed XS~~ w.p.l. under (1.3) (see [10]). Thus, the probability of the
last event in (2.38) can be made small uniformly in t and y by fixing r
large. In particular, we take ô = ô(t) such that

and

Then it can be shown from (2.39) and the definition of D(·) that

and
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so that case (ii) is proved completely. Case (i)-(iv) are handled in the same
way (compare also [13] sect. 5 and [8], sect. 5 and 6.) Case (v) follows
very quickly from the central limit theorem applied to the random
variables

where C2 is chosen such that

(See [7], sect. 7 and [8], Cor. 5.2.) Note that these random variables have
finite variance by Lemmas 2 and 4, when x &#x3E; 2.
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