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1. Introduction

The purpose of this paper is to investigate some linear topological
properties of the Banach spaces Cp, 1  p  oo, consisting of all compact
operators x on the separable infinite dimensional Hilbert space l2 for
which llxllp = (trace (x* x)pI2)1Ip  oo. Our main interest is in comparing
the properties of these spaces with some known results concerning the
structure of the function spaces L p = L p(o, 1).

In section 2, we make some preliminary observations (which follow
directly from known results) concerning projections in Cp. We discuss
in particular the subspace Tp of Cp of those operators whose matrix
representation with respect to a fixed orthonormal basis is triangular
(the role of Tp in Cp is quite analogue to that of the Hardy space HP in Lp).
We mention an analogy between the Haar basis in Lp and an uncondi-
tional Schauder decomposition of Cp and single out a subspace Sp of Cp
which plays a central role in the study of Cp. The space Spis the direct sum

where Cp denotes the space of all operators x on the n-dimensional
Hilbert space l2 with llxll = (trace (x* X)pl2)llp.

In section 3 we study basic sequences in Cp. For 2  p  oo the

situation is simple and very similar to that in Lp (as presented in [10]).
Every normalized basic sequence has a subsequence equivalent either
to the unit vector basis in l2 or lp. It turns out that the same result is valid
(but the proof somewhat less simple) also for 1  p  2. This is in marked

contrast to the situation in Lp, 1  p  2, where the structure of basic

* The contribution of the first named author,is part of his Ph.D. thesis prepared at the
Hebrew University of Jerusalem under the supervision of the second named author.



82

sequences is known to be far more involved (and interesting).
In section 4 we study the structure of ’small’ subspaces of Cp . The

situation is analogous to that discussed by Johnson and Odell [9] in
the case of Lp. For oo &#x3E; p &#x3E; 2 we show that a subspace of Cp which
does not contain a subspace isomorphic to l2 is isomorphic to a subspace
of Sp . For 1  p  2 this is no longer true. The ’right’ result for 1  p  2

turns out to be the following. A subspace X of Cp embeds into Sp if and
only if every normalized basic sequence in X has a subsequence which
is K-equivalent to the unit vector basis of lp (where the constant K
depends only on X). This result is more complete than the analogue
obtained in [9] for Lp. 

In section 5 we study subspaces of Cp which contain a copy of Sp .
These spaces are characterized by their local structure.

In section 6 we classify up to isomorphism all the ’obvious’ com-

plemented subspaces of Cp, by showing the non-existence of certain
embeddings. In this connection we also prove that for 1  p  oo

p = 2, Lp cannot be isomorphically embedded in Cp .
The main point in the study we present here is in the comparison

between the properties of Cp and the other two familiar spaces associated
with the index p, i.e., the sequence space lp and the function space Lp 
The space Cp can be viewed as the natural matrix space associated to p
and as in the case of Lp its structure is governed by an interplay between
l2 and 1 p . From the results proved here combined with known results
(several of those will be quoted in this and in the next section) there
emerges what we think is a quite interesting picture. These results should
motivate on the one hand a deeper study of the structure of Cp and on
the other hand a careful study of matrix spaces associated to other
symmetric sequence spaces (e.g. Orlicz spaces lM)’ The results proved
in the present paper depend on properties which are well known to

characterize lp among sequence spaces (perfectly homogeneous bases
for example) and thus their analogues for e.g. lM are false. What we have
in mind when we speak of the study of more general matrix spaces is
the study in the context of matrices of questions which are usually
considered in the sequence space or function space settings. Here is one
such example. Can two matrix spaces associated e.g. with Orlicz spaces
lMl and lM2 be isomorphic without being identical? It is known that for
sequence spaces this happens quite often while known partial results
suggest that for function spaces this cannot happen. For a background
to the comments made in this paragraph and for a general reference
to the terminology of Banach space theory we refer to [13].
The basic properties of Cp as a Banach space are presented in [1],

[4] and [15]. Let us recall that C2 is the space of Hilbert Schmidt
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operators. As a Banach space it is isometric to l2 and so its structure
is simple and well known. Therefore the case p = 2 will often be excluded
from the discussion below. The space C 1 is the space of nuclear operators
on l2 and is also called the space of the trace class operators. We shall
use the notation Coo to denote the space of all compact operators on l2
with the usual operator norm. Most of our attention will be given to
the spaces Cp with 1  p  oo and p + 2. It is well known that if 1  p _ o0
and p -1 + q - 1 = 1 then C* p is isometric to Cq , the pairing between these
spaces is given by X, y) = trace (y*x). The space Cp is reflexive iff

1  p  00.
Here are some known results concerning the structure of Cp which

we shall need in the future.

(i) The spaces Cp are uniformly convex for 1  p  oo and their

modulus of convexity is up to a bounded factor the same as that for

Lp (cf. [15] and [16]). More precisely there are positive constants ap
and f3p so that

Closely related to (1.2) and (1.3) is the behaviour of terms of the form
’average over all choices of signs of [[£J=i Ix)l, {Xj}j= 1 E Cp’. The
following inequalities concerning these expressions are proved in [15]
and [16] : For 1  p  oc there is a constant Kp such that for every
integer n and every choice of {Xj}j=l in Cp

where the rit) denote the Rademacher functions.
(ii) The spaces Cp, p + 2, have no local unconditional structure (cf. [6]).

We do not need here the definition of this notion but only the following
consequence of the result of [6]. There is a sequence ,(p, n) with
limn-+ 00 À(p, n) = oc for p =1= 2 so that if X is Banach space with an un-
conditional basis (with unconditional constant equal to 1) if T : C" p --+ X
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is an isomorphism into and if P is a projection from X onto TCp then

(iii) The space Cp is not isomorphic to a subspace of Lp if 1  p  00,

p + 2. This fact is due to McCarthy [15] (for p &#x3E; 2 the proof given by
McCarthy is complete. For 1  p  2 his basic idea works but some

details have to be changed. Another proof for the case 1  p  2 which

gives also more precise information is given in [6]).

2. Preliminary observations

In this section we make some essentially known preliminary observa-
tions concerning some projections in Cp and their ranges.
The elements of Cp are by definition operators on 12. We shall often

work with the matrix representation of these elements with respect to a
fixed orthonormal basis eilî = 1 of l2 . The matrix x(i, j) representing the
element xe Cp is defined by x(i, j) = (xei, ej) 1  i, j  00. We shall often

use the elements Ui, j E C p defined by

i.e., ui, is the operator whose matrix has only one non-zero entry and
this is 1 in the (i, j)th place. We mention in passing that in a suitable
ordering the {Ui,j}rj=l form a Schauder basis of Cp (cf. [3], [11]).
The first projection we consider is the triangular projection PT defined

by

This projection is known (cf. [14] and for a much simpler proof
[5, pp. 118-120]) to be bounded in Cp if 1  p  ce and not bounded in

Ci 1 and Coo (actually for p = 1 or p = oc (2.2) is defined only for x
belonging to the linear span of the ui, j and since P, is not bounded
there it cannot be extended to the whole space). The range P, Cp of the
projection P, is denoted by Tp . More precisely (in order to take into
account also p = 1, oo) we denote by Tp the subspace of Cp consisting
of those x for which x(i, j) = 0 for j &#x3E; i.

Another important projection, actually a whole class of projections,
in Cp is obtained as follows. Let {Ak}= 1 and {Bk}= 1 be two collections
(n is finite or oo ) of subsets of the integers such that Ak m Ai = Bk n B, = (9
if k + 1. Corresponding to these families of subsets of the integers we
define a projection as follows:
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It is trivial to check that for every 1  p  and every choice of {Ak}
and {Bk} the projection P( {Ak}, {Bk}) has norm 1. It is also evident that

where x,(i, j) = x(i, j) if (i, j) E Ak x Bk and = 0 otherwise. (If p = o0
the sum in the right hand side will be replaced by supkllxkll. We shall use
the same convention in the future without mentioning it specifically.
Whenever we use lp in the context of p = ce we shall mean the space co .
Also direct sums in the lp sense will mean in case p = oc direct sums in
the sense of co.) In particular if Ak = Bk = {k} for k = 1, 2, ... then
P( {Ak}, {Bk}) is equal to the projection of a matrix onto its diagonal,
and its range is isometric to lp . 

PROPOSITION 1: The space Cp is isomorphic to its subspace Tp if and
only if 1  p  oo.

PROOF: Assume that 1  p  oo. Since P, is bounded we have

It is clear that (I - PT)Cp is isometric to Tp, and hence (z denotes iso-
morphism)

Let now {Ak}= 1 be a sequence of disjoint infinite subsets of the integers.
By (2.4), P( {Ak}, {Ak} )Tp is isometric to (Tp C Tp © ...)i , i.e.,

It follows from (2.6) that Tp ,: Tp (3 Tp and thus by (2.5) Cp  Tp.
If p = 1 or p = oc the space C p is not isomorphic to Tp since C p does

not have an unconditional Schauder decomposition into finite dimen-
sional spaces (cf. [11]) while Tp has such a decomposition. In fact for every
1  p _ oo we have Tp = If=l EB Ej where Ej. = span {Ui,j, 1  i j}
and the unconditional constant of this decomposition is evidently equal
to 1.
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Let us make some remarks concerning the notion of finite-dimensional
Schauder decompositions which entered into the proof of Proposition 1.
In [11] it was shown that Cp (or more generally a symmetric matrix space
in the terminology of [11]) has an unconditional finite-dimensional
Schauder decomposition if and only if the triangular projection is

bounded. The ’if part follows also from the argument of Proposition 1.
The interesting part is the ’only if part. Its proofin [11] actually shows
somewhat more which we would like to point out here (in view of the
analogy with the Haar basis in Lp cf. [12]).

DEFINITION : 

(i) A Schauder decomposition X = Ln (9 En is said to be equivalent
to a Schauder decomposition Y = Q+ Fn if there is an isomorphism T
from X onto Y so that TEn = Fn for all n.

(ii) If X = E (B En is a Schauder decomposition of X, if

n = 1  n2  n3  ... is an increasing sequence of integers and

then the {Fj}.i= 1 are called a block decomposition of {En}:= 1. (The
{Fj}.i= 1 form a Schauder decomposition of their closed linear span.)

(iii) A finite dimensional Schauder decomposition X = L (B En is said
to be reproducible if whenever X c Y and Y has a finite dimensional
Schauder decomposition E (9 Fn then the {En}:= 1 are equivalent to a
block decomposition of the {Fn}:= 1. *
We introduced here this definition of a reproducible decomposition

since the matrix spaces provide natural examples for such decompositions
which are not already bases.
For every integer n let Pn be the projection on Cp defined by

Observe that Pn is a special case of the family of projections defined in
(2.3) (take A = B = {1, 2, - - -, nl) and that Pn Cp is isometric to the space
we denoted in section 1 by Cn P*

PROPOSITION 2: 

(i) For 1  p  oc the decomposition
reproducible.

(ii) For 1  p  oo the decomposition
reproducible.
This proposition is actually valid in the more general context of
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symmetric matrix spaces. The proof of (i) is essentially given in [11 J and
we shall not repeat it here. The proof of (ii) is similar and even simpler.
Observe that the decomposition in (i) is unconditional only if 1  p  00.

The decomposition in (ii) is exactly the decomposition which appeared
in the proof of Proposition 1 and it is unconditional for every p.
The ranges of the projections (2.3) will be classified in section 6. We

deal here only with one special case dealing with the space Sp which
plays a central role in section 4.

PROPOSITION 3 : Let 1  p  00 and let {nk}r= 1 and {mk}r= 1 be sequences
of integers so that supk (min (nk, mk)) = 00. Let {Ak} and {Bk} be families
of disjoint subsets of the integers so that IAkl = nk and IBkl = mk for
every k. Then P( { Ak}, {Bk})C p is isomorphic to Sp = (1 @ Cp)p.

PROOF: Let X = P({Ak}, {Bk})Cp. Let h  kh be a one to one map of
the integers into themselves so that h  min (nkh, mkh). Let Ah and Bh be
subsets of Akh and Bkh respectively so that [A[[ = [B[[ = h. Then

P((Ag) , {B})X is a complemented subspace of X which is isometric to Sp’
Hence X Sp EB Y for some space 1: A similar remark shows that

Sp  X EB W and Sp  (Sp 0 Sp © ...) 0 Z for some spaces W and Z.
A simple application of the decomposition method shows that Sp  X.

Observe in particular that Proposition 3 implies that Sp is isomorphic
to (Sp EB Sp EB .. ’)p.
Another projection which will be of great use in the sequel is the

projection En, n = 1 ... defined by

The projection En is the sum of two projections of the type (2.3) and thus
in particular IIEnl1  2. Its use in classifying subspaces of Cp is demon-
strated in

PROPOSITION 4:

(i) A subspace X of Cp, 1  p:5:- oo p =1= 2 is isomorphic to 12 if and
only if the restriction Enlx of En to X is an isomorphism for some n.
Consequently every subspace of Cp which is isomorphic to 12 is comple-
mented in Cp . 

(ii) If X is subspace of Cp such that Enlx fails to be an isomorphism
for every n, then for every B &#x3E; 0 there is a subspace Z of X such that
d(Z, lp)  1 + e and there is a projection of norm  1 + e from Cp onto Z.
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In particular every subspace X of Cp has a subspace which is isomorphic
either to 12 or to lp .

This proposition was observed by several mathematicians indepen-
dently. A proof of it is given in [2] (and in [8] for p = 1, oc) and will
not be given here.

3. Basic sequences

This section is devoted to the proof of the following theorem.

THEOREM 1: Let {Xn}:= 1 be a normalized basic sequence in Cp,
1  p  00. Then there is a subsequence {Xnk}= 1 of {Xn} which is equiv-
alent to the unit vector basis in 12 or in lp . Moreover the subsequence may be
chosen so that the span of {xnk} is complemented in Cp .

PROOF : The following three cases 2  p  oo, 1  p  2, and p = 1
will be discussed separately.

Consider first the reflexive case i.e., 1  p  oo. The sequence {xn}
tends weakly to 0 and thus by a standard perturbation argument (and
passing to a subsequence if necessary) we may assume that there is a
sequence of integers ml  m2  ... so that

and thus in particular (since X = E Et) (Pm + 1- Pm)X is an unconditional
decomposition) that the sequence {xn} is an unconditional basic sequence.
Assume now that 2  p  oo. If there is an integer m, a subsequence

{nk} of the integers and a &#x3E; 0 so that

holds then {Xnk} is equivalent to the unit vector basis in l2. Indeed,
since the projections Em and Pl commute, the sequence {Emxnk}r= 1 is
an unconditional semi-normalized basic sequence in Em Cp which is

isomorphic to a Hilbert space. Hence there is a p &#x3E; 0 such that for every
choice of {Àk}

On the other hand by (1.5) and the fact that {xnk} is unconditional we
get that
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for some R. The span of {xnk} is complemented in C, by the general fact
that every isomorph of l2 is complemented in Cp (see Proposition 4).

If (3.2) does not hold then limnoollEmxnll = 0 for every m. A standard
argument shows now that for every given sequence Bk of positive numbers
there is a subsequence {xnk} of {xn}’ vectors {Yk} in Cp and a sequence tk
of integers so that for k = 1, 2, ...

Hence for every choice of {Âk}, IlL ÂkYk11 = (LkIÂkIP)l/p (this is a special
case of (2.4)) and there is a projection of norm 1 from Cp onto span {Yk}’
By the usual perturbation argument it follows that if the {Bk} are small
enough the sequence {xnk} is equivalent to the unit vector basis in lp
and its span is complemented in Cp’
We pass now to the case 1  p  2. If there is a ô &#x3E; 0 such that for

every m there is an n with

then there is a subsequence of {xn} which is equivalent to the unit vector
basis in lp. Indeed, if (3.5) holds we can in view of (3.1) find increasing
sequences of integers {nk} and {tk} so that IIQkXnk11 &#x3E; b for every k and
QkXnz = 0 if k 1 where Qk = (l-Etk-JPtk’ The projection LkQk is a
projection of norm 1 in Cp (it is a projection of the type (2.3)) and hence
for every choice of {Âk} we have

On the other hand since {xnk} is an unconditional normalized basic

sequence it follows from (1.4) that

for some R. The relations (3.6) and (3.7) show that {xnk} is equivalent to
the unit vector basis in lp. The operator P defined by

where is, as can be easily checked,



90

a bounded linear projection from Cp onto span {xnk}’
We turn now to the case where (3.5) fails, i.e.,

uniformly in n

and show that in this case there is a subsequence of {xn} which is

equivalent to the unit vector basis in l2 (as before, 1  p  2). In this case
the proof is a little less trivial and requires the following lemma.

LEMMA 1: Let 1  p  oo, let m be an integer and let {Yn}:= 1 be a

normalized basic sequence in EmCp. Then there is a subsequence {y nk}
of {y n} so that for all {Àk}

The point in the lemma is the fact that in spite of the fact that
d(Em Cp, l2) tends to infinity with m the constants in (3.10) are independent
of m.

PROOF OF THE LEMMA : There is no loss of generality to assume that

YnE(Ptn+l-Ptn)Cp for some increasing sequence of integers. We shall
assume in addition that yn(i, j) = 0 if i &#x3E; m and prove that in this case

(3.10) holds with 4 replaced by 2. This will prove (3.10) in the general case
since each yn E Em Cp has a natural decomposition of the form yn = yn + yn
with y’(i, j) = 0 if j &#x3E; m and yri (i, j) = 0 if i &#x3E; m. From our assumptions
it follows that Yn*Yk = 0 if n k and that Yn(ei) = 0 if i &#x3E; m. For every n
let u, be a unitary operator in l2 such that Un(ei) = ei for 1  i  m and

unYn(eJ c span {ej}J 1 for 1  1  m (and thus for all i). By the com-
pactness of the unit ball in C2m there is a sequence of integers {nk} so that
unkYnk converges in norm to some operator xo . Assume for the moment
that unkYnk = Xo for all k. Then for all scalars {Àk}

and hence

If instead of unk ynk = xo we have only IlunkYnk - xo [ [  Bk with Bk sufficiently
small we get instead of (3.11) the relation (3.10) with 2 say, instead of 4.
We return to the proof of Theorem 1. Let {Bk} r= 1 be any sequence of

positive numbers. By (3.9) there is an integer tl 1 such that
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By Lemma 1 there is a subsequence of the integers so that

By (3.1) and (3.9) we can choose an integer t2 so that

By Lemma 1 there is a subsequence so that

We continue inductively to construct an increasing sequence of integers
{tk}= 1 and sequences {ni}= 1 of integers so that {ni + 1 }= 1 is for every l
a subsequence of {nkk 1 and

Let nk = nk be the diagonal sequence. We claim that {xnk} is equivalent
to the unit vector basis in 12, Indeed, we have (with Eto = 0) by (3.16) and
(3.17) that

An estimate of from below (to show that it is greater than
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p(kI kI Z)2 for some p &#x3E; 0) can be obtained either by using the fact that

{Xnk}= 1 is an unconditional basic sequence and (1.4) or by using the
left hand side inequality of (3.13) which combined with computation in

It remains to consider the case p = 1. If the sequence {xn} satisfies (3.1)
then the proof works just as in the case 1  p  2. The only difference
between the case 1  p  2 and p = 1 is that the sequence {xn} need not
be an unconditional basic sequence. However the use of unconditionality
can be avoided in the two places it was used, since (3.7) is trivial for
p = 1,and as we have just observed the use of the left hand inequality
of (3.13) avoids the use of unconditionality at the end of the proof. A
general normalized basic sequence {xn} = 1 in C1 has a subsequence of
the form xnk = y + znk where znk -&#x3E; 0 in the w* topology of C1 and

Ilznkll ~ b &#x3E; 0 for all k and some ô. By the preceding observation we may
assume also that {znk} is equivalent either to the unit vector basis in ll
and then the same is true for {xnk} or to the unit vector basis in l2 and
then (since xnk is a basic sequence) y must be equal to 0. This concludes
the proof of the theorem for all 1  p  oo .

REMARK: Instead of assuming in the statement of Theorem 1 that

{xn} is a normalized basic sequence we could assume of course that

Xn  0 weakly (w* if p = 1) and that Ilxnll - 0.

4. Subspaces of Sp

The first theorem in this section deals with subspaces of Cp 2  p  o0

which embeds into Sp . The theorem and its proof is an adaptation of
the work of Johnson and Odell [9] to the setting of Cp .

THEOREM 2: A subspace X of Cp, 2  p  00, is isomorphic to a subspace
of Sp if and only if X has no subspace isomorphic to 12 -

PROOF : The ’only if part is obvious. In order to prove the ’if part we
observe first that by our assumption

Indeed, if (4.1) fails it follows easily that there is a sequence {Xn}:=l in X
which tends weakly to 0 but for which infnltEmxnl1 &#x3E; 0 for some m. By
the proof of Theorem 1 such a sequence has a subsequence which is
equivalent to the unit vector basis in 12 contradicting our assumption.
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Let 03B4 &#x3E; 0 be given. In view of (4.1) there is a sequence of integers
{nk}= 1 so that

Put Rk=Pnk+l-Pnk and Qk=Rk(I-Enk-J for k = 0, 1, 2, ... (where
Pno = 0, Eno = En-l = 0). Observe that if 1 k - hl &#x3E; 1, then Qk and Qh map
into disjoint rectangles, i.e., there are sets {Ak} and {Bk} of integers so that
Qkx(i,j) = 0 unless (i, j) E Ak x Bk and Ak n Ah = Bk n Bh = y) iflk-hl &#x3E; 1.

Let us consider first the odd indices. We have by (2.4) and the preceding
remark for every x e Cp

and by (4.2) for

Hence for ,

A similar computation shows that

and working with the even indices we get similarly

Combining (4.5) and (4.7) we get for
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and hence

By (4.6), (4.7) and the fact that the decomposition Cp = Lk Q+ Rk Cp is
unconditional (with an unconditional constant Mp) we get that

It follows from (4.8) and (4.9) that if (5 is chosen small enough then for
xeX

Since R k Cp c Cpk+ 1 it follows from (4.10) that the map x - (R1 x, R 2 X, ...
defines an isomorphism from X into Sp .
The direct extension of Theorem 2 to the case 1  p  2 fails to be

true. There is a subspace X of Cp, 1  p  2, which does not contain
a copy of l2 but which does not embed into Sp . This counter-example
is identical to that used in [9] for L p and we recall it briefly. Let &#x3E; 0

and let X03BB be the subspace of (1p 0 l2)p which is spanned by the vectors
gi, 03BB = ei + Àfï == 1, 2, ... where ei and f denote the unit vectors in l2
and lp respectively. The sequence gi, , 1 î = 1 is a symmetric basic sequence
which is equivalent to thé {}i 1 but the equivalence constant is large
if À is small (if T : lp  X À is defined by Th = gi, À then IITII’IIT-lli À -1).
It is trivial to verify that every normalized basic sequence in SP has for
every e, &#x3E; 0 a subsequence which is (1 +s) equivalent to the unit vector
basis lp . It follows from this observation that the distance from X 03BB to any
subspace of Sp is &#x3E; 03BB -1, and thus X = (Ln Q+ X l/n)p is not isomorphic
to a subspace of S p. The space X is clearly isometric to a subspace of
(12 0 12 (D 12 Q+ ’ ’ ’)p which in turn is isometric to a subspace of Cp (it is
the range of a projection of the type (2.3) if we take Ak = {k} and {Bk}
a family of disjoint infinite subsets of the integers). It is also evident that
X has no subspace isomorphic to l2 . Let us also remark that by Theorem 1
(or as can be seen directly) every normalized basic sequence in X has a
subsequence which is equivalent to the unit vector basis in 1 p . 
Theorem 2 may be restated as follows : A subspace X of Cp, 2  p  oo,

is isomorphic to a subspace of Sp if and only if every normalized basic
sequence in X has a subsequence which is equivalent to the unit vector
basis in /p. It turns out that by adding a uniformity condition on the
equivalence we get a result which is valid also for 1  p  2.
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THEOREM 3: Let X be a subspace of Cp, 1  p  00. Then X is iso-

morphic to a subspace of Sp if and only if there is a constant K so that
every normalized basic sequence in X has a subsequence which is K equiv-
alent to the unit vector basis in lp . 

The ’only if part of the theorem is obvious. As remarked above the
’if part for 2  p  oo is contained already in Theorem 2 and the uni-
formity assumption (i.e. the existence of K) need not be assumed a-priori.
On the other hand the example given above shows that for 1  p  2

the uniformity assumption is essential. The proof we give to the ‘if part
of Theorem 3 will show also that the distance coefficient of X from a

suitable subspace of Sp can be estimated from above by a function of K.
In [9] Johnson and Odell prove an analogue of Theorem 3 in the case
of Lp. However, they use there an extra assumption on X and their
result is thus less complete. The proof we give here, which avoids any
extra assumption, is completely different from the argument used in [9].
Let us also point out that in contrast to the situation in Lp, 1  p  2,
the assumption of the ’if part of Theorem 3 is, in view of Theorem 1,
quite close to the assumption that X has no subspace isomorphic to l2 .
For the proof of Theorem 3 we need two lemmas.

LEMMA 2: Let no= 1 n, n2 ... be a finite or infinite sequence
of integers. Consider the set of pairs of integers

and let Q(nl , n2 ...) be the projection on Cp 1  p  oo defined by

Then there is a number M (depending on p but not on the integers
nj, n2,’ ...) so that IIQ(nl’ n2, ...  M.

PROOF : We assume that the sequence {nk} is infinite (for finite sequences
the verification is the same but with a little different notation). Put
Ak = {i; nk - 1  i  nk} and Bk = {i; nk - 1  i nk}’ k = 1,2, ... and

Bo = {1}. The lemma is a consequence from the boundedness of the
triangular projection PT and the following easily verified identity
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LEMMA 3: Let 1  p  2 and let X be a subspace of Cp for which there is a
constant K as in the statement of Theorem 3. Assume that {Un}:=l 1 and
{ Vn}:= 1 are sequences of elements in Tp = PT Cp so that

Then for all but finitely many indices n we have

PROOF: By (4.14) we may assume that (after passing to a suitable
subsequence) {vn} is an unconditional basic sequence with an uncondi-
tional constant as close to 1 as we wish (recall that vn E Tp, and use the
decomposition of Tp appearing in Proposition 2 (ii)). Hence in view of
(1.4) we may assume without loss of generality that for all {Àn}

By our assumption on K and (4.14) we may assume also that for all {Àn}

Finally, if (4.16) fails, there is no loss of generality to assume that in
addition to all the above we have that vn  1/(2K+2) for all n and
thus also

By (4.15), (4.17), (4.18) and (4.19) we get for all integers m

Evidently (4.20) is false if m is large enough and this contradiction proves
the lemma.
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We now turn to the proof of Theorem 3 itself, (1  p  2). We assume,
as we may in view of Proposition 1, that X c Tp, i.e., that for all x E X,
x(i,j) = 0 if j &#x3E; i.
The main step of the proof is the construction of an infinite sequence

no = 1  nl  n2  ... of integers so that for all xeX

The sequence will be constructed inductively so that for every k and every

The choice of nl is similar to the induction step so we present here only
the induction step. Let us assume that n1, n2, ..., nk have already been
chosen so that (4.22) holds. If no suitable nk + 1 exists then for all n &#x3E; nk
there is an Xn E X with Ilxnll = 1 for which

By passing to a subsequence we may assume that {Yn} and {zn} converge
weakly to y and z respectively. Clearly y + z E X and it follows from (4.23)
that

Hence, by

By comparing (4.23) with (4.25) we infer in particular that it is not true
that lim (11Yn - yl + Ilzn - z[ [) = 0 and thus

for some à &#x3E; 0 (recall that by (4.24) limn IIQ(nl’ n2,’ .., nk, n)zll = 0 and
thus IIY-Ynll+llz-znll (2M+2)lly+z-Yn-znll for large n).

Let e &#x3E; 0 (its precise choice will be specified later) and choose an
integer m &#x3E; nk so that
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(Pm is the projection defined by (2.2)). Put

where Em is the projection defined by (2.8). We claim that for infinitely
many integers n

Indeed, since (Sn-wn)+(tn+Wn) = y+z- Yn-Zn’ (4.29) is a consequence
of (4.26) if lim Iltn+wnll = 0. If Iltn+wnll is bounded from below then

(4.29) is a consequence of Lemma 3 when applied to un = (tn + wn)/lltn + w,, 11 
and vn = (sn - wn)/lltn + wnll. T’he sequence {un} and {Vn} certainly satisfy
(4.13) and (4.14) while (4.15) can be obtained by passing to a suitable
subsequence (use Lemma 1 and the fact that un = Em un for all n).

Since limn IIQ(n1’ n2, ..., nk, n)zll = 0 it follows from (4.23) and (4.28)
that

By (4.29) and (4.30) and Lemma 2 we get that for infinitely many indices n

Observe next that on Tp, Pm + 1 - Em is a projection of norm 1 of the type
(2.3) and thus for all n

Now, limn IIP mSnl1 ---&#x3E; 0 (since Sn --+ 0 weakly and dim Pm Cp  oo) and thus
by (4.27) and (4.32) we get that for sufficiently large n

Also since tn --- 0 weakly it follows from (1.4) (or more precisely its special
case called the Clarkson inequality) that for sufficiently large n

Combining (4.25), (4.31), (4.33) and (4.34) we get that there exist infinitely
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many integers n for which

But (4.35) contradicts (4.23) ifs is chosen small enough. This contradiction
establishes the existence of a suitable nk+ 1. Thus we can choose the

infinite sequence {nk}= 1 so that (4.22) holds for all k and therefore (4.21)
holds as well.

It follows from (4.21) that the restriction of 1- Q(n 1, n2, ...) to X is an
isomorphism. The proof of Theorem 3 is now completed by showing that
Z = (I - Q(nl, n2l ... » Tp is isomorphic to a subspace of Sp . The proof
of this fact is similar to some arguments which were used in the proof
of Theorem 2 and we repeat them here only briefly. Denote by Qk
k = 1, 2, ... the projection on Tp defined by

where n - 1 = 0. Then Z = ¿k E9 QkZ and this decomposition is uncondi-
tional, with unconditionality constant equal to 1. Moreover for every
zeZ

and this implies that Z is isomorphic to (Lk Q+ Qk Z)p which in turn is
isometric to a subspace of Sp . 

Note : The above isomorphism of Z into Sp has constant  4. Using
this fact and (4.22) we get an isomorphism of X into Sp with constant
 a M . K, where oc is an absolute constant, M depends only on p, 
and K is the constant which appears in the statement of Theorem 3.

5. Subspaces of Cp which contain Sp
The purpose of this section is to prove that the answer to the question

whether or not a given subspace X of Cp contains in it a copy of Sp
depends only on the local structure of it.
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THEOREM 4: Let X be a subspace of Cp, 1  p  oo. Then Sp is iso-
morphic to a subspace of X if and only if there is a constant K so that
for every n there is an isomorphism T from Cp into X with 11 TI 1 - Il T - 11 _ K.

PROOF : The ’only if part is obvious and so we have to prove the ’if
part for 2  p  oo and 1  p  2. Like in many other situations these

two cases have to be considered separately.
Assume first that 2  p  00. We shall prove that for every given

sequence of positive {Bn} there exist an increasing sequence of integers
mn and operators Tn : Cn p ___&#x3E; X so that for n = 1, 2, ...

Once (5.1), (5.2) and (5.3) are established the result follows easily. Indeed
if the {Bn} are small enough we get from (5.1) and (5.2) that for any choice
of xn E C p

and thus in view also of (5.3) the mapping defined by

is an isomorphism.
We construct the operators {Tn} and the integers {mn} inductively

in the following order Tl, ml , T2, m2 .. ’. The operator Tl is any operator
satisfying (5.3). Once Tn is constructed we choose mn so that (5.1) holds.
The main point in the proof is to show given mn how to construct Tn + 1
so that (5.2) holds as well as (5.3) (with n replaced by n + 1).

Let N &#x3E; 2n + 2 be such that

where (N -l)l/p is replaced by 1 if p = oo. By Ramsey’s theorem [7],
there is an M = M(N) such that whenever the set of pairs of integers
(i, j), 1  i, j _ M, i  j, is divided into two parts then there is a set

A = {1, ’ ", M} of cardinality (A) = N so that all pairs (i, j) with i, j E A
(and i  j) belong to one of these parts. By our assumption there is an
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operator so that

Let Ui,j denote the usual basis vectors of C/. We show now that there
is no subset A of {l,’ .., M} with lAI = N so that

Indeed assume that A = (ii , i2"’" iN} were such a set and consider the
vectors Vk = Uik,ik+l k = 1, 2, " ’ N -1 in C . The {vk}:l are isometri-
cally equivalent to the unit vector basis of lpN-1 and hence by (5.7) we
have for every choice of signs

Since d(Emn Cp, 12)  mn we get by the generalized parallelogram equality
in l2 (i.e., (1.4) and (1.5) which reduce to equalities with Kp = 1 if p = 2)
that

but this together with (5.9) contradicts the choice of N in (5.6).
In view of what we just proved and Ramsey’s theorem it follows that

there is a subset A of {l, 2, ..., M} with lAI = N so that

Since N &#x3E; 2(n + 1) there are disjoint subsets Ai and A2 of A so that
IAll = IA21 = n+ 1. Clearly (5.11) holds for all (i, j) E A1 x A2 and

y = span tui@ j, (i,j)EAl x A2} is isometric to C"+ 1. Clearly every y E Y
has the form y=Ei,joci,jui,j with Irxi,)  Ilyll for all (i, j) E A1 x A2 .
Hence by (5.11) we get that IIEmn Tyll EnI IYI for all y E Y In view of this
fact and (5.7) we deduce that we can take as Tn + 1 the restriction of T to Y
This concludes the proof for 2  p  oo.
Assume now that 1  p  2. In this case we shall prove that given any

sequence {03B5n} of positive numbers it is possible to choose an increasing
sequence of integers mn and operators 1;, : C’ p ---&#x3E; X so that for n = 1, 2, ...
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As in the proof of the case p &#x3E; 2 we show first how to conclude the proof
once (5.12H5.15) are satisfied. Put Q 1 = Pm1 and Qn = Pmn(1-Emn-1) for
n  2. It follows from (5.12) and (5.13) that if the en are small enough
then

for some constant M and all choices of xn E Cp (if 1  p  2 use the fact

that the decomposition P mn+ 1 - P mn is unconditional as well as (1.4). For
p = 1 (5.16) is trivial). It follows from (5.12), (5.13) and (5.14) that if the
Bn are small enough we have for all xn E Cp

(5.15), (5.16) and (5.17) combine to show that (5.5) defines an isomorphism
f from Sp into X.
We now pass to the inductive construction of Tl, ml, T2, m2, .. ’.

As in the case p &#x3E; 2 the only fact which needs verification is that given
mn we can find a 7§+ i so that (5.13), (5.14) and (5.15) (for n+ 1) hold.
Let N be an integer so that

Since the space Pmn Cp is finite dimensional there is a finite set of points
which is an Bn/3( n + 1)2 net in the ball of radius K and center 0 in Pmn Cp . 
By Ramsey’s theorem and by applying the assumption in the theorem
to Cp for a suitable M (much larger than N) it follows that there is an
operator T : C(n P 1 I)l X and an element xo E Pmn Cp so that
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Since we get from (5.20) and (5.21) that

and hence by (5.18), and therefore (5.21) implies

We represent now the set {1, 2, ..., (n + 1)N} as a union of N disjoint sets
{Ak}=l with IAkl = n+ 1 for every k. Let 5g = span {Ui,j, (i,j)EAk x Ak}.
Each Yk is isometric to Cnp+ 1 and the restriction of T to every Yk satisfies
(5.13) and (5.15) (with Tn + 1 = 1IYk)’ We show that for at least one k also
(5.14) holds and this will conclude the proof. Assume that (5.14) fails for
every k, i.e., there is a yk E Yk with IIYkl1 = 1 and

Since the {Yk}= 1 are equivalent to the unit vector basis in 1), we get by
using (1.4), (5.24), the fact that d(Emn Cp, 12)  mn that

However (5.25) contradicts (5.19) and this concludes the proof.
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6. Complemented subspaces of Cp

In this section we classify up to isomorphism the ranges of the projec-
tions P( {Ak}, {Bk}) and obtain some related result concerning the possi-
bility of embedding certain of these spaces into each other. We first
introduce some more notations. By Cpn °° we denote the subspace of Cp
consisting of all those x for which x(i, j) = 0 if j &#x3E; n. Clearly for every n
Cpn °° is isomorphic to 12 but d( C;’ 00, l2) ~ 00 as n - 00 (unless p = 2).
The space (I:= 1 C C p °° ) p is denoted by SC;.

THEOREM 5 : Let 1  p  00, p =1= 2. T he infinite-dimensional ranges or
projections of the type P({Ak}, {Bk}) (defined by (2.3)) are isomorphic
to one of the , following spaces :

All the spaces in this list are of a different isomorphism type.

PROOF : It is easy to see that all the spaces in the list are even isometric

to P({Ak}, {Bk})Cp for a suitable choice of {Ak} and {Bk}, A simple
application of the decomposition method (similar to that used in the
proof of Proposition 3 which is a special case of the present theorem)
shows that for every choice of {Ak} and {Bk} the range of P({Ak}, {Bk})
is isomorphic to one of the spaces in the list. We omit the easy details.
We pass to the proof of the second statement of Theorem 5 which is

less trivial. It is a well known fact that the first four spaces in the list

are of different isomorphism types. None of them is isomorphic to any
of the last five spaces (the first four spaces have an unconditional basis
while the last five fail even to have a local unconditional structure [6],
cf. the end of section 1).
We now consider the last five spaces in the list. They are written in

increasing order; each one is obviously isometric to a subspace of the
space following it in the list. Among them the space Sp is singled out by
the fact that it does not contain a subspace isomorphic to l2 . To conclude
the proof of Theorem 5 it is enough to prove the following three proposi-
tions (observe that non-isomorphism for 1  p  2 implies non-

isomorphism for 2  p  ce by duality):

PROPOSITION 5: For 1  p  oc, p + 2, Sp Q+ (l2 Q+ l2 Q+ )p is not

isomorphic to a subspace of Sp EB 12 -
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PROPOSITION 6: For 1  p  2, Sp is not isomorphic to a subspace of

PROPOSITION 7 : For 1  p  2, Cp is not isomorphic to a subspace of S’

The proof of Propositions 5 and 6 is routine. We give e.g. a brief
outline of the proof of Proposition 6. Let T be an operator from Sp into
Sp O+ (l2 © ... +O l2 EB .. ’)p and let P be the natural projection of the
latter space onto its summand Sp. Since Cp° °° is isomorphic to l2 and
any operator from l2 to lp is compact (here p  2 is used) it follows

easily that the restriction of PT to every summand C;’ 00 of Sp is compact.
Using this observation we deduce easily that if T is an isomorphism
it is possible to find also an isomorphism from Sp into (l2 E9 12 O ’ ’ ’)p
which is known to be impossible.
The proof of Proposition 7 is less routine and we present it in detail.

PROOF oF PROPOSITION 7: Assume that there is an isomorphism T from

Cp into Sp - (C’ 00 Q C;’ 00 © ...)p and let Ui,j be the usual basis vectors
in Cp . Put

with xi,in)E c;, 00 for all i, j, n. Put also lii,in) = 1 lxi, j(n)l and

Clearly IIrxi,jll = IITui,jll  IITI! (the norm of (Xi,j and all the norms of
other oc vectors in the sequel is taken in lp). The bounded sequence
{rxl,j}.i=l of vectors in lp has a subsequence {(Xl,jk}=l converging weakly
(if p = 1, w*) to some vector 03B11 e lp. We claim that

Indeed if (6.3) fails there is a p &#x3E; 0 so that (after passing again to a
subsequence if necessary) lll, jk = 03B11 + 03B2k where IIPkl1 p and the {Pk}
have almost disjoint supports in l p . Thus for every integer m

but this is a contradiction for large m.
The same argument which we gave for (03B11,j} clearly works for
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for every i and thus by the diagonal procedure we may find a subsequence
of the integers (which in order to avoid more indices we continue to call

{jk}= l so that

Using once again the same argument this time for the vectors {03B1i }i= 1
we get that there is a subsequence {il}  1 of the integers and a vector
03B1 in lp so that

(we use here the fact that for every k span {Ui, jk}  1 is isometric to l2).
By (6.5) and (6.6) it follows that there are increasing sequences of

integers {ih}= 1 and {jh}= 1 so that

PUt Vh = ui., j,., = h = 1, 2, ’ ". The vectors {Vh}= 1 are isometrically
equivalent to the unit vector basis in l p and by (6.7) we have

with Yh(n)EC;’OO, IIYh(n)/I = a(n), ZhES;, /lzhll _ 2-h. Since
we get for every m and n

By using (1.4) we get another estimate for the same expression

Combining (6.9) and (6.10) we get for any m and n
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However if n is chosen so that 11 T - ’l l(Ek = n 1 , ocP(k»’IP is smaller than 1
then (6.11) fails to hold for large enough m. This contradiction concludes
the proof of Proposition 7 and thus of Theorem 5.

REMARK : 

(i) Theorem 5 is true also in the cases p = 1 and p = oc, provided
we add to the list given in the statement of theorem 5 two more spaces :

(Here, as before, for p = oo the direct sum is taken in the sense of co,
and l means co .)
When showing that all the spaces in the enlarged list are of different

isomorphic types, after some trivial observations, we need only to
compare two pairs of spaces : lp with (k 1 e l)p, and 12 EB lp with
12 (D (Ek lk)p. 2 Since lp (p = 1, oo) has unique unconditional basis
(see [13], 1.2.c), and the natural basis of (L= 1 E9 l2)p is unconditional
but is not equivalent to the unit-vector-basis of lp, we see that

1p # (Y- 1 E9 l2)p .
To prove that l2 E9 lp * 12 Q+ (L= 1 EB lk)p 2 it is enough to prove that

(L= 1 EB lk)p is not isomorphic to a complemented subspace of 12 EB lp.
But the infinite-dimensional complemented subspaces of 12 EB lp are
known to be the trivial ones: l2, lp and l2 (9 lp (see[17]), so the proof is
complete.

(ii) We do not know whether the list given in Theorem 5 exhausts all
the possible isomorphism types of complemented subspaces of Cp.
A comparison with Lp does not seem to be of help as far as this question
is concerned. The first question which should be answered in this connec-
tion is the following: Is every complemented subspace of Sp isomorphic
to either lp or Sp? The results and the methods of proof of section 5
may possibly be of some help in this connection.

(iii) We did not check whether Propositions 6 and 7 are valid also
for p &#x3E; 2.

We conclude this section with the proof of another result showing the
impossibility of a certain embedding. This result is not concerned with
ranges of projections but with the relation between Cp and Lp. As we
mentioned in the introduction it is known that for 1  p  oo, p + 2,
Cp is not isomorphic to a subspace of Lp. What about the other direction,
i.e., is Lp isomorphic to a subspace of Cp? the answer is trivially no if
1  p  2 (since e.g., Lp contains for every p  r  2 a subspace iso-
morphic to lr and by Proposition 4, Cp has no such subspaces). For
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2  p  00 the answer to the question we posed is also negative but
this is a less trivial fact.

THEOREM 6 : For 2  p  00 the space Lp is not isomorphic to a subspace
Of C p .

This theorem generalizes a result stated in [12]. It is stated there that
Lp is not isomorphic to a subspace of (12 E9 l2 E9 .. ’)p. The proof of this
statement as presented in [12] is over simplified and therefore incomplete.
The proof we give here for Theorem 6 is however based on the idea of
the argument presented in [12]. We shall need first two lemmas.

LEMMA 4: Let {Un}:=l be a sequence of elements in Cp, 2  p  oo,
so that for some constant M

Let 0  y  (MKP)-’, where Kp is the constant in (1.5). Then there is an
integer m so that

PROOF: If (6.13) fails to hold we can choose a sequence of positive
numbers {BJ l’ and increasing sequences of integers {nJ  1 and
milî=o (with mo = 0) so that 

for i = 1,2,’".
By (6.12) and (6.14) we get that for every integer k (here, as before,

{rJ  1 are the Rademacher functions in [0, 1])
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So (M - ’ - Kp y)k-L : M - k1/p + const. and by the definition of y, this is a
contradiction for large enough k. D
The second lemma which we put down here for easy reference is trivial

and well known.

LEMMA 5 : Let p &#x3E; 2 and e &#x3E; 0 be given. Then there is a k(p, e) so that
for every k &#x3E; k(p, e) and every operator V from lp into 12 with IIVII = 1
we have

where {eJ7= 1 denote the unit vectors in l’ and the notation lAI is used to

denote the cardinality of the set A.

PROOF OF THEOREM 6: Let {CPi}  1 be the normalized Haar basis of
Lp(O, 1), i.e., for n = 0, 1, ...

The functions (P2-1 il2"- i=O 1will be called the Haar functions of the n’th
level. Let us recall that the functions

form the Rademacher functions on [0, 1] and so by Khintchine’s in-
equality are equivalent to the unit vector basis in 12 - We shall use also the
Rademacher systems on dyadic subinterval of [0, 1] which are defined
as follows. Let k be an integer and let 0 2k -1. For every n &#x3E;_ k
we let r n, k, j be the normalized averages of the Haar functions of the n’th
level which are supported on [j/2k, (j + 1)/2kJ, i.e.,

Observe that rn = rn,0,0 and
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The natural isometry from Lp[i2 -’, U + 1)2 - k] onto Lp(O,l) takes
r n, k, j into rn and therefore we have

for all choices of scalars {Àn} and for every j and k.
Assume now that there is an isomorphism from L p into CP’ It will be

a little more convenient to work with Tp instead of Cp and we can do this
in view of Proposition 1. Since the Haar basis is a reproducing basis of

Lp (cf. [12]) it follows from our assumption that there is a bounded

linear operator U from Lp[O, 1] into Tp with 11 U - 111 = 1 and an increasing
sequence ofintegers {}=i so that

and thus in particular the séquence {L} forms an unconditional
basic sequence (with unconditional constant equal to 1).

In view of (6.19) (for j = k = 0) and Lemma 4, it follows that if

y = (21IUIIKp)-1 then there is an integer m1 so that

Since Em1 Tp is isomorphic to l and for all n  k the vectors {rn,k,j}J:Ü 1
are isometrically equivalent to the unit vector basis in l;k it follows from
Lemma 5 that there is a kl so that for n &#x3E;_ k1

In view of (6.19) we may apply Lemma 4 to each of the 2kl sequences
{Urn,kl,j}:=kl’ 0  j  2kt, and find an integer m2 &#x3E; ml so that

By (6.22) and (6.23) we get that

By (6.20) we get that the sequence {(Em2-EmJUrn,kl,j}J:lo-1 is for every
n an unconditional sequence (with unconditional constant 1) and hence
in view of (1.5), (6.18) and (6.24) we get that for n ? kl
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By repeating exactly the same argument with a sufficiently large k2
(whose size is determined via Lemma 5 by d(Em2 Cp, l2)) we can find an
m3 &#x3E; m2 so that II(Em3 - Em2)Urnll  y/4 for n &#x3E;__ k2. In general we can
find this procedure increasing sequences (ki) and {mi} of integers so that

By (1.5) and (6.26) we get for any integer s and n &#x3E; k,

This is obviously impossible for large s and thus the assumption that

Lp embeds into Cp led to a contradiction.

REFERENCES

[1] N. DUNFORD and J. T. SCHWARTZ: Linear Operators II. New York, 1963.
[2] Y. FRIEDMAN: Subspaces of LC(H) and Cp. (to appear)
[3] B. R. GELBAUM and J. GIL DE LAMADRID: Bases of Tensor products of Banach spaces.

Pacific J. Math. 11 (1961) 1281-1286.
[4] I. C. GOHBERG and M. G. KREIN: Introduction to the theory of linear non-self-adjoint

operators (translated from Russian). Amer. Math. Soc. 1969.
[5] I. C. GOHBERG and M. G. KREIN: Theory and applications of Volterra operators in

Hilbert spaces (translated from Russian). Amer. Math. Soc.
[6] Y. GORDON and D. R. LEWIS: Absolutely summing operators and local unconditional

structure. Acta Math. (to appear)
[7] M. HALL, Jr.: Combinatorial theory. Waltham, Mass. 1967.
[8] J. R. HOLUB: On subspaces of norm ideals. Bull. Amer. Math. Soc. 79 (1973) 446-448.
[9] W. B. JOHNSON and E. ODELL: Subspaces of Lp which embed in lp. Compositio Math.

28 (1974) 37-49.
[10] M. I. KADEC and A. PELCZYNSKI: Bases, Lacunary sequences and complemented

subspaces in the spaces Lp. Studia Math. 21 (1962) 161-176.
[11] S. KWAPIEN and A. PELCZYNSKI: The main triangle projection in matrix spaces and

its applications. Studia Math. 34 (1970) 43-68.
[12] J. LINDENSTRAUSS and A. PELCZYNSKI: Contribution to the theory of the classical

Banach spaces. J. Functional Anal. 8 (1971) 225-249.
[13] J. LINDENSTRAUSS and L. TZAFRIRI: Classical Banach spaces. Springer Lecture Notes

338, 1973.
[14] V. I. MACAEV: Volterra operators produced by perturbation of self-adjoint operators.

Soviet Math. 2 (1961) 1013-1016.
[15] Ch. A. MCCARTHY: Cp. Israel J. Math. 5 (1967) 249-271.
[16] N. TOMCZAK-JAEGERMANN: The moduli of smoothness and convexity and the Rade-

macher averages of trace classes Sp, 1 ~ p  ~. Studia Math. (to appear)
[17] P. WYTASZCZYK: On complemented subspaces and unconditional bases in lp+lq.

Studia Math. 47 (1973) 197-206.

(Oblatum 1-VII-1974 &#x26; 11-XI-1974) Institute of Mathematics
The Hebrew University of Jerusalem


