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In [1], H. Blumberg showed that if f is a real-valued function on
Euclidean n-space En , then En contains a dense subspace Y (depending
on f ) such that f restricted to Y is continuous. In this paper it is shown
that if f is a real-valued function on a regular semi-metrizable Baire
space X, then X has a dense subspace Y such that J’ restricted to Y is
continuous. Other questions and extensions of Blumberg’s theorem are
in [2], [6] and [7].

In proving the indicated result, the concepts of First Category sets and
Second Category sets are crucial. The following theorem (found in [5],
page 82) is implicitely used: If {X03B1} is a family of sets open relative to the
union S = U Xa and if each Xa is of the First Category, then S is also
of the First Category.

All undefined terms and notations are as in [4].

1. Preliminaries

In the following definitions let , f ’ be a real-valued function on a topo-
logical space X and let x e X.

D’EFINITION (1.1): The function f is said to approach x First Categori-
cally (written f1 ~ x) if there is an e &#x3E; 0 and a neighborhood N(x, E) of
x such that M(x, e) = {z~N(x, 03B5) : |f(z)-f(x)|  el is a First Category
set in X.

DEFINITION (1.2) : The function f is said to approach x Second Categori-
cally (written f2 - x) if given e &#x3E; 0 then there exists a neighborhood
N(x, e) of x such that M(x, e) = {z03B5N(x, 03B5) : |f(z) - f(x)1  el is a Second
Category set in X. The function f is said to approach x Second Categori-
cally via R (written f2 - x via R) if given e &#x3E; 0, there is a neighborhood
N(x, e) such that M(x, e) n R is a Second Category set in X.
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DEFINITION (1.3): An open set U is a partial neighborhood of a point
x if either x is in U or x is a limit point of U.

It follows from Definition 1.2 that f2 - x if given 03B5 &#x3E; 0 there is a

partial U of x such that for any open subset V of U {z E V : If (z) - f(x)(  e,
is a Second Category subset of U.

DEFINITION (1.4): A function f is said to approach x densely (written
f - x densely) if given 8 &#x3E; 0 there is a neighborhood N(x, e) of x such
that M(x, e) = {z~N(x, 8) : |f(z)-f(x)|  el is dense in N(x, e). If x is a
limit point of R, then f is said to approach x densely via R (written
f ~ x densely via R) if M(x, e) n R is dense in N(x, e) n R.

The following is a useful characterization of Definition 1.4.

THEOREM (1.5) : Let f be a real-valued function on a topological space X.
If x ~ X, then f - x densely if and only if for each partial neighborhood
U of x, f (x) is a limit point of f ( U).

PROOF : Suppose f - x densely and U is any partial neighborhood of x.
Let e &#x3E; 0 be given, then x has a neighborhood N(x, e) such that M(x, 03B5)
is dense in M(x, e). Thus there exists z ~ M(x, e) n U such that

Hence f (x) is a limit point of f ( U).
To show the converse, suppose f does not approach x densely. Then

there is an B &#x3E; 0 such that for each neighborhood N of x, the set

{z~N:|f(x)-f(z)  03B5} is not dense in N. Thus, there is a non-empty
open set UN contained in N such that for all YB UN, |f(y)-f(x)| ~ 8-
Then U = {UN: N a neighborhood of x} is a partial neighborhood of
x such that f (x) is not a limit point of f ( U).
Let Z+ denote the set of natural numbers.

THEOREM (1.6): Let f be a real-valued function on a topological space X.
Then F, = {x~ X : f1 ~ x} and F2 = (x e X : f does not densely approach
x} are sets of the First Category in X.

PROOF: If x E F1, then there is an e(x) &#x3E; 0 and a neighborhood N(x, 03B5(x))
of x such that M(x, 03B5(x)) is a First Category set. There is no generality
lost if it is assumed that e(x) = 1/m(x) for some m(x) E Z + . For each k E Z +
let C(k) = f x E F1: m(x) = kl and let D(k) = {d(k, i) : i E Z+} be a countable
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dense subset of f (C(k)). Let D = U {D(k) : k~Z+}. If d(m, i) E D let

and if x E R(m, i), let

Similarly define

and if x e L(m, i), let

If x and y are in R(m, i), then

and hence, z~ RM(y, i). Thus

and are First Category sets. Since

it follows that Fi is a First Category set. The theorem mentioned in the
introduction was used in the proof of this theorem.

If x~F2, then there exists e(x) = e &#x3E; 0 such that for each neighborhood
N(x, e) of x, M(x, e) is not dense in N(x, e). Let {r1, r2,···} be the set of
rational numbers and if ri  ri, let

It follows that F(i, j) is nowhere dense for suppose 0 is an open set such
that F(i, j)- ~ 0. If p and q are in F(i, .j) n 0, then I.f(p) - ,f(q)1  e(p).
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Thus {q E 0 : f (p)- f(q)|  03B5(p)} is dense in 0. This contradiction shows
that F(i, j) is nowhere dense and it follows that

is a First Category set.

2. Semi-metrizable Baire spaces

In the following let all spaces be Tl spaces.

DEFINITION (2.1): A topological space is a Baire Space if the countable
intersection of open dense sets is a dense set.

THEOREM (2.2) : If X is a Baire space and f is a real-valued function
on X, then there is a dense set D (depending on f) such that if x E D, then
f - x densely via D.

PROOF: Let F1={x~X:fl~x}. By Theorem 1.6, FI is a First

Category set. Let R 1=X-F1. If f2 - x, then f2 - x via R 1. Let

F2 = {x E R 1 : f does not approach x densely via R 1 1. Again by Theorem
1.6, F2 is a First Category set. Thus D = X - (F 1 ~ F2) is a residual set
and, since X is a Baire space, D is dense in X. If f2 ~ x via R 1, then
f2 ~ x via D and if x E D then f - x densely via R1. Let x E D. If e &#x3E; 0

is given and U n D is any partial neighborhood of x in D ( U is a partial
neighborhood of x in X), then, since f - x densely via Ri there exists
q~U~R1 such that |f(q) - f(x)|  e/2. Since U is a neighborhood of
q, {z~ U : |(z)-f(q)|  e/21 n D is a nonempty Second Category set.

Let y be any one of its elements. Then

Thus f (x) is a limit point of f ( U n D) and, by Theorem 1.5, f - x
densely via D.

DEFINITION (2.3): A topological space is a semi-metric space if there
is a function d with domain X x X and range a subset of the non-negative
real numbers such that



141

(ii) d(x, y) = 0 if and only if x = y, and
(iii) x is a limit point of a set M if and only if

In [3], by letting g(n, x) = int {y~X: d(x, y)  llnl, R. W. Heath has
shown the following equivalent condition for a space to be a semi-metric
space.

THEOREM (2.4) : Let X be a regular space and G = {g(n, x) : n E Z+, x E XI
a collection of open subset of X. If G satisfies

(i) for each x E X, {g(m, x) : m E Z’ 1 is a non-increasing local base at x,
and

(ii) if y E X and, for each n E Z+, y Eg(n, xn), then the point sequence
x1, X2, ... converges to y.

Then X is a semi-metric space.

This theorem is a useful tool in the following theorem.

THEOREM (2.5) : I, f ’ f is a real valued function on a regular semi-
metrizable Baire space X, then there is a dense subset Y of X such that f
restricted to Y is continuous.

PROOF : Since X is semi-metrizable there exists a collection

of open subsets of X satisfying parts (i) and (ii) of Theorem 2.5. Let D
be a dense set in X such that if x E D, then f ~ x densely via D. The
existence of D is guaranteed by Theorem 2.2. Construct a discrete subset
B(1)={x(1,03B1):03B1~A(1)} of X and a pairwise disjoint subcollection

G( 1 ) = {g(n(1, oc), x(1, (X» a E A(1)} of G such that
(i) (~{g~G(1)})- = X, and

(ii) for each 03B1~A(1), g(1,03B1), x(l, 03B1)) contains a dense subset h(1, oc) g D
such that if z~h(1, 03B1), then |(z) - f(x(1, (X»1  1.

To obtain B(l) and G(1) let il be a well ordering of D and let e = 1 be given.
Let x(l, 1) be the first element of q and let n(1, 1) be the first element of
Z+ such that

is dense in g(n(1, 1), x(1, 1)). Suppose that x(l, fl) has been chosen for each
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fl  03B4 such that

if oc  03B4, 03B2 03B4 and 03B1 ~ 03B2. Let x(l, ô) be the first element of ~ such that

x(l, 03B4) ~ (~ {g(n(1, 03B2), x(1, 03B2)) : 03B2  03B4})-. Let n(1, ô) be the first element
of Z + such that 

1

and h(l, ô) = {z~g(n(1, ô), x(l, 03B4)) n D : |f(z)- f(x(1, 03B4))|  1} is dense in

g(n(1, ô), x(1, b».
Let A(1) be the set of all a which have been chosen in the process

described above. Let B( 1 ) = {x(1, oc) : 03B1~A(1)} and let

Let H(1) = ~{h(1, ce) : ce E A(1)}. It follows that if x~ H(1), then f - x
densely via H(1). For if x~H(1), then there exists a E A(1) such that

x~h(1, oc). Thus |f(x) - f(x(1, (X»1 = 1-03B4 for some b &#x3E; 0. But if x~ H(l),
then x E D. Thus given b &#x3E; 0, there is a neighborhood N(x, ô) of x such
that

is dense in n(x, 03B4). If

then

Thus z E h(l, 03B1) ~ H(l).
Suppose B(l), - - -, B(k), G(1), ··· G(k), H(l), - - ., H(k) have been chosen

such that for 1 ~ i ~ k

(i) B( 1 ) ~ ... ~ B(k),
(ii) if g E G(i), then g is a member of the local base for some element

of B(i),
(iii) (U {g ~ G(i)})- = X,
(iv) if g E G(i + 1), then there is a g’ E G(i) such that g’ ;2 g-,
(v) the elements of G(i) are pairwise disjoint,
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(vi) D ~ H(1) ~···~ H(k),
(vii) H(i) = U {h(i, a) : 03B1~A(i)} where h(i, 03B1) ~ H(i -1) and h(i, a) is a

dense subset of g(n(i, a), x(i, 03B1)) such that if z E h(i, a), then

l f (z) - f (x(i, 03B1))|  1/i and
(viii) if x ~ H(i), then f ~ x densely via H(i).

To obtain B(k + 1), G(k + 1), and H(k + 1), let g(n(k, a), x(k, a)) E G(k). Let
x(k, 03B1)~B(k+1) and let n(k + 1, a) be the first element of Z+ such that

and

is dense in Select from

a discrete subset B(k + 1, a)’ = {x(k + 1, 13) : fl E A(k + 1, 03B1)} and select from
G a pairwise disjoint collection

such that

(i) if g E G(k + 1, 03B1)’, then g c U,
(ii) (~{g~G(k+1,03B1)’})- =

(iii) for each 03B2~A(k+1, 03B1), g(n(k + 1, fi), x(k + 1, /3» contains a dense
subset h(k + 1, 03B2) ~ H(k) such that if z~h(k+1, (3), then

and

Then let
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and

It clearly follows that the induction hypothesis is satisfied.
Let Y = U {B(n) : n~Z+} and for each n~Z+, let K(n) = U {g~G(n)}.

It follows that K = ~{K(n) : n~Z+} is dense since each K(n) is an open
dense subset of X. Notice that Y is a dense subset of K for if z E K, then,
for each i~Z+, there is an x(i, 03B1i) such that z E g(n(i, 03B1i), x(i, (Xi» and,
sine X is a semi-metric space, the point sequence x(l, 03B11), x(2, (X2), ...
converges to z. Thus Y is dense in X.

Let x E Y and let e &#x3E; 0 be given. Since x E Y, there exists i~Z+ such
that x E B(j) for each j ~ i and there exists k E Z+ such that 1/k  E. Let

tn = max ( 1, k ) . Since x E B(m), g(n, x) E G(m) for some n~Z+ and if

z~g(n, x) n Y, then If(z)- f(x)1  1/m  e. Thus f restricted to Y is a
continuous function.

DEFINITION (2.6): A semi-metric space X is said to be weakly complete
provided there is a distance function d such that the topology of X is
invariant with respect to d and if {Mi: i E Z+} is a monotonic decreasing
sequence of non-empty closed sets such that, for each n~Z+, there exists
a 1/n-neighborhood of a point Pn~Mn which contains Mn, then

n {Mn : n~Z+} is non-void.
Standard arguments show that a regular weakly complete semi-metric

space is a Baire space. Thus the following is established.

CUROLLARY (2.7): If f is a real-valued function in a regular, weakly
complete semi-metric space X, then X has a dense subset Y such that f
restricted to Y is continuous.
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