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1. Introduction

Let X be a nonempty set, carrying a directed partial order fl and a
uniformity generating a topology * on X. Then X has two conceptually
quite distinct complétions : the lattice completion (X, gi) of (X, =) due
to H. M. MacNeille [6] generalizing the Dedekind completion of the
rationals by use of sections; and the topological completion (N, V) due
to A. Weil [13] generalizing the completion of the rationals by means
of Cauchy sequences. Both generalizations date from about 1937.
We discuss in this paper the delineation of a class of spaces (X, =, U)

for which the two completions can be compared. This problem was dealt
with by B. Banaschewski in 1957, for the case where X is also a partially
ordered group and W is obtained from fl by using topological identities ;
there is the convenient simplification that (X, U) is a topological group,
so that e is necessarily generated by a uniformity and there is no need
to make that fact an additional postulate. In our case the construction
is carried through without assumption of any group structure on X.
Of course the completion of the rationals Q by Cauchy sequences makes
explicit use of both the group and order structures, in the actual comple-
tion process. The group structure is not used in the construction of the

lattice completion of Q.
The topology W which we place on X is related to the order fl but not

uniquely determined by it. When (X, = ) is also a pogroup our topology
coincides with Banaschewski’s, in the sense that 0/1 is generated by a set
of topological identities iff it is an open-interval topology as used here;
this follows from a remark due to N. R. Reilly [10]. However, our
construction is rather different from Banaschewski’s even in the group
case.

The principal results are Theorems 9, 12, 13 and 15.
For some results about completion in a rather similar setting see
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R. H. Redfield [8] and B. F. Sherman [12]. The paper [9] by Redfield
reached the author after the present paper was completed; the two
papers discuss quite similar problems. There are interesting discussions
of order-theoretic completions of pogroups in L. Fuchs [4], Ch. V,
and of relations between order completeness and topological com-
pleteness in ordered topological vector spaces in A. L. Peressini [7],
Ch. IV.

2. Définitions of (X, ==, , 1) and (X, -,,, U); the embedding 0

2.1. The construction is based on the lattice completion X rather than
the topological completion. We recall the definition of X. Given the
poset (X, ), directed to left and right, and any A  X, write

for the set of all upper bounds of A, (= A) for the set of all lower bounds
of A, and

X will denote the set of all sets A* obtained from nonempty subsets A
bounded above. Assume that (X, =) has no extremal elements; then 0
and X do not belong to X. With - as usual denoting set inclusion,
(£, z) is the MacNeille completion of (X, =) : it is a conditionally
complete lattice, and the map

is an order isomorphism, i.e. x fl y iff 0(x) g 0(y), preserving all meets
and joins which may exist in X; and 03B8(X) is lattice-dense in X in the sense
that every element of X is expressible both as a meet and as a join of
elements from 0(X). Moreover, if 0 : (X, ) --* (3, ==) is any other map
into a conditionally complete lattice, with these properties, then there
exists a map s : (X, s;) ~ (3, ---) such that s 0 0 = 0, and s is a complete
lattice isomorphism into 3. So in this sense (X, s;) is minimal.
The lattice operations in X are given by



65

for an arbitrary family {At: i E l} bounded below or above respectively
in (X, ). (See for example G. Birkhoff [2], p. 126; P. Ribenboim [11],
pp 82-85; L. Fuchs [4], pp 92-95.)

2.2. We return to the space X, supposed given, with partial orders
but so far without a topology; on it we place a topology e defined in
terms of a second partial order . It will be supposed that some is
given on X satisfying the following conditions. These conditions are
assumed to hold throughout the paper.

(i) (X, ) is a directed poset with no minimal and no maximal elements,
and with the properties TR(1,2) and TR(2, 1). (For natural numbers
m, n, T R(m, n) denotes the property: For every set of m + n elements
a1, a2, ..., am, b1, b2, ..., bn in X satisfying ai  bi for all i, j there exists
x in X such that ai  x  bj for all i, j.)

(ii) For all a, b E X,

(iii) (X,  ) has the property (~); i.e. for all a, b E X,

Property (ii) asserts that -, is the associated preorder of  (by assump-
tion it is in fact a partial order), and  is a determining order of ,.
Property (2;) and hence (iii) holds in any pogroup.
The topology W is defined to be the open-interval topology of ,

having as subbase the set of all subsets of the form

The assumptions (i) ensure that in fact the set of all intervals

(a, b) = (a  ) n (  b), a  b, form a base for U.

2.3. Here are some examples of spaces in which these conditions are
met.

(1) Qn and Rn, with x  y iff xi  yi for i = 1, 2, ..., n (the strong
pointwise order), x = y iff xi _ yi for i = 1, 2, ..., n (the weak pointwise
order); U is the euclidean topology.

(2) C(Q), the space of all real-valued continuous functions on a

compact topological space Q, with f  g iff f (w)  g(w) for all 03C9 E 03A9,
f --, g iff f(w) ~ g(w) for all WEQ (respectively the strong and weak
pointwise orders); U is the topology of uniform convergence.
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(3) (j)n, Rn and C(Q), with taken to be a hybrid order. This is defined
by fixing upon a proper non-empty subset A of 1, 2, ..., n or of 03A9 and

defining x  y to mean x -,, y and xi  yi for all i E A, and f  g to mean
f -,, g and f(03C9)  g(03C9) for all wEA. The associated order in each case
is fl. The topology is strictly stronger than in the cases (1) and (2).

(4) More generally, let {X i : i E I } be a family of TR(1, 1) (~ order-dense)
fully ordered groups (Xi, --,, j), and let F be a given filter of subsets of
the index set I. The cartesian product X = n {Xi: i E I} is given two
partial orders _ , as follows : is the weak pointwise order, and

2.4. Assumptions (i)-(iii) have the following conséquences :
(a) (X, Olt) has no isolated points, so that W is not discrete. e is

Hausdorff.

(b) = is closed, i.e. {a, b) : a fl bl is a closed subset of (X x X, Olt x e);
= is semiclosed, i.e. (= a) and (a = ) are closed subsets of (X, W) for all
aEX.

(c) For all a, b, c E X,

(d) If (X, ) is also a pogroup, then (X, W) is a topological group.
If (X, --,) is an 1-group, then (X, =, U) is a topological lattice, and
and fl are isolated orders.

(e) (X, =) is directed to left and right, with no maximal or minimal
elements (as previously required).
For these results see N. Cameron and J. B. Miller [3], R. J. Loy and

J. B. Miller [5], pp. 227, 235.
It is clear that W is intrinsic to the partial order  , and indirectly so

to the partial order -,,. X is the lattice completion of (X, =), not of
(X,  ) ; however, it is reasonably kind to  . A partial order fl may have
several TR determining orders (cf. 2.3(3) above), and distinct determining
orders for fl define distinct open-interval topologies. In fact, under
assumptions 2.2 (i)-(iii), for two determining orders __ 1 and 2 for the
same fl and corresponding topologies U1 and Où 2 we have U 1 U 2 iff
(bx, y E X) x __ 1 y x  2 yB, so the set of open-interval topologies
and the set of determining orders are order-isomorphic.

2.5. An order for topological spaces. Let (Q, W) be any topological
space. The power set Y = Y(Q) can be ordered by containment ,
and also as follows : for A, B E Y, write
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Here and ° denote closure and interior respectively with respect to 1fÍ,
and c will always mean e. It can be verified that:

(a) == (meaning ’2013( or =’) is a partial order on P.
(b) The == -minimal elements are precisely the subsets with empty

interior; the =(-maximal elements are precisely the dense subsets.
(c) If (Q, W) is T, with no isolated points then

So if dénotes the associated preorder of == on Y,

therefore is in general not a partial order. We have

(d) When (Q, W) is normal and connected, if A 1, A2 2013( B1, B2 and
at least one of A1, A2 is not 0 and at least one of B1, B2 is not 03A9 then

there exists C c- Y such that Al,A2-C-Bl,B2; (f!/J*,==) is

TR(2, 2), where P* denotes PB{P, 03A9}. (We will not use this result, since
the connectedness condition is too strong.)

2.6. Starting with (X, :9, -,,, e), form MacNeille’s lattice completion
(X, ) of (X, =), as in 2.1.
We note some properties of the subsets A*. (To simplify the notation

we can write A in place of A* ; since * is a closure operator on P(X),
A* = A for all A EX, so no ambiguity arises.)

1. LEMMA: For every AEX,
(a) A° is decreasing with respect to fl (and so  ),

PROOF: 

(a) Let x E A° ; then u  x  v, (u, v)  A for some u, v c- X. We have
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( v) c A° ; for if t  v then by TR(2, 1) there exists se X, u, t  s  v,
so s E A and since A is decreasing, t E A. So y --,, x =&#x3E; y  v =&#x3E; y c- A’.
Thus A° is decreasing. Clearly o(x) - A ( x) c A°  x E A°. Con-
versely, if XEAO then « x) c ( v)  A° so 8(x)- A’.
A is closed; for (A=) = n {(a) :aEA} is closed since each (a=)

is closed (2.4(b)), and A = A* = n (( fl x) : x E (A -- ) )}.
Thus (A°) - A. If x E A and XE(U, v) then for any w satisfying

u  w  x we have w E A, UE(  w) z A, so u E A°. By the same token
w E A° n (u, v), so xE(AO)-. The last assertion of (a) is easily verified.

(b) If A - 0(x), then A ce (  x) (by (a)), i.e. A  x. Conversely suppose
A  x, i.e. A z (  x). If A = (  x), then since every neighbourhood of
xmeets(  X),XE(  x)- = A - = A = (  x) contradiction ; soA-8(x).//

Since X g P(X), == induces a relative partial order on X; we denote
this temporarily by --’. Likewise --,g, the associated preorder of --,
induces a preorder -g’ on X. Note that*a ’ need not a priori be the asso-
ciated preorder of --’. The first step is to identify the associated preorder
ofi= and prove that in fact --’ does determine .

2. PROPOSITION: The associated preorder of (X, ==’) is z, and is

therefore a partial order. (X, ==’) has property (~).

PROOF : Let A, B be chosen from X. First, suppose

Since each U is closed (1. (a)), this asserts that for all U E X,

Let x E A°; there exist a, t, b E X, such that a  x  t  b and (a, b) - A,
and then (-, x) c ( b) 9 A°. Take U = {x}* = (-,, x) in (2.7), to deduce
x E B°. Thus A’ g B’. This conversely implies (2.6), so the two are

equivalent.
Next, suppose instead that

i.e. for all V E X,

There exists x &#x3E; B (i.e. x &#x3E; b for all b E B); for B is bounded above with
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respect to fl , say u ,&#x3E;- B, and since u is not  -maximal we can take any
x &#x3E; u. Take = (-, x), so that VO = (  x). We have B (  x) in fact
B c (  x) by the argument used to prove 1.(b); so B c V° and (2.9) gives
A c V°. Thus (2.8) implies

This in turn implies

For let B -,, y and a c- A. If y  v then B  v so (2.10) gives A  v, a  v.
Thus (Vv E X)[v &#x3E; y =* v &#x3E; a], and assumption 2.2.(iii) gives a y. Thus
A fl y. This proves (2.11). From this we deduce A B. For let x e B,-
since B* = B, there must exist y for which B -, y and x = y, and (2.11)
gives A fl y, so y e A.

Conversely, A g B implies (2.9). Thus (2.8) is equivalent to A B.
We have now shown that in X, A is less than or equal to B in the

associated preorder of ---’ iff A° z B° and A g B. By 1.(a), each of
these implies the other. The proposition is proved.
The proof also shows that *l ’ does indeed coincide with the associated

preorder of --’. Henceforth it suffices to write more briefly -- for ---’.
We now have that X is a conditionally complete lattice under , and
- is a determining order for g : for all A, BE X,

Since the opération ° is with respect to W on X, -- depends indirectly
on :9; a previous remark shows that the map from to == is order-
preserving. Let 1 denote the open-interval topology of --. This puts
a topology on X, as we wished to do.

Before considering the possible generation of e and 1 by uniformities,
we examine

as a structure-preserving map. First, as remarked in 2.1, 0 is one-one
and an order isomorphism for  =, ). It is also an order isomorphism
for (  , ==); for if a  b there exists c E X, a  c  b, and so ( -,, a) c (  b)
since CE(  b))(fl a); conversely (= a) c ( b) implies a  b.

Next, note that 0 : X --&#x3E; 0(X) is an open map. For if U = (a, b), a  b,
is a base open subset of X then
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an open subset of (0(X), T(03B8(X)).
Continuity of 0 is less straightforward. It is necessary to make further

assumptions, about the extent of the penetration of X by 8(X). Two such,
expressed directly in terms of X, are as follows :

I. For all A E X, (A  ) is open.
II. For all A, B c- X, if A c B° then (A ) n BO =1= %.

We note some equivalences.

3. Conditions I, I’ and I" are pairwise equivalent, where the second
and third conditions are:

l’. For all A e X and x E X, if A  x then there exists y E X such that
Ayx.

I". For all A e X and x E X, if A - 0(x) then there exists y E X such that

Each of I, l’and I" implies :

(2.14) If A1, A2 - 03B8(x), then there exists y e X
such that Al, A2 - 0(y) - 0(x).

PROOF: The equivalence of l’and I" follows from 1.(b). It is clear that
1 is equivalent to I’.
Assume l’, and A1,A2-e(x) with Al,A2EX. There exist

YI’ Y2, t, y E X such that Ai  yl  x and A2  y2  x and

Then Al, A2 = t so A, v A2  (= t), whence Ai, A2  y  x, which is

(2.14).//

The following also follows simply from earlier remarks.

4. Il is equivalent to Il’, and implies I ; where

II’. For all A, B E , if A-B then A-8(x)-B for some x E X .

Since we do not know that (X, --) has any TR properties, the base
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sets of 1 must be assumed to have the form

with I and J finite. Since (X, ) is directed with no extremals, any base
neighbourhood of a point can be assumed to be of the form V with
1 = J =1= fJ.

5. For any A EX, 0-1(- A) is open in (X, U). If 1 holds, then also
O-l(A -) is open, and so 0 : X --&#x3E; X is continuous.

PROOF: Let XEO-l(-A). Then (-,, x) (-- A’, so there exist a, b E X
with x e (a, b) - A, and also a, b E A. If y E (a, b) then also y E AO, and
1.(a) gives 0(y) - A, so (a, b) g 0 (-- A). Thus O-l(-A) is open.

Suppose instead that XE O-l(A -), so A - O(x). By I" there exists
y such that A-O(y)-O(x); then xc-(y)-O-’(A-). Thus

0 - ’(A-) is open. //

6. COROLLARY : When I holds, 0 is a topological embedding of (X, ôlt)
in (X, T).

Next, we need conditions which imply interpolation properties for --.
These are partially associated with interpolation by elements of 03B8(X).

7. (i) Let (X, fl) be a v-semilattice. If Xl’ X2 E A °, A EX, then

Xi V X2 c- A’.
(ii) Let (X, =) be a A-semilattice, and let 1 hold. If A  xi , x2,

AEX, then A  Xl /BX2’

PROOF: (i) There exist y1, y2 E A° such that x1  y1 and x2  y2 .
Then Xi V x2  Yi V Y2 E A, so (  yi v Y2) is a neighbourhood of Xi V x2
contained in A; X 1 V X 2 c- A’.

(ii) By I, there exist Y1, Y2 EX such that A  Yi  xi and A  Y2  x2 .
Then A G y1 n y2  xl A x2, so A  xi A x2 . 

8. PROPOSITION: If (X, =) is a lattice then between the properties:
(a) II holds ; 
(b) O(X) is dense in (X, T) and (X, --) is TR(1, 1) ;
(c) (X, --) is TR(2, 2) ; .

(d) The intervals (O(a), 0(b», a  b, form a base for (X, T), and T is
Hausdorff,
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there are the implications

PROOF: (a)=&#x3E; (c): Let Al, A2-Bl, B2, in X. By II there exist

X1’ X2 EX such that xl E (A1  ) n B , X2 E(A2 ) n B. By 7.(i), the
element y1 = x1 v x2 satisfies y1 E (A 1 ) n (A 2 ) n B 1 . Similarly there
exists y2 E (A1 ) n (A2 ) n B2 . By 7.(ii), we have

giving

Thus (X, ---) is TR(2, 2).
(a) =&#x3E; (b) Since (X, ---) is TR(2, 2) and has no extremals the =(-

intervals (A, B), A -- B, form a base for T, so II immediately implies
that 8(X) is dense in (X, T).

(b) ==&#x3E; (a) If A -- B, the nonempty open subset (A, B) must meet 8(X).
(This does not use the lattice assumption.)

(a) =&#x3E; (d) Again, the intervals (A, B), A -- B, form a base for ff;
II then implies that the intervals (8(a), 8(b)), a  b, form a base. That T
is Hausdorff is an application to (X, ==, T) of 2.4(a). (Actually, it suffices
to know that == is TR(l, 1), has property (~), and its associated order
is partial.) //

If (X, --) is TR(2, 2) and 8(X) is dense in (X, 1) then II holds, whether
or not (X, -,,) is a lattice.
The following theorem summarizes the position we have reached.

9. THEOREM: Let (X, , -,, U) have the properties 2.2(i)-(iii). Let

(X, --, , T) be as previously constructed, so that (X, gi) is the lattice

completion of (X, =) and is a conditionally complete lattice, -- is defined
by (2.12) and is a determining order &#x3E; for z , and !T is the open-interval
topology of ==. Let 8 be the map (2.13).
Then 0 is an order isomorphism for both orderpairs (  , ==),   , z ),

preserving all existing meets and joins for the second pair; and 8 : X - 8(X)
is open. If 1 holds, 0 is a topological embedding of (X, Olt) in (X, T). If
II holds and (X,=) is a lattice, then 8(X) is dense in (X, T) and (X, ==)
is T R(2, 2).

3. Uniformities generating the topologies

3.1. If (X, )is a partially ordered group in addition to what has been
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assumed in 2.2, then (X, 0/1) is a topological group and therefore has
right and left uniformities generating its topology. If also (X, -,,) is

para-archimedean, the lattice completion X is a group, necessarily
commutative. (See e.g. [4], pp 92-95). If also (X, ==) is TR(1, 1), then
(X, T) is a topological group and therefore its topology is also generated
by a uniformity. So broadly speaking, when X is a commutative group
we can use the natural uniformity on it. This is done in Section 5, below.

If no group structure is assumed on X we must look elsewhere. There

is no preordained uniformity generating 0/1 in general, and therefore we
suppose its existence as an extra hypothesis: throughout this section
we assume that 0/1 is generated by a uniformity having base 4. The
problem is to obtain from A a suitable uniformity on X. This can be done
if B satisfies a number of conditions asserting compatibility with
and =, and provided 0(X) is dense in (X, T); we arrive eventually at
Theorem 13 asserting that X is both the lattice and topological completion
of X.

Recall that A - X x X is a base for a uniformity on X iff -V is a filter
base of P(X x X) containing the diagonal d = {x, x) : x E X}, and
such that if B e é3 then there exist C, D E B such that C B - 1 and
Do D g B. The uniformity generated by é3 is the set of all its supersets
in X x X; and the sets B [x] = {y : (x, y) E B}, B e é3, form a base for the
neighbourhood system at x in (X, U). The sets B, B[x] are not assumed
open in 0/1 x U, U respectively.
With a uniformity assumed for (X, U), the uniformity for (X, 1) is

constructed as follows. For each B E é3, embed B in X x X, as

let B denote the closure O(B) of O(B) in (X x X, 9- x 1), and let B be the
collection of all subsets B.

We introduce the following conditions on é3 :

III. For every Z c- X and E e é3 there exist elements p, q, x E X such that

IV. For all x, y E X and B E ,

These conditions are discussed further in Section 4, and for pogroups
in Section 5.
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10. PROPOSITION: If III holds and O(X) is dense in (X, T), then A is
a base for a uniformity on X, and the uniform topology W generated by
B is weaker than T. Iffurthermore II and IV hold, and (X, -,) is a lattice,
then 11/’ = 1.

The proof of this proposition is broken down into several parts.
First note that the condition that 0(X) be dense in X cannot be avoided,
since every B E B must contain the diagonal in X x X ; it is a necessary
and sufficient condition for this property. Further, it is easily verified
that A is a filter base on X x X, since A is a filter base, and that
B-1 = B -1 for each B E B. It remains to prove that

(3.1) If B E é3, there exists D e é3 such that D 0 D B,

and that the topology of the uniformity generated by B is T .

11. LEMMA: Suppose O(X) is dense in (X,.T). lf p, q E X, AEX and

then 0(p, q) -, the closure in (X, î-) of O{ x : p  x  ql, is a neighbourhood
of A.

PROOF : We show that

where (., .) denotes the open interval in (X, ---) and (X,  ) respectively.
Let BE(O(p), 8(q)). If V is any 3-neighbourhood of B then V n (O(p), 0(q»
is also a neighbourhood, and meets O(X). Thus meets 0(p, q).

It follows from (3.2) that (0(p), 0())’ = 0(p, q)-, whenever p  q. Il
Using this lemma and III we prove (3.1). Given BE, find D, E E B

such that D 0 E 0 Do D Band E  D -1. Suppose A, B) e D o D. There
exists Z E X such that A, Z), Zl B) E D, and hence nets (ai)iEI’ (z’)ic,,
(bj)j.j, (z")j.j such that

and ai, zeD, z’j, bj) E D for all i, j. Let p, q, x be elements corre-
sponding to this Z and E, as in III. Then there exist io c- I and jo E J
such that p  z’, z"  q and hence z’, zj E E[ x J for i &#x3E;_ io, j jo. This
leads by composition of relations to ai’ bj)EDoEoDoD  B, so
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 A, B &#x3E; =lim 0( 8(b) E 8(B)- = B, proving (3.1).
Thus A is a base for a uniformity on X. Let 1Y denote the uniform

topology generated by this uniformity. To prove that W’ g 9- it suffices
to show that B[A] is a 1-neighbourhood of A, for every A E X, B c- /J6.

So let A, B be given. Find successively C, D and E in é3 such that
C, C i- B, D C -1, E z C n D. For Z = A and this E let p, q, x be
elements as in III. We prove

By 11, this implies that B [A] is a neighbourhood of A, as required.
Let F c- 0(p, q) -. There exists a net (j)iEI such that 8( f ) - F and

p  fi  q. Since O(X) is dense in X, there is also a net (a)jEJ for which
0(aj) - A, and some jo E J such that ()(p)- 0(aj) - 0(q), i.e. p  ai  q
for j &#x3E; jo . So f , ajEE[xJ for all i E I, j &#x3E; jo. This implies ( aj , h)EB
and so A, F) E ()(B)-, F E B [A], proving (3.3).

Finally, we prove ^Ir p î- under the further stated assumptions.
Let TE !Y and A E T. By 8, the intervals (0(p), 0(q», p  q, form a base
for !Y, so there exist p, q e X such that

Since II holds, so does I ; because of 1(b) we can without loss of generality
assume that

and that P1 q 1 exist in X satisfying

Then p 1, q 1 c- 0 - 1 (T), an open subset of X by 5, so there exist P, Qe
such that P [p 1 ] and Q[qlJ are contained by 0 - 1 (T) n (p, q). Let R E B,
R g P n Q; then R[P1J, R [q 1 ] :-:: 0 - ’(T) n (p, q). We prove that

Let F E R[A], i.e. A, F) E O(R) -. There exist nets (aJiEI’ (h)iEI such that
0(ai) ~ A, 0(fi) --+ F, (ai , h)ER. For i &#x3E; some io, pl  ai  q1; then

IV gives ( = R[pl]) g ( = R[a,]). Since p  R[pl], we deduce p -,, R[ai],
and similarly R[ai] -, q, for i &#x3E;_ io. Therefore fi c- R[ai] ai- [p, q], so
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Now is a closed partial order on (X, 9-) (this follows from the fact
(8, 2) that (X, ---) is TR(l, 1) and has property (~); cf. 2.4(b)), so

[e(p), e( q)] is closed and therefore it contains F = lim 0(fi), so F E T.
This proves (3.4). Since R[A] is a base W-neighbourhood of A, we have
proved W T . This concludes the proof of 10. //

3.2. Having now accumulated the necessary structure on X we are
in a position to ask if (X, 1) is complete. For this we will apply to
(X, g, 1) the following general result about topological completion in
a conditionally complete lattice.

12. THEOREM : Let Y be a set carrying a partial order  and a topology
V. Suppose that

(a) (Y, ) is conditionally lattice complete ;
(b) V is generated by a uniformity having a base A such that all subsets

B[y] are order-bounded, and the subsets

form a uniform neighbourhood base; i.e. , for every C E f7j there exists

B E (j8 such that

Then (Y, j/) is a complete topological space.

Here y, y denotes the closed order interval in ( Y, --,), so that B[y]e
is the complete sublattice of Y generated by B[y]. Note that in (3.5),
the one B must serve for all y. A stronger but simpler condition than (b) is :

(b’) V is generated by a uniformity having a base A such that Bly]
is a complete sublattice, for every y E 1: B E B.

Clearly, (b’) is the case (b) with B[y]t = B[y] for all y.

PROOF OF THE THEOREM: Let (Yi)iEI be a Cauchy net in ( Y, V). Given
B E B, there exists io such that

Then Yi E B[YioJ for i &#x3E; io, the net (yi)i è: io is bounded and elements
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exist for i &#x3E;_ io, and belong to B[yi.]#. For j &#x3E;_ i we have çj Çi and
11j ,&#x3E;- l1i’ It is easily deduced that elements

exist in Y and are independent of io. Indeed

Given any DEPÀ, find C ç; D -1 and then B as in (3.5)’, and io for this B.
By (b’) we have i &#x3E; io =&#x3E; 03BE E B [yi] e =&#x3E; E C[yJ =&#x3E; yi E D [03BE]. Thus (yJiEI
converges to 03BE ; so ( Y, j/) is complete. (The net also converges to q;
and ~ = ç if V is Hausdorff.)
To invoke 12 for (X, ç;, T) we therefore need a further condition ; say :

V’. g[A] is a complete sublattice of (X, g) for all A E X, B E B
(using (b’) rather than (b)). Then we have :

13. THEOREM : Let (X, , =, U), (X, ==, ç;,.r) and 0 be as in the

first paragraph of Theorem 9. Suppose in addition that (X, = ) is a lattice,
and 0&#x26; is generated by a uniformity with base B. Suppose that II, III, IV
and V’ (and therefore 1) hold.
Then (X, T) is a complete Hausdorff topological space, 0 is a topological

embedding of X as a dense subset of X, and (X, T) is, to within a uniform
isomorphism, the topological completion of (X, U).

4. Remarks on the various conditions

4.1. Condition 1, and hence II, is not a consequence of 2.2(iHiii)
even when (X,  ) is also a pogroup and (X, =) is a para-archimedean
l-group. For take X = C[O, 1], ordered as in 2.3(2). This X meets the
requirements just stated, but not 1. Every lower-semicontinuous function
on [0, 1] can be written as the supremum of a subset of C[O, 1]; take k
to be the lower-semicontinuous function.

and Then
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4.2. Condition III can be reformulated in terms of a statement about

uniform neighbourhoods of subsets A°. Given any S 9 X, by a (base)
uniform neighbourhood of S is meant a subset of X of the form

for some B E B. In particular we can form B[ A °J for A e X. Note that

For let x E A. Since A’== A, C[x] meets A° for all C E B. Choose C B -1;
ifyeC[x] n A° then xEB[yJ, YEAo, so xEB[AoJ. Introduce the condi-
tions

III*. For every AEX and B E B, B[A’] meets (A ).
VI. Every subset B[x] is -convex.

Then

14. (i) III implies III*. (ii) III* and VI imply III.

PROOF : (i) Given A e X and B E é3, find C, D c- A such that C 0 C - ’ -- B,
D-1,D - C, and then p, q, xeX such that

Since p E D[x] -, D[p] meets D[x] and hence p E C[x]. Similarly q E C[x],
so qEB[pJ; and p E A°, so qEB[AoJ n(A ).

(ii) Let q E B(A°) n (A ); there exists p E A° such that q c- B[p] and
8(p)-A-8(q). Since p e B[p], we have (p, q) s; B [p]. Il

4.3. Condition IV can be interpreted as saying that the sets B[x] are
’similar in their order-theoretic shape’, as x varies through X. Note that
IV (i) is equivalent to: x  y implies B[x]* z B[y]*. Conditions IV (i)
and IV (ii) are equivalent under the further assumption:

This can be interpreted as saying that x is ’centrally placed’ in B[X],
for each x.

4.4. Conditions 1 and II, although they refer to the penetration of
0(X) in X, are formulated directly in terms of X. Conditions III and IV
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can similarly be regarded as statements about X and f!4. However,
V’ appears to involve essential properties of X, not capable of simple
reformulation in terms of X and its structure.

V’ could be weakened to a condition V based on 12. (b) rather than
12. (b’), without necessitating a change in the statement of Theorem 13.
In this connection it is worth remarking that a weaker version of 12. (b)
can be proved to hold in X, in the presence of the other assumptions;
namely :

VII. For every C E B and A E X there exists B E B such that

B[AJ S; C[A]. But here B depends upon A. The proof of VII rests on
the fact that every interval [[P, Q] in (X, s;) is lattice complete. But
the author has not succeeded in deducing V’ or V from the other condi-
tions, or from further reasonable conditions placed on X and B.

5. Completion of tight Riesz groups

5.1. The conditions to date are mostly fulfilled when X is a group.
More precisely, let (X,  ) be a pogroup satisfying 2.2 (i) and (ii), i.e.

a tight Riesz group with associated partial order =. Then (cf [5], § 2)
(X, =) is a pogroup, 2.2 (iii) is satisfied, (X, U) is a Hausdorff topological
group, and the intervals ( - a, a), a &#x3E; 0, form a base at 0 for U. Give X
the two-sided uniformity generating U: for this we can take A to be
the set of all vicinities of the forms

with a &#x3E; 0. Then for example .

and IV certainly holds. Moreover, VI holds, since Ba[x] and aB[x] are
clearly convex.

If II holds and X is an 1-group, then Ba[ A °J and ,B[A’] meet (A ),
for all a &#x3E; 0, A EX, so III* holds. For given a and A, XE Ba[ A °J iff

-a+y  x  a+y for some y E A°. Choose 0  c  b  a and y in X
so that A-e(c)-e(y)-A; then YEAo. Let x = b+y; we have
x c- B,,[A’] n (A ). Since III* and VI hold, III holds.
Under reasonable assumptions it can be proved that
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so V’ holds. Sufficient conditions to ensure (5.1) are : (X, ) is an 1-group
and (X, ==) is TR(2, 2). (One uses the fact that is closed and that

[P, Q] = (P, Q) - for all P- Q in X.) Thus V’ holds, for example,
if (X, =) is a para-archimedean l-group and II holds. The para-
archimedean property ensures that X has a group structure; it also

implies that X and X are commutative groups. X being a group, (X, g)
is certainly an l-group.
To sum up, we have

15. THEOREM : Let (X,  , Olt) be a tight Riesz group whose associated
order = is a para-archimedean lattice order, and let (X, ) be the lattice
completion of (X, =) with topology 5 as previously defined. If II holds,
then (X, T) is a complete Hausdorff topological group, the completion of
(X, U).

16. COROLLARY : If (X, , Olt) is a tight Riesz group such that the
associated order = is a para-archimedean and (XI is a complete lattice,
then (X, Olt) is a complete Hausdorff topological group.
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