COMPOSITIO MATHEMATICA

M. G. SCHARLEMANN

L.C. SIEBENMANN

The Hauptvermutung for C^{∞} homeomorphisms II. A proof valid for open 4-manifolds

Compositio Mathematica, tome 29, nº 3 (1974), p. 253-264 <http://www.numdam.org/item?id=CM_1974__29_3_253_0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE HAUPTVERMUTUNG FOR C^{∞} HOMEOMORPHISMS II A PROOF VALID FOR OPEN 4-MANIFOLDS

M. G. Scharlemann and L. C. Siebenmann¹

Introduction

It has often been observed that every twisted sphere $M^m = B^m_+ \cup_f B^m_$ of Milnor is C^{∞} homeomorphic to the standard sphere S^m , although in general it is not diffeomorphic to S^m . Recall that a twisted sphere is put together from copies of the standard hemispheres B^m_{\pm} of S^m by reidentifying boundaries ∂B^m_+ to ∂B^m_- under a diffeomorphism f. One obtains a homeomorphism $h: M^m \to S^m$ by setting $h|B^m_-$ = identity and $h|B^m_+$ = {cone on $f: S^{m-1} \to S^{m-1}$ }, the latter regarded as a self-homeomorphism of B^m_+ = cone (S^{m-1}). This is C^{∞} and non singular, except at the origin in B^m_+ (= cone vertex). Composing h with a suitable C^{∞} homeomorphism λ whose derivatives vanish at the origin of B^m_+ yields a C^{∞} homeomorphism $h: M^m \to S^m$ (Appendix A).

Since the twisted spheres represent the classical obstructions to smoothing a PL homeomorphism to a diffeomorphism, it is not surprising to find (§4 of preprint)² that if M is any PL manifold and σ , σ' are two compatible smoothness structures on it, then one can obtain a C^{∞} smooth homeomorphism $h: M_{\sigma} \to M_{\sigma'}$. It would be reasonable to guess that the same is true for arbitrary smoothings σ , σ' of M. However, we prove the following.

HAUPTVERMUTUNG FOR C^{∞} HOMEOMORPHISMS: Let $f: M' \to M$ be a C^{∞} homeomorphism of connected metrizable smooth manifolds without boundary. If M and M' are of dimension 4 suppose they are non-compact. Let M and M' be given Whitehead compatible³ PL structures $[Mu_2]$.

¹ Supported in part by NSF Grant GP-34006.

² We there used classical smoothing theory and a TOP/ C^{∞} handle lemma for index ≥ 6 . Surely a more direct proof exists!?

³ A PL manifold structure Σ on M is (C^{∞}) Whitehead compatible with the smooth (C^{\perp}) structure of M if for some PL triangulation of M_{Σ} as a simplicial complex, the inclusion of each closed simplex is smooth and nonsingular as a map to M.

Then there exists a topological isotopy of f to a PL homeomorphism.

Our purpose here is to give a handle by handle proof of this result which uses no obstruction theory and which does succeed with the specified four-manifolds.

Note that the singularities of the differential Df may form a nasty closed set in M' of dimension as high as m-1. The one pleasant property which for us distinguishes f from a mere homeomorphism is the fact that the critical values are meager by the Sard-Brown Theorem [11], both for f and for the *composition* of f with any smooth map $M \to X$. In fact our result follows with astonishing ease from this fact.

In dimension ≤ 6 the PL homeomorphism asserted by the C^{∞} Hauptvermutung is equivalent to diffeomorphism since there is no obstruction to smoothing a PL homeomorphism [12] [8].

Ordinary homeomorphism in dimension ≤ 6 does not imply diffeomorphism. Thus the following example may clarify the meaning of our theorem. The second author shows in [17, § 2] how to construct a homeomorphism

$$h: T(\beta) \rightarrow T^6$$

of a smooth ¹ manifold $T(\beta)$ that is known not to be diffeomorphic to T^6 . By construction *h* is a diffeomorphism ² over the complement of a standard subtorus $T^3 \subset T^6$, and also over T^3 itself. The C^{∞} Hauptvermutung shows that there is no way of making *h* smooth – say by squeezing towards the singularity set T^3 as one does for twisted spheres. The homeomorphisms that disprove the Hauptvermutung are thus measurably more complex than those known previously.

The C^{∞} Hauptvermutung lends credence to the following seemingly difficult conjecture due to Kirby and Scharlemann [5]. Consider the least pseudo-group MCCG_n of homeomorphisms on R^n which contains all C^{∞} homeomorphisms of open subsets of R^n .

CONJECTURE: The isomorphism classification of $MCCG_n$ manifolds coincides naturally with the isomorphism classification of PL n-manifolds without boundary.

It can be shown that every PL homeomorphism of open subsets of \mathbb{R}^n is in MCCG_n, see [5], []³. Thus MCCG can be regarded as an enlargement of PL to contain DIFF, an enlargement which might eventually be useful in dynamics, group action theory, smoothing theory, etc. – espe-

¹ In [17, § 2] one can replace PL everywhere by DIFF with no essential change in proofs.

² In [17, § 2] one should choose the DIFF pseudo-isotopy $H:(I; 0, 1) \times B^2 \times T^n$ to be used to build h constant near 0 and 1 so as to prevent unwanted kinks in h.

³ Mistrust this assertion, as no proof has been written down. (Oct. 1974).

cially at points where mere homeomorphism seems too coarse a notion. The organization of this article is as follows:

Section 1. A C^{∞} /DIFF handle lemma for index ≤ 3 in any dimension; Section 2. A weak C^{∞} /DIFF handle lemma for index 4 in dimension 4; Section 3. Proof of an elaborated C^{∞} Hauptvermutung;

Appendix A. C^{∞} -smoothing an isolated singularity;

Appendix B. Potential counterexamples in dimension 4.

1. A C^{∞} /DIFF handle lemma for index ≤ 3

The proof of the C^{∞} Hauptvermutung will be based on two handlesmoothing lemmas 1.1 and 2.1 below.

DATA: Let B^k be the unit ball in R^k and let $f: M \to B^k \times R^n$ be a C^{∞} homeomorphism which is nonsingular near the boundary.

DEFINITION: AC^{∞} isotopy $f_t, 0 \leq t \leq 1$, of f will be called *allowable* if it fixes all points outside some compactum in $(\operatorname{int} B^k) \times R^n - \operatorname{i.e.}$ it has compact support in $(\operatorname{int} B^k) \times R^n$.

1.1. C^{∞} /DIFF HANDLE LEMMA (index ≤ 3): For $f: M \to B^k \times R^n$ as above and k = 0, 1, 2, 3, there is an allowable isotopy of f to a C^{∞} homeomorphism f_1 which is non-singular near $f_1^{-1}(B^k \times 0)$.

Recall that for index k = 3, the C^0 version of this lemma is false, a key failure of the C^0 Hauptvermutung [6].

PROOF of 1.1: Our first step is to allowably isotop f so that $0 \in \mathbb{R}^n$ is a regular value of the projection $p_2 f: M \to \mathbb{R}^n$. Choose a regular value y_0 in \mathbb{R}^n with $|y_0| < \frac{1}{2}$. Let $\psi_t, 0 \le t \le 1$, be a diffeotopy (non-singular \mathbb{C}^∞ isotopy) of id $|\mathbb{R}^n$ with support in \hat{B}^n carrying y_0 to 0. Let $\gamma: B^k \to [0, 1]$ be a \mathbb{C}^∞ map such that $\gamma = 0$ near ∂B^k and f is nonsingular over $\{\gamma^{-1}[0, 1)\} \times B^n$. Now

$$\Psi_t: B^k \times R^n \to B^k \times R^n$$

defined by $\Psi_t(x, y) = (x, \psi_{ty(y)}(y))$ for $0 \le t \le 1$ gives an allowable isotopy $f_t = \Psi_t f$ as desired. See figure 1a, which illustrates this manoeuvre for k = n = 1.

Revert to f as notation for $f_1 = \Psi_1 f$.

As a second step we will allowably isotop f by a squeeze so that the structure imposed by f on $B^k \times R^n$ is a product along R^n near $B^k \times 0$. Choose a small closed ε -ball B_{ε} about 0 in R^n such that $p_2 f$ is nonsingular over B_{ε} , hence a (trivial) smooth bundle projection over B_{ε} . Choose a trivialization φ of this bundle in a commutative diagram

With the help of a collar of ∂N we can arrange that on a neighborhood of $\partial N \times B_{\varepsilon}$, Φ coinsides with f^{-1} . See figure 1b, which illustrates the behavior of $f\varphi(x \times B_{\varepsilon})$ for 5 values of x in N.

Figure 1a.

Let $\Lambda:[0, \infty) \to [0, \infty)$ be a smooth map such that $\Lambda([0, \varepsilon/2]) = 0$ while $\Lambda:(\varepsilon/2, \infty) \to (0, \infty)$ is a diffeomorphism equal to the identity on $[\varepsilon, \infty)$; then define a C^{∞} homotopy $\lambda_t: \mathbb{R}^n \to \mathbb{R}^n, 0 \leq t \leq 1$, by

$$\lambda_t(y) = (1-t)y + t \frac{\Lambda(|y|)}{|y|} y$$

where $\Lambda(|y|)/|y|$ is understood to be zero for y = 0. Define an allowable isotopy (see figure 1c)

$$f_t: M \to B^k \times R^n$$

to be fixed outside $f^{-1}(B^k \times B_{\varepsilon})$ and to send $\varphi(x, y) \in \varphi(N \times B_{\varepsilon}) = f^{-1}(B^k \times B_{\varepsilon})$ to $(p_1 f(x, \lambda_t(y)), y) \in B^k \times R^n$. It is not difficult to see that this completes the second step. Again revert to f as notation for f_1 .

The handle lemma is now clearly reduced to the handle problem posed by $f^{-1}(B^k \times 0) \rightarrow B^k \times 0$. Thus it remains only to prove 1.2. LEMMA: If $f: M \to B^k$, k = 0, 1, 2, 3, is a C^{∞} homeomorphism which is nonsingular near ∂M , then f is C^{∞} isotopic rel ∂M^1 to a diffeomorphism.

PROOF OF LEMMA 1.2: By relative uniqueness of smooth structures in dimension ≤ 3 , [10] [12] [8] there is a diffeomorphism $\alpha: B^k \to M$ which is inverse to f near the boundary. Then $f' = f\alpha: B^k \to B^k$ extends by the identity map to a C^{∞} -homeomorphism $S^k \to S^k$ where we identify B^k to B^k_+ in S^k . This map in turn extends to a C^{∞} -homeomorphism $B^{k+1} \to B^{k+1}$ by the smoothing lemma of Appendix A.

We now have a C^{∞} -homeomorphism $B^{k+1} \to B^{k+1}$ which is the identity near $B^k_- \subset \partial B^{k+1}$ and $f\alpha$ on $B^k_+ \subset \partial B^{k+1}$. Let $\theta: B^{k+1} \to B^k \times I$ be a homeomorphism which sends B^k_+ onto $B^k \times \{0\}$ and is a diffeomorphism except where corners are added in B^k_- . Then $\theta F \theta^{-1}: B^k \times I \to B^k \times I$ is the identity near $B^k \times \{0\} \cup \partial B^k \times I$ and hence a C^{∞} -homeomorphism everywhere. Now $\theta F \theta^{-1}(\alpha^{-1} \times id_I)$ is the required C^{∞} -isotopy from f to a diffeomorphism.

This completes the proof of Lemma 1.2 and with it the proof of the C^{∞} /DIFF handle lemma for index ≤ 3 .

ASSERTION: In the above proofs the use of relative uniqueness theorems for smooth structures in dimension ≤ 3 can be replaced by the smooth Alexander-Schoenflies theorems in dimension ≤ 3 (the latter are easily proved, c.f. Cerf [1, Appendix]).

PROOF OF ASSERTION: First note that these Schoenflies theorems suffice to prove Lemma 1.2 in case M is known to embed smoothly and non-singularly in R^k .

Next suppose the assertion established for index < k. (It is trivial for index 0.) Then deal with index k by establishing Lemma 1.2 for index k using the smooth Schoenflies theorem in dimension k, as follows. Smoothly triangulate B^k so finely that

(*) For each k-simplex σ of B^k , $f^{-1}(\sigma)$ lies in a co-ordinate chart of M.

The index $\langle k \rangle$ case suffices to get a C^{∞} isotopy of f rel ∂M to an f_1 that is nonsingular over the (k-1)-skeleton and still satisfies (*). Then the smooth Schoenflies theorem suffices, by our first remark, to establish Lemma 1.2 for index k.

2. A weak C^{∞} /DIFF handle lemma for index 4

The C^{∞} /DIFF handle problem for index 4 and dimension 4 admits a

¹ i.e. isotopic fixing a neighborhood of ∂M .

weak solution based on the weak Schoenflies theorem for dimension 4 (given by Rourke and Sanderson [14, 3.38])¹:

THEOREM: Let $S \subset \mathbb{R}^4 - 0$ be a smoothly embedded 3-sphere, and let T be the closure of the bounded component of $\mathbb{R}^4 - S$. Then T - 0 is diffeomorphic to $\mathbb{B}^4 - 0$.

DEFINITION: We call a homotopy h_t , $0 \le t \le 1$, almost compact if, for each $\tau < 1$, the homotopy h_t , $0 \le t \le \tau$, has compact support.

2.1. **PROPOSITION:** Suppose M^4 is a smooth submanifold of R^4 , and $f: M \to B^4$ is a C^{∞} homeomorphism which is a diffeomorphism over a neighborhood of the boundary ∂B^4 . Then there is an isotopy rel boundary $f_t: M \to B^4$, $0 \le t \le 1$, such that:

- (i) $f_o = f$ and f_1 is a diffeomorphism over $B^k \{p\}$ for some point $p \in int B^4$.
- (ii) f_t restricts to a C^{∞} almost compact isotopy $M f^{-1}\{p\} \rightarrow B^k \{p\}$.
- (iii) f_t is fixed over some smooth path from p to ∂B^4 .

PROOF OF 2.1: Without loss of generality we may assume there is a radius of B^4 over which f is nonsingular. In this case we will make $p = \{0\} \in B^4$ and cause the path mentioned in (iii) to be this radius. By the weak Schoenflies theorem, we can find a homeomorphism $\alpha: B^4 \to M$ such that $f\alpha: B^4 \to B^4$ restricts to a diffeomorphism $(B^4 - 0) \to (B^4 - 0)$ and is the identity near ∂B^4 . We can alter α rel boundary by a diffeotopy of $(B^4 - 0) \stackrel{\alpha}{\to} M^4 - f^{-1}\{0\}$, so that $f\alpha$ is also the identity on the chosen radius. This requires just a proper version, applied to $\alpha|(\text{open radius}), \text{ of Whitney's (ambient) isotopy theorem cf. [2].}$

Identifying $B^4 - \{0\}$ naturally to $\partial B^4 \times R_+ = \partial B^4 \times [0, \infty)$ we are only required to find, for a certain $\{q\} \in \partial B^4$, an almost compact C^∞ -isotopy f'_t , $0 \le t \le 1$, fixing $\{q\} \times R_+$ and a neighborhood of $\partial B^4 \times \{0\}$, from $f' = f \circ \alpha : \partial B^4 \times R_+ \to \partial B^4 \times R_+$ to a diffeomorphism. Once this is accomplished the required isotopy f_t of f will be $f_t(f^{-1}(0)) = 0$ and $f_t(x) = f'_t \circ \alpha^{-1}(x)$ for $x \in M - f^{-1}(0)$.

Let $\mu_t: [0, \infty) \to [0, \infty)$ be an almost compact smooth (into) isotopy from the identity to a diffeomorphism $\mu_1: [0, \infty) \to [0, \varepsilon)$. (Only μ_1 is not onto.) Let $\varepsilon > 0$ be so small that f' is a diffeomorphism on $S^3 \times [0, \varepsilon)$. Define $f'_t: \partial B^4 \times [0, \infty) \to \partial B^4 \times [0, \infty)$ to be

$$\{(\mathrm{id}|\partial B^4) \times \mu_t\} \circ f' \circ \{(\mathrm{id}|\partial B^4) \times \mu_t^{-1}\}.$$

¹ It is a down to earth version of Mazur's proof of the topological Schoenflies theorem [9].

[7]

It clearly has the right properties and completes the proof of Proposition 2.1.

3. Proof of an elaborated C^{∞} Hauptvermutung

3.1. THEOREM: (C^{∞} Hauptvermutung). Consider a C^{∞} homeomorphism $f: M' \to M$ of smooth m-dimensional manifolds equipped with Whitehead triangulations. Suppose f is also a PL equivalence over a neighborhood of some closed subset C of M.

In case dim M = 4 or dim $\partial M = 4$ we make some provisos. If dim M = 4 we suppose that each component of the complement of C in M has noncompact closure in M. In case dim $\partial M = 4$ we suppose that each component of $\partial M - C$ has noncompact closure in ∂M .

- (I) Then, for $m \leq 4$, there exists a C^{∞} isotopy rel C from f to a diffeomorphism.
- (II) For m = 5 or 6, there exists a topological isotopy rel C from f to a diffeomorphism.
- (III) For all m, there exists a topological isotopy rel C from f to a PL homeomorphism.

The salient advance beyond [15] is clearly the case of open 4-manifolds in (III). Note that (II) is implied by (III) and classical smoothing theory (but we naturally get to (II) first).

REMARK 1: If f is a C^{∞} homeomorphism which is a PL equivalence near C, then f will be non-singular near C. Indeed f PL implies that for each (closed) principal simplex σ of a suitable subdivision of M', f maps σ linearly into a principal simplex of M, hence C^{∞} non-singularly with rank m into M as a C^{∞} manifold. Thus, in the above theorem, f is actually nonsingular near C.

REMARK 2: The provisos concerning dimension 4 can be eliminated if and only if the smooth 4-dimensional Schoenflies conjecture is true. (See Appendix B and Lemma 1.2.)

REMARK 3: It is easy to believe that in (II) the isotopy can be C^{∞} .

REMARK 4: The isotopies produced by 3.1 can be made as small as we please for the strong (majorant) topology – except possibly where dimension 4 manifolds or boundaries intervene. This is accomplished merely by using sufficiently *fine* Whitehead C^1 triangulations in the proofs to follow.

3.2. Proof of 3.1 Part I: Manifolds of dimension ≤ 4 .

This is by far the most delicate part.

Exploit smooth collars of $\partial M'$ and ∂M corresponding under f near C to C^{∞} isotope f rel C by a classical squeezing argument (cf. proof of 1.1) so that f becomes a product near the boundary along the collaring interval factor. This property is to be preserved carefully through all changes of f.

Select a smooth Whitehead triangulation of M so fine that f is nonsingular over a subcomplex containing C, and the preimage of each 4simplex lies in a co-ordinate chart. With no loss of generality we suppose now that C is a subcomplex.

Apply the C^{∞}/DIFF handle lemma 1.1, around the smooth open ksimplices $\overset{\circ}{\sigma} \cong R^k$ of M in order of increasing dimension for k = 0, 1, 2, 3, to make f nonsingular over a neighborhood of the 3-skeleton of M. When $\overset{\circ}{\sigma}$ lies in ∂M the handle lemma gives a C^{∞} isotopy of $f |: \partial M' \to \partial M$ which we must damp out along the collaring interval factor to get a C^{∞} isotopy of f. The proof is now complete for $m \leq 3$.

Suppose now that m = 4. It is easy to choose the handles so near to the open simplices that for each 4-simplex σ , the preimage of σ remains in its co-ordinate chart throughout the isotopy constructed thus far.

Using the index 4 weak C^{∞} /DIFF handle lemma 2.1, we could give an *isotopy* of f over smooth 4-handles in the open 4-simplices to obtain a homeomorphism which is a diffeomorphism on the complement of center points of these 4-handles. There is a well-known *trick* that then provides a diffeomorphism homotopic to f when M is open. But, to ensure the C^{∞} isotopy asserted by 3.1 we must now take some care and execute the isotopy and the trick *simultaneously*.

After making f nonsingular over a neighborhood of the 3-skeleton, we have a C^{∞} homeomorphism $f: M' \to M$ which is nonsingular except well within the interior of the preimage of a smooth 4-handle B_i inside each 4-simplex $\mathring{\sigma}_i$. We extend the smooth arcs given by the weak C^{∞}/DIFF handle lemma 2.1 obtaining, for each 4-handle B_i , a point p_i in int B_i and a smooth arc α_i from p_i to ∞ in the complement of C. Here we use the curious proviso that these components are unbounded in M. We can arrange that $\alpha_i \cap \partial M = \phi$, that $\alpha_i \cap \alpha_j = \phi = \alpha_i \cap B_j$ for $i \neq j$ and that the union of the α_i is a properly embedded smooth submanifold of M.

The weak index 4 handle lemma provides an isotopy $f_t: M' \to M$ such that

- (a) $f_0 = f$ and f_1 is a diffeomorphism over $M \bigcup_i \{p_i\}$
- (b) $f_t(M' \bigcup_i f^{-1}\{p_i\})$ is an almost compact C^{∞} isotopy in $M \bigcup_i \{p_i\}$.
- (c) f_t is constant over each smooth arc α_i .

Extend the smooth arcs α_i and $f_1^{-1}\alpha_i = f^{-1}\alpha_i$ slightly to smooth arcs $\beta_i: R_+ \to M$ and $\beta'_i: R_+ \to M'$ parametrized so that $\beta_i(1) = p_i$.

Choose disjoint closed tubular neighborhoods $\overline{\beta}_i: R_+ \times B^3 \to M$ and $\overline{\beta}'_i: R_+ \times B^3 \to M'$ of β_i and β'_i such that their sum over *i* is a properly embedded submanifold of *M* and *M'* respectively.

Define an isotopy $g_t: M \to M, 0 \leq t \leq 1$, by

- (i) $g_t(x) = x$ if t = 0 or x is outside the normal tubes $\text{Im}(\overline{\beta}_i)$.
- (ii) For x in Im $(\overline{\beta}_i)$, say $x = \overline{\beta}_i(u, v)$,

$$g_t(x) = \overline{\beta}_i(\overline{\mu}_{t(1-|v|)}(u), v).$$

where $\bar{\mu}_t: R_+ \to R_+$ is an almost compact smooth nonsingular (into) isotopy with $\bar{\mu}_1(R_+) = [0, 1)$, adjusted to be constant near t = 0 and t = 1. This is an almost compact smooth into isotopy of id|M with

$$g_1 M = M - \bigcup_i \alpha_i = f_1 (M' - \bigcup_i \alpha'_i).$$

Define $g'_t: M' \to M'$ similarly.

Consider the composed isotopy $f_t^* = g_t^{-1} \circ f_t \circ g'_t \colon M' \to M, 0 \leq t \leq 1$. Since $f_1 g'_1 M' = g_1 M$ and f_t is a C^{∞} isotopy for t < 1 while f_1 is a diffeomorphism over $g_1 M$, this f_t^* is a C^{∞} isotopy. It runs from f to a diffeomorphism and finally establishes Part I.

3.3. Proof of 3.1, Part II: 5- and 6-manifolds

As in the proof of Part I we can find an isotopy of f rel C to make f a diffeomorphism over a neighborhood of the 3-skeleton of M.

If dim $\partial M = 4$, we can even use Part I to make f a diffeomorphism over a neighborhood of ∂M .

As in part I, f can be, near the boundary, always a product along the interval factor of collarings of the boundaries.

Applying a TOP/DIFF handle lemma to handles of index 4, 5, and 6 with cores in the open simplices of M of increasing dimension 4, 5, and 6 we can now topologically isotop f rel C and rel the 3-skeleton to a diffeomorphism. More precisely the TOP/DIFF version of the TOP/PL handle straightening theorem of [6] is to be used. No immersion theory is required; the associated torus problem – presented by an exotic structure

$$(B^k \times T^n)_{\Sigma}, \quad k+n = m, \quad k = 4, 5, 6,$$

standard near the boundary – may be solved by simply connected surgery. To do this, first use the Product Structure Theorem [7, § 5] to reduce to the two cases (i) $k = k + n \ge 5$; (ii) k = 4, n = 1. Then for $k = k + n \ge 5$ we solve by the smooth Poincaré Theorem [3]. The remaining case k = 4, n = 1 is reduced by [18, § 5] to a surgery problem rel boundary with target $B^4 \times [-1, 1]$ – which is just the smooth Poincaré Theorem for dimension 5 [3]. Compare [16] [4].

3.4. Proof 3.1, Part III, the C^{∞} Hauptvermutung

Following the proof for part II, we isotop f rel C to make f a diffeomorphism over a neighborhood of $C \cup M^{(6)}$. As f is already PL over a neighborhood of C the (relative) Whitehead triangulation uniqueness theorem [13] provides an isotopy of f rel C making f PL over a neighborhood of $C \cup M^{(6)}$.

Now we can further isotop f rel $C \cup M^{(6)}$ to a PL homeomorphism using the TOP/PL handle straightening lemma of [6] for handle index values ≥ 6 . We note no sophisticated techniques are required here; for example the Product Structure Theorem of [7] (based on handlebody theory) reduces the straightening lemma of [6] for index $k \geq 6$ to the PL Poincaré theorem for a disc of dimension k.

Appendix A. C^{∞} -smoothing an isolated singularity

The proof of the following proposition was given to us by C. T. C. Wall, when we had proved just a special case sufficient for the C^{∞} Hauptvermutung.

PROPOSITION A.1: Let $f: \mathbb{R}^r \to \mathbb{R}^s$ be a continuous map that is \mathbb{C}^{∞} on $\mathbb{R}^r - 0$. There exists a \mathbb{C}^{∞} homeomorphism $\mu: [0, \infty) \to [0, \infty)$ (depending on f) such that the map $h: \mathbb{R}^r \to \mathbb{R}^s$, $h(x) = \mu(||x||^2) f(x)$ is a \mathbb{C}^{∞} mapping.

PROOF OF A.1: Write

$$N_{n,r}(f) = \sup\left\{ \left\| \frac{\partial^{I} f}{\partial x^{I}} \right\| : \frac{1}{n+1} \leq ||x||^{2} \leq \frac{1}{n-1}, |I| = r \right\}.$$

Choose a decreasing sequence c_n with $c_n N_{n,r}(f) \to 0$ as $n \to \infty$ for each r (easily done by diagonal process). If μ is C^{∞} -homeomorphism of $[0, \infty)$, nonsingular on $(0, \infty)$ and flat at 0, with $\mu^{(s)}(y)/c_n y \to 0$ as $y \to 0$ for all s (where n depends on y by $1/(n+1) \leq y \leq 1/(n-1)$ then $g(x) = \mu(||x||^2)$ is C^{∞} , and as

 $D^{I}(fg) = \Sigma(D^{J}f D^{K}g; J + K = I)$ by Leibnitz' theorem,

 $D^{J}f$ is estimated by an $N_{n,r}(f)$ and $D^{K}g$ by $c_{n}||x||^{2}$, we have $D^{I}(fg) \to 0$ as $||x|| \to 0$. Thus by induction if we define h(x) = f(x)g(x) ($x \neq 0$) h(0) = 0, h is flat at 0 as required.

We construct $\mu(y) = \int_0^y \mu'$ defining first μ' so that, for small y, $\mu'(y) = \sum_2^\infty 2^{-n} c_{n+1} B\{(n^2 - 1)y - n\}$, where B(x) > 0 for ||x|| < 1 and = 0 otherwise. At most 2 terms in the summation can be nonzero, and since each $B^{(s)}(x)$ is bounded, the desired estimates follow easily.

Appendix B. Potential Counterexamples in Dimension 4

It is clear that a positive solution to the smooth (or PL) Schoenflies conjecture in dimension 4 would eliminate the conditions concerning dimension 4 in the C^{∞} Hauptvermutung 3.1. Conversely we show now that a counterexample to this conjecture would give a counterexample to the C^{∞} Hauptvermutung for compact (even closed) 4-manifolds.

PROPOSITION: Suppose S is a smoothly embedded 3-sphere in $R^4 - 0$, and T is the closure in R^4 of the bounded component of $R^4 - S$. Then there exist C^{∞} homeomorphisms $B^4 \rightarrow T$ and $T \rightarrow B^4$ each with one singular point, at 0.

DISCUSSION: The 4-dimensional smooth Schoenflies conjecture asserts that every such T is in fact diffeomorphic to B^4 , (equivalently PL isomorphic to B^4 , cf [12]). So it is immediate that a counterexample T to this conjecture would yield a counterexample $T \rightarrow B^4_-$ to the C^{∞} Hauptvermutung. By capping off with 4-discs it also yields a counterexample $M = T \cup B^4_+ \stackrel{C\infty}{\to} S^4$ for closed 4-manifolds. In each case there is just one singularity.

PROOF OF PROPOSITION: Mazur's Schoenflies argument (as reworked in [14, 3.38] yields a diffeomorphism $f:(R^4-0) \rightarrow (R^4-0)$ with $f(B^4-0) = T-0$. Then application of Lemma A.1 to f and f^{-1} respectively yields the asserted homeomorphisms.

BIBLIOGRAPHY

- [1] J. CERF: $\Gamma_4 = 0$. Springer Lecture Notes in Math., No. 53 (1968).
- [2] M. HIRSCH: On tangential equivalence of manifolds. Ann. Math. 83 (1966) 211-217.
- [3] M. KERVAIRE and J. MILNOR: Groups of homotopy spheres I. Ann. of Math. 77 (1963) 504–537.
- [4] R. C. KIRBY: Lectures on triangulation of manifolds mimeo U. of Calif., Los Angeles, 1969.
- [5] R. C. KIRBY and M. G. SCHARLEMANN: A curious category which equals TOP. Proceedings of Tokyo Topology Conference of April 1973.
- [6] R. C. KIRBY and L. C. SIEBENMANN: On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75 (1969) 742–749.

- [7] R. C. KIRBY and L. C. SIEBENMANN: Deformation of smooth and piecewise-linear manifold structures. Essay I of monograph (to appear).
- [8] R. C. KIRBY and L. C. SIEBENMANN: Classification of sliced families of smooth or piecewise-linear manifold structures. Essay V of monograph (to appear).
- [9] B. MAZUR: On embeddings of spheres. Acta Mathematica 105 (1961) 1-17.
- [10] E. MOISE: Affine structures on 3-manifolds. Ann. of Math. 56 (1952) 96-114.
- [11] J. MILNOR: Topology from the differentiable viewpoint. Univ. Press of Virginia, Charlottesville, 1965.
- [12] J. R. MUNKRES: Concordance of differentiable structures, two approaches. *Michigan Math. J. 14* (1967) 183–191.
- [13] J. R. MUNKRES: Elementary differential topology. Ann. of Math. Study, No. 54, Princeton U. Press, 1962.
- [14] C. ROURKE and B. J. SANDERSON: Introduction to piecewise-linear topology. Springer-Verlag, 1972.
- [15] M. G. SCHARLEMANN and L. C. SIEBENMANN: The Hauptvermutung for smooth singular homeomorphisms, (to appear in 1974 along with [5]).
- [16] J. SHANESON: Embeddings with codimension two of spheres and *h*-cobordisms of $S^1 \times S^3$. Bull. Amer. Math. Soc. 74 (1968) 972–974.
- [17] L. SIEBENMANN: Topological manifolds. Proc. Int. Cong. Math. Nice, 1970, Gauthier Villars, Paris, 1971.
- [18] C. T. C. WALL: Bundles over a sphere. Fund. Math. 61 (1967) 57-72.

(Oblatum 15-III-1974)

University of Liverpool Department of Pure Mathematics Liverpool, Great Brittain