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REAL-VALUED FUNCTIONS ON CERTAIN
SEMI-METRIC SPACES

Harold R. Bennett

In [1], H. Blumberg showed that if f is a real-valued function on
Euclidean n-space E,, then E, contains a dense subspace Y (depending
on f)such that f restricted to Y is continuous. In this paper it is shown
that if f is a real-valued function on a regular semi-metrizable Baire
space X, then X has a dense subspace Y such that f restricted to Y is
continuous. Other questions and extensions of Blumberg’s theorem are
in [2], [6] and [7].

In proving the indicated result, the concepts of First Category sets and
Second Category sets are crucial. The following theorem (found in [5],
page 82) is implicitely used: If { X} is a family of sets open relative to the
union S = () X, and if each X, is of the First Category, then S is also
of the First Category.

All undefined terms and notations are as in [4].

1. Preliminaries

In the following definitions let f be a real-valued function on a topo-
logical space X and let xe X.

DeEFRINITION (1.1): The function f is said to approach x First Categori-
cally (written f1 — x) if there is an ¢ > 0 and a neighborhood N(x, ¢) of
x such that M(x, &) = {ze N(x, ¢) :| f(z2)— f(x)| < &} is a First Category
set in X.

DEerINITION (1.2): The function f is said to approach x Second Categori-
cally (written f2 — x) if given & > 0 then there exists a neighborhood
N(x, ¢) of x such that M(x, &) = {ze N(x, ¢) :| f(z) — f(x)| < &} is a Second
Category set in X. The function f is said to approach x Second Categori-
cally via R (written f2 — x via R) if given ¢ > 0, there is a neighborhood
N(x, &) such that M(x, &)~ R is a Second Category set in X.
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138 H. R. Bennett [2]

DEFINITION (1.3): An open set U is a partial neighborhood of a point
x if either x is in U or x is a limit point of U.

It follows from Definition 1.2 that f2 — x if given ¢ > O there is a
partial U of x such that for any open subset Vof U {ze V : | f(z)— f(x)| < &}
is a Second Category subset of U.

DEFINITION (1.4): A function f is said to approach x densely (written
f — x densely) if given ¢ > 0 there is a neighborhood N(x, ¢) of x such
that M(x, &) = {ze N(x, ¢) : | f(z)— f(x)| < &} is dense in N(x, ¢). If x is a
limit point of R, then f is said to approach x densely via R (written
f — x densely via R) if M(x, &) n R is dense in N(x, &)~ R.

The following is a useful characterization of Definition 1.4.

THEOREM (1.5): Let f be a real-valued function on a topological space X.
If xe X, then f — x densely if and only if for each partial neighborhood
U of x, f(x) is a limit point of f(U).

Proor: Suppose f — x densely and U is any partial neighborhood of x.
Let ¢ > 0 be given, then x has a neighborhood N(x, ¢) such that M(x, ¢)
is dense in M(x, ). Thus there exists ze M(x, ¢) n U such that

1f(2)—fx) < e

Hence f(x) is a limit point of f(U).

To show the converse, suppose f does not approach x densely. Then
there is an ¢ > 0 such that for each neighborhood N of x, the set
{ze N :|f(x)— f(2) < &} is not dense in N. Thus, there is a non-empty
open set Uy contained in N such that for all ye Uy, |f(y)— f(x)| = &.
Then U = ( J {Uy : N a neighborhood of x} is a partial neighborhood of
x such that f(x) is not a limit point of f(U).

Let Z* denote the set of natural numbers.

THEOREM (1.6): Let f be a real-valued function on a topological space X .
ThenF, = {xeX:f1 > x}and F, = {xe X : f does not densely approach
x} are sets of the First Category in X.

Proor: If xe Fy, then there is an &(x) > 0 and a neighborhood N(x, &(x))
of x such that M(x, &(x)) is a First Category set. There is no generality
lost if it is assumed that &(x) = 1/m(x) for some m(x)e Z*. Foreach ke Z*
let C(k) = {xe F, :m(x) = k} and let D(k) = {d(k, i):ie Z*} be a countable
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dense subset of f(C(k)). Let D =) {D(k) :keZ*}. If d(m, i)e D let
R(m, i) = {xe C(m) :dm, i) £ f(x) < d(m, i)+1/m}

and if xe R(m, i), let

RM(x, i) = {z € M(x, 1/m) :d(m, i) < f(z) < d(m, i)+ 1/m}.
Similarly define

L(m, i) = {x € C(m) : d(m, )—1/m < f(x) < d(m, i)}

and if x e L(m, i), let

LM(x, i) = {ze M(x, 1/m) :d(m,))—1/m < f(z) £ d(m,i)}.
If x and y are in R(m, i), then

RM(x, i) n N(y, 1/m) = RM(y, i).
For if ze RM(x, i) n N(y, 1/m), then | f(z)— f(y)] < 1/m and
dm,i) £ f(z) < dim, i)+1/m
and hence, ze RM(y, i). Thus
T(m, i) = | ) {RM(x, i) : x € R(m, i)}

and S(m, i) = | ) {LM(x, i) : x€ L(m, i)} are First Category sets. Since

Fy c[U{Tm i) :mieZ*}JO[|){S(mi):mieZ"}]
it follows that F, is a First Category set. The theorem mentioned in the
introduction was used in the proof of this theorem.

If xe F,, then there exists &(x) = ¢ > 0 such that for each neighborhood

N(x, ¢) of x, M(x, €) is not dense in N(x, ¢). Let {r;, r,," -} be the set of
rational numbers and if r; < r;, let

F(i,j) = {xe Fy: f(x)—ex) < r; < f(x) <r; < f(x)+ex)}.

It follows that F(i, j) is nowhere dense for suppose 0 is an open set such
that F(i,j)~ = 0. If p and q are in F(i,j)n 0, then |f(p)— f(q)| < &(p).



140 H. R. Bennett [4]

Thus {g €0 :|f(p)— f(g)l < &(p)} is dense in 0. This contradiction shows
that F(i, j) is nowhere dense and it follows that

Fy = {FG@):ijeZ* rn<r;}

is a First Category set.

2. Semi-metrizable Baire spaces
In the following let all spaces be T; spaces.

DerINITION (2.1): A topological space is a Baire Space if the countable
intersection of open dense sets is a dense set.

THEOREM (2.2): If X is a Baire space and f is a real-valued function
on X, then there is a dense set D (depending on f) such that if x € D, then
f — x densely via D.

Proor: Let F; = {xeX : fl—>x}. By Theorem 1.6, F; is a First
Category set. Let Ry = X—F,. If f2-x, then f2- x via R;. Let
F, = {xeR; : f does not approach x densely via R, }. Again by Theorem
1.6, F, is a First Category set. Thus D = X —(F; U F,) is a residual set
and, since X is a Baire space, D is dense in X. If f2 — x via R, then
f2— xvia D and if xe D then f — x densely via R;. Let xeD. If ¢ > 0
is given and U n D is any partial neighborhood of x in D (U is a partial
neighborhood of x in X), then, since f — x densely via R; there exists
qge U n R, such that |f(g)— f(x)] < &/2. Since U is a neighborhood of
g, {ze U :|f(2)— f(g)l < &2} n D is a nonempty Second Category set.
Let y be any one of its elements. Then

W= fON = W= F@I+1f@— fX)] < &2+¢/2 <.

Thus f(x) is a limit point of f(U n D) and, by Theorem 1.5, f — x
densely via D.

DEeFINITION (2.3): A tcpological space is a semi-metric space if there
is a function d with domain X x X and range a subset of the non-negative
real numbers such that

(i) d(x, y)=d(y,x) 2 0,
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(i1) d(x, y) = 0 if and only if x = y, and
(iti) x is a limit point of a set M if and only if

inf {d(x, y) : ye M} = d(x, M) = 0 (See [3]).

In [3], by letting g(n, x) = int {ye X :d(x, y) < 1/n}, R. W. Heath has
shown the following equivalent condition for a space to be a semi-metric
space.

THEOREM (2.4): Let X be aregular spaceand G = {g(n, x) :neZ*, xe X}
a collection of open subset of X. If G satisfies
(i) for each xe X, {g(m, x) :me Z*} is a non-increasing local base at x,
and
(i) if yeX and, for each ne Z*, yeg(n, x,), then the point sequence
X1, X2, " converges to y.
Then X is a semi-metric space.

This theorem is a useful tool in the following theorem.

THEOREM (2.5): If f is a real valued function on a regular semi-
metrizable Baire space X, then there is a dense subset Y of X such that f
restricted to Y is continuous.

ProOF: Since X is semi-metrizable there exists a collection
G ={gmx):meZ",xeX}

of open subsets of X satisfying parts (i) and (ii) of Theorem 2.5. Let D
be a dense set in X such that if xe D, then f — x densely via D. The
existence of D is guaranteed by Theorem 2.2. Construct a discrete subset
B(1) = {x(1,2) :a€ A(1)} of X and a pairwise disjoint subcollection
G(1) = {g(n(1, @), x(1, a)) : « € A(1)} of G such that

@ (U{geG(D)})™ = X, and

(ii) for each ae A(1), g(n(1, o), x(1, o)) contains a dense subset h(1, o) = D

such that if ze h(1, «), then | f(z)— f(x(1, @) < 1.

To obtain B(1) and G(1) let # be a well ordering of D and let ¢ = 1 be given.
Let x(1, 1) be the first element of # and let n(1, 1) be the first element of
Z* such that

h(1,1) = {zeg(n(1, 1), x(1, 1)) " D : |f(2)— f(x(1, D) < 1}

is dense in g(n(1, 1), x(1, 1)). Suppose that x(1, ) has been chosen for each
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B < 6 such that
g(n(1, B), x(1, B)) N g(n(1, @), x(1, &) = @

if o <8, B < 6anda# B Let x(1, 6) be the first element of # such that
x(1, 8) ¢ (| {9(n(1, B), x(1, B)) : B < 0})~. Let n(1, ) be the first element
of Z* such that ‘

gn(1,8), x(1,8) ~ (U {g(n(L, P, x(1, p) : B < 6™ =D

and h(1, 8) = {zeg(n(l, ), x(1, 6)) n D :| f(z)— f(x(1, 8))| < 1} is dense in
g(n(1, 9), x(1, 6)).

Let A(1) be the set of all o which have been chosen in the process
described above. Let B(1) = {x(1, ®) :a€ A(1)} and let

G(1) = {g(n(1, @), x(1,a) 1 € A(D)}.

Let H(1) = | {h(1, ®) :«€ A(1)}. It follows that if xe H(1), then f — x
densely via H(1). For if xe H(1), then there exists a€ A(1) such that
xeh(1, @). Thus | f(x)— f(x(1, ®))| = 106 for some & > 0. But if xe H(1),
then x e D. Thus given & > 0, there is a neighborhood N(x, 9) of x such
that

{ze N(x,9) " D :|f()— f(x)| < &}
is dense in n(x, ). If

ze N(x,8) n D n g(n(1, @), x(1, )),
then

If(2)— f(x(L, o) £ 1f@)— fEN+1f()— fx(1, )] < F+1-0 =1

Thus zeh(1, ) = H(1).
Suppose B(1),- -, B(k), G(1),--- G(k), H(1)," ", H(k) have been chosen
such that for 1 £ i<k
@) B(1) < --- < B(k),
(i) if g€ G(i), then g is a member of the local base for some element
of B(i),

(iii) (J {geGO)}H)™ = X,

(iv) if g€ G(i+1), then there is a g’ G(i) such that g' =2 ¢,

(v) the elements of G(i) are pairwise disjoint,
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(vi) D=2 H(l) = --- = H(k),

(vii) H(i) = J {h(i, @) :oc€ A(i)} where h(i, «) = H(i—1) and h(i, «) is a
dense subset of g(n(i, ®), x(i, «)) such that if zeh(, «), then
|f(2)— f(x(G, ¥))l < 1/i and

(viii) if x€ H(i), then f — x densely via H(i).

To obtain B(k+1), G(k+1), and H(k+ 1), let g(n(k, o), x(k, «)) € G(k). Let
x(k, ®)e B(k+1) and let n(k+1, ) be the first element of Z* such that

g(n(k, ), x(k, o)) > (g(n(k+1, o), x(k, er)))”
and
(z € gln(k+1, 7). x(k, %)) A HK) 1 | f(2)— f(x(k, )| < 1/k+1)
is dense in g(n(k+1, ), x(k, ). Select from
U = g(n(k, o), x(k, o) — [g(n(k+1, @), x(k, «))]~

a discrete subset B(k+1, a) = {x(k+1, p): Be A(k+1, «)} and select from
G a pairwise disjoint collection

Glk+1,a) = {gnk+1, p), x(k+1, B) : B e A(k+1, a)}

such that
(1) if ge G(k+1, o), then g= U,
(i) (J{geGk+1,2)})" =U", and
(iii) for each peA(k+1, «), g(n(k+1, B), x(k+1, B)) contains a dense
subset h(k+ 1, f) = H(k) such that if ze h(k + 1, f), then

Lf(@)— fOk+1, Bl < 1/k+1,

and
(iv) Bk+1, ) = H(k).
Let B(k+1, o) = B(k+1, o) U {x(k, )} and let

Glk+1,0) = Gk+1,0) U {g(nk+1, &), x(k, @))}.
Then let

B(k+1) = | ) {Bk+1,0) : a € A(k)},
Gk+1) = U {G(k+1, a) : o€ A(K)},
Hk+1,0) = | {hk+1, ) : f e Alk+1, @)},
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and
Hk+1) = U {H(k+1, ) : o € A(k)}.

It clearly follows that the induction hypothesis is satisfied.

Let Y = | ) {B(n):neZ*} and for each ne Z*, let K(n) = | J {g€ G(n)}.
It follows that K = (") {K(n) :ne Z*} is dense since each K(n) is an open
dense subset of X. Notice that Y is a dense subset of K for if z€ K, then,
for each ie Z™, there is an x(i, ;) such that zeg(n(, «;), x(i, ®;)) and,
sine X is a semi-metric space, the point sequence x(1, a;), x(2, a5),"
converges to z. Thus Y is dense in X.

Let xeY and let ¢ > 0 be given. Since x €Y, there exists ie Z" such
that x e B(j) for each j = i and there exists ke Z* such that 1/k < e. Let
m = max {i, k}. Since xeB(m), g(n, x)e G(m) for some neZ™* and if
zeg(n, x) N Y, then | f(z)— f(x)] < 1/m < e. Thus f restricted to Y is a
continuous function.

DEFINITION (2.6): A semi-metric space X is said to be weakly complete
provided there is a distance function d such that the topology of X is
invariant with respect to d and if {M; :ie Z*} is a monotonic decreasing
sequence of non-empty closed sets such that, for each ne Z*, there exists
a 1/n-neighborhood of a point P,eM, which contains M,, then
() {M,:neZ"} is non-void.

Standard arguments show that a regular weakly complete semi-metric
space is a Baire space. Thus the following is established.

COROLLARY (2.7): If f is a real-valued function in a regular, weakly
complete semi-metric space X, then X has a dense subset Y such that f
restricted to Y is continuous.
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