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Abstract

There is a uniformly convex Banach space with unconditional basis
which contains no subspace isomorphic to any lp (1  p  ~). The space
may be chosen either to have a symmetric basis, or so that it contains
no subsymmetric basic sequence.

It is proved that a super-reflexive space with local unconditional
structure can be equivalently normed so that its modulus of convexity
is of power type.

1. Introduction

Recently Tsirelson [11] constructed an example of a reflexive Banach
space with unconditional basis which contains no super-reflexive
subspace and no subsymmetric basic sequence. This was the first example
of a Banach space which contains no subspace isomorphic to any lp
(1 ~ p  ~) or co. In section 2 we construct the space, hereafter called
T, conjugate to that of Tsirelson’s and give another proof that T and T*
have the aforementioned properties. We present this alternate approach
to Tsirelson’s space for three reasons: (1) There is a simple analytical
description of the norm of T which allows a more elementary argument
than that used by Tsirelson and gives an analytical rather than geo-
metrical description of the example. (2) The ’forcing method’ employed
by Tsirelson to construct his example is more clearly evident in the
analytic construction of the conjugate space. (3) In section 4 we apply a
convexity procedure to the norm of T to construct a uniformly convex
space. The proof that this space contains no subsymmetric basic sequence
makes use of some inequalities involving the norm on T
At the end of section 2, we use a variation of the construction used in

[1] to show that there is a reflexive space with symmetric basis which
contains no super-reflexive subspace (and hence no isomorphic copy

1 The second named author was supported in part by NSF GP-33578.
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of any lp). This symmetrization procedure is modified in section 4 to
yield a uniformly convex space with symmetric basis which contains no
lp. 

In section 3 we show that if Y has an unconditionally monotone basis
which satisfies a lower lq estimate (1  q  ~) and there is a p &#x3E; 1 so

that the norm on Y is p-convex (cf. Section 3 for definitions) then Y is
uniformly convex and in fact the modulus of convexity for Y dominates
Kp82 +q for some positive constant Kp. This result and a renorming
lemma yield the last result mentioned in the abstract.
Our notation is standard for Banach space theory. We recall only that

a basis (en) is unconditionally monotone provided

A basis (en) is : subsymmetric if it is equivalent to each of its subsequences;
symmetric if it is equivalent to each of its permutations. d(X, Y) denotes
the Banach-Mazur distance coefficient inf {~L~·~L-1~}, the inf over all
invertible linear operators from X onto Y For 1 ~ p ~ oo, X is said
to contain lI’s uniformly for large n provided there exists a sequence
(Xn) of linear manifolds in X with sup d(Xn, lp)  oo. If also there are

projections Pn from X onto Xn with sup IIPnll  oo, then X is said to
contain uniformly complemented . for large n.

Finally, ’subspace’ means ’infinite dimensional closed linear subspace.’
We would like to thank Professor W. J. Davis for several useful

discussions on the symmetrization procedure used in sections 2 and 4,
and Professor H. P. Rosenthal for drawing our attention to Proposition
3.4 in [3].

2. The conjugate to Tsirelson’s example

We work with unconditionally monotone norms on X, the space of
scalar sequences which have only finitely many non-zero terms. Given
x e X and E a set of integers, Ex is the sequence which agrees with x
at coordinates in E and is zero in other coordinates. Thus ~Ex~ ~ ~x~
for any unconditionally monotone norm ~·~ on X.

If E, F are finite sets of integers, we write E  F if max E  min F.
Given finite sets El, E2,···, Ek of integers, we say (Ej)kj=1 is admissible

provided the E’js are increasing (in the sense that Ei  Ei+1), and
{k}  El.
We define a sequence of norms on X as follows:
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Il. lin is an increasing sequence of monotonely unconditional norms on
X, so ~x~ = lim IIxlln is a monotonely unconditional norm on X. It can
be shown that the completion T of (X, ~·~) is the conjugate to the space
constructed by Tsirelson. It is clear that ~·~ has the following property
(in fact, 11 - 11 is the unique norm on X with this property):

Suppose that (xi)ki=1 ~ X with supp xi increasing, 1 lxil = 1, and

supp x1 ~ [k + 1, oo ). It follows from the definition of ~·~ that, for any
scalars

Thus, (xi)ki 1 is 2-equivalent to the unit vector basis of 1’. From this it
follows that any normalized block basic sequence of the unit vector basis of
(X, 1 - ~) has, for each k, subsequences of length k which are 2-equivalent to
the unit vector basis of 1§ . Thus, no subspace of the completion T of
(X, ~·~) is super-reflexive, and Tdoes not contain an isomorphic copy of
lp (1  p  oo ) or co. We have also that any subsymmetric basic sequence
in T must be equivalent to the unit vector basis of li . Since T has an
unconditional basis, we can show that T is reflexive and contains no
subsymmetric basic sequence by proving that 11 is not isomorphic to a
subspace of T.

To this end we prove the following

LEMMA 2.1: For every a &#x3E; 1 there is a 03B2  2 (in fact fi ~ Y3 + oc 1»
so that if xo, x1,···, x. are in X with

and m ? ak, then

Once Lemma 2.1 has been proved, we complete the proof that T does
not contain any subspace isomorphic to ll as follows: By a result of
James’ [7], if T contains an isomorphic copy of ll , then there is a sequence
(zn) of unit vectors in T which js 9 8-equivalent to the unit vector basis of
ll. By a standard gliding hump argument, we can assume that (zn) is
a block basic sequence of the unit vectors in X. If supp z, g [1,···, k],
we have from Lemma 2.1 that
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and thus (zn) cannot be 9 8-equivalent to the unit vector basis of Il .
We turn to the proof of Lemma 2.1. In view of (*) it is enough to show

that, whenever (Ej)nj=1 is admissible,

(1) is clear with any 03B2 ~ 1 when n ~ k, because then Ejx0 = 0 for each
1 ~ j ~ n by admissibility of (Ej). So assume that n  k and let

Of course, the cardinality of A is at most n - 1. Using this, the triangle
inequality, and (*), we have that

This completes the proof.

REMARK 2.1: A simple duality argument shows that every infinite

dimensional subspace of T* contains 1". uniformly for large n, hence T*
also contains no subsymmetric basic sequence.
The rest of this section is devoted to the construction of a reflexive

space Y with symmetric basis which contains no lp . We use the factoriza-
tion technique of [1] and follow the notation used there.

Let W be the unit ball of ll considered as a subset of co. For n = 1, 2,···,
let Un = 2nW+2-n Ballco and let ~·~n be the gauge of Un . Set

where ~·~ is the norm in the space T. The remark after Lemma 1 in [1]
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yields that Y is reflexive and the unit vectors form an unconditional basis
for Y Now if n is a permutation of the integers and x = (x(i)) is in W
(respectively, Ballco)’ then (x(7r(f))) is also in W (respectively, Ballco). From
this it follows easily that the unit vectors form a symmetric basis for Y.

Let

Note that the map Y - Z defined by y - (y, y, y, ... ) is an isometry. So in
order to show that Y contains no isomorph of any lp it is sufficient to
prove that each reflexive subspace of Z contains a subspace which
embeds into T. Since co has no reflexive subspaces, this is an immediate
consequence of the following known lemma :

LEMMA 2.2: Let (Xn) be Banach spaces, let E be a space with normalized
unconditional basis, and suppose V is a subspace of (03A3 Xn)E. Assume that
for each n, P nlV is strictly singular, where Pm : (E Xn)E ~ Xm is the natural
projection. Then V has a subspace which embeds into E.

PROOF : The hypothesis yields that the natural projections Qm : (E X n)E
X, + ... + X m are strictly singular, hence for each m and e &#x3E; 0 there

is vm E V with ~vm~ = 1 and 11 Q. v. 11  e. Thus by standard gliding hump
and stability arguments, there is an increasing sequence (nk) of positive
integers and vectors xn ~ Xn so that

are unit vectors and span (Zk) is isomorphic to a subspace of V. But let

yk = yk(i) E E be defined by

It is clear that (zk) is equivalent to (yk). This completes the proof.

3. Renorming of super-reflexive spaces with unconditional bases

We digress from our study of Tsirelson-type examples and study
general spaces with unconditional. bases. First we need some notation.
Throughout this section (EJH!) will be a space with monotonely un-
conditional basis (en, e*n). The norm on E is p-convex (respectively,
p-concave) provided that ~03A3(|xi|p+|yi|p)1/pei~p~~03A3xiei~p+~03A3yiei~p
(respectively, ~03A3(|xi)p+|yi|p)1/pei~p ~ ~03A3xiei~p+~03A3yiei~p) for all scalars



184

(xi) and (yi).~·~ satisfies an upper lp estimate (respectively, lower lp estimate)
provided ~x+y~p ~ ~x~p+~y~p (respectively, IIx + yliP ~ ~x~p+~y~p)
whenever x and y are disjointly supported relative to (ei). It is clear that
if ~·~ is p-convex (respectively, p-concave), then it satisfies an upper

(respectively, lower) lp estimate.
The renorming lemma we prove is that if E is super-reflexive then E

admits an equivalent unconditionally monotone norm which is p-convex
and q-concave for some 1  p, q  oo. This result (which is a very easy
consequence of an important result of Rosenthal/Maurey [10], [9] and
an observation of Dubinsky, Pelczynski, and Rosenthal [3]) justifies the
main result of this section:

THEOREM 3.1: Assume that the norm on E is p-convex and satisfies a
lower lq estimate (1  p ~ q  ~). Then E is uniformly convex and the
modulus of convexity for E satisfies 03B4E(03B5) ~ KB2+q for some positive
constant K = K(p).

In order to prove the renorming lemma, we need

LEMMA 3.1: Suppose (E, 1 ~) does not contain ln~ uniformly for large n.
Then there is q  oo so that E admits an equivalent unconditionally
monotone q-concave norm.

PROOF : By Maurey’s extension [9] of Rosenthal’s theorem [10],
there is q  oo so that every operator from co into E is q-absolutely
summing. The proof of Proposition 3.4 of [3] then yields that there is a
constant K so that

for every sequence

Define 1.1 on E by

It is clear that 1.1 is unconditionally monotone (since ~·~ is), symmetric,
positive homogeneous, and, by (3.1), is equivalent to ~·~. The q-concavity
of 1.1 is also obvious. There are various ways of seeing that 1.1 satisfies
the triangle inequality. For example, let A be the set of all
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for which aij ~ 0 and 03A3mi=1 a1j = 1 for each j = 1, 2,···, and let

Clearly Ixla is a semi-norm and Ixl = sup {|x|a:a c- sll. This completes
the proof.
By duality (cf. the proof of Proposition 3.4 in [3]) we have

REMARK 3.1: Assume that E does not contain uniformly complemented
l i’s for large n. Then by Lemma 3.1 there is an equivalent unconditionally
monotone norm on E which is p-convex for some p &#x3E; 1.

REMARK 3.2: Suppose that E does not contain 1" m uniformly for large
n and E does not contain uniformly complemented li’s for large n. Then
there is an equivalent unconditionally monotone norm on E which is

p-convex and q-concave for some 1  p ~ q  00.

PROOF : By Remark 3.1 we may assume that 11 - 11 is p-convex. Let q ~ p
so that (3.1) from Lemma 3.1 is satisfied for some constant K and renorm
E as in Lemma 3.1. We need only verify that 1.1 is p-convex. Suppose
x, y are in E and

is in A (A as in the proof of Lemma 3.1). We have

This gives that |03A3(|e*j(x)|p+|e*j(y)|p)1/pej|pa ~ |x|pa+|y|pa for each a in A,
and hence 1.1 is p-convex. This completes the proof.

In preparation for the proof of Theorem 3.1, we make a simple observa-
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tion : given p &#x3E; 1 there is a constant M = M(p) so that for all reals a
and b and N &#x3E; 0,

Certainly it is enough to verify (3.2) for small N and for such % the
hypothesis of (3.2) imply that ab &#x3E; 0, so we may assume a &#x3E; 1 &#x3E; b &#x3E; 0.

Write a = (1 + 03B2)1/p, b = (1-03B2)1/p for suitable 03B2~(0, 1) and observe that
there are positive constants c1 and c2 so that (1 +03B2)1/p-(1-03B2)1/p ~ c103B2
and 2-[(1+03B2)1/p+(1-03B2)1/p] ~ C2 p2.

PROOF OFTHEOREM 3.1: Let x, y be in E, ~x~ ~ 1, IIYII ç 1, and

~x+y~ ~ 2(1-03B4). Let

Clearly 0 ~ u ~ v and 1-03B4 ~ ~u~, while ~v~ ~ 1 by p-convexity of the
norm. Fix N, 03B4N1 and let S = {j: ej(u) &#x3E; (1-N)e*j(v)}. A
simple calculation (cf. the argument for Lemma III.7 of [8]) yields that
~Sv~ ~ 1-03B4N-1, so that by the lower lq estimate

Thus

To estimate ~S(x-y)~ we use (3.2) to get that for j in S,

so that

Thus

Setting N = b2/(q+2) we get the desired estimate. This completes the
proof.

We now indicate how the results of this section can be extended to

spaces with local unconditional structure (l.u.st.). Recall that a Banach
space Y has l.u.st. if Y = u Ea where the Ea’s are finite dimensional,
directed by inclusion, and Ea has a basis (ea)na 1 so that sup,, {unconditional
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constant of (e03B1i)}  oo. Assume that ( Y, ~·~) has l.u.st. given by (Ea) and
Y is super-reflexive; in particular, there is a k so that for any a, d(F, lk1) ~ 2
if F is any supspace of Ea or of E§f. By the Rosenthal-Maurey theorem,
there are p  oo and a constant K (p and K depend on k but not on a)
so that 03C0p(T) ~ KI I TI for any operator T from co into any Ea or E§f.
(7Tp(r) is the p-absolutely summing norm of T.) Thus by the proof of
Theorem 3.1, there are 1  q  oo, positive constants c 1 and c2, and

norms 1 la on Ea for each 11 so that ~y~ ~ |y|03B1 ~ c1~y~ I (y~E03B1), and
03B403B1(03B5) ~ C2 Eq, 03B4*03B1(03B5) ~ c2 Bq, where ba (respectively, 03B4*03B1) is the modulus of

convexity of (Ea, | la) (respectively, (E*03B1, | la)). By passing to a subnet of
(j - |03B1) we may assume that lyl = lima IYIa exists for each y c- Y Clearly 1 - | is
equivalent to the original norm on Y and the modulus of convexity of
(Y, |·|) and (Y*, |·|) both dominate c2 Eq. We have thus proved:

THEOREM 3.3: If Y is super-reflexive and has l.u.st. then there is an

equivalent norm |· | on Y so that the moduli of convexity of (Y, 1. 1) and
( Y*, |·|) both dominate CBP for some c &#x3E; 0 and p  00.

REMARK 3.3: If Y has l.u.st., Y does not contain 1" for large n, and Y
does not contain uniformly complemented l i’s for large n, then Y is
super-reflexive by the results of [8]. We do not see how to derive this
from the techniques of this section. However, if Y has an unconditional
basis, this result follows from the results of this section. Also, if Y has
l.u.st. and does not contain 11 uniformly for large n, then the proof of
Theorem 3.3 shows that Y is super-reflexive.

REMARK 3.4: Enflo [4] proved that every super-reflexive space Y
admits an equivalent uniformly convex norm. Theorem 3.3 shows that
if Y has l.u.st., the equivalent norm can be chosen so that its modulus of
convexity dominates a power function. We do not know whether this is
true if Y does not have l.u.st.

4. Uniformly convex examples of Tsirelson type

Let ~·~ be the Tsirelson norm on X constructed in Section 2. We recall
that ~·~ satisfies

Let (ei) denote the unit vectors in X. Fix 1  p, r  oo and define, for
x = (xi) in X,

Let ~·~2 be the dual norm to ~·~1 (considered still as a norm on X)
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and let |||x||| = ~03A3|e*i(x)|rei~1/r2 for x in X. Observe that !! ~1 is p-convex,
hence ~~2 is q-concave for

(cf., e.g. the proof of Proposition 3.4 of [3]). A trivial computation yields
that |||·||| is rq concave and, of course, 111.111 is r-convex. Thus by Theorem
3.1, the completion Z of (X, |||·|||) is uniformly convex.

In order to see that Z contains no copy of any lp, we trace what happens
to (*) and the inequality of Lemma 1 in this convexification of ~·~.
Suppose (Ei)ni=1 is admissible. Then for every x in X we have from (*)

and the definition of 11 - 11 1 that

Hence by duality we have for every x in X

whence for every x in X

From (4.1 ) and the rq concavity of |||·||| we have that any subsymmetric
basic sequence in Z is equivalent to the unit vector basis of lrq . 
To prove that lrq does not embed into A, we need to analyze the

inequality in Lemma 2.1 in the context of |||·|||. Assuming d, k, m, and fi
are as in Lemma 2.1, we have for (xi)mi=0 as in Lemma 2.1 that

A simple duality argument then yields for (xi)mi=0 as in Lemma 2.1 that

Interpreting this in terms oflll.111 we have for (xi)mi=0 as in Lemma 2.1 that

From an argument of James’ [7] (cf. Lemma 2.2 of [5] for an explicit
statement and proof) we have that if Z contains a subspace isomorphic
to Irq, then for every e &#x3E; 0 there is a sequence (zn) of vectors in X with
with Illznlll = 1 and
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Clearly (zj my be taken with supp zn  supp zn+1. Choose k with

supp zo c [1, k], set a = 2, choose m ~ ak, and let fi = 1 2(3+2-1) as in
Lemma 2.1. Set xo = zo , xi = m-1/rqzi. Substitution into (4.2) and (4.3)
leads to a contradiction when (1+03B5)p-1  203B2-1.
Our next goal is the construction of a uniformly convex space with

symmetric basis which contains no lp. To accomplish this we modify the
the construction at the end of Section 2.

Fix p, q, r in (1, ~) with p  q and let X n = (lq, Il. lin) where

We will prove that if E has a normalized unconditionally monotone basis,
then the diagonal subspace V = {(xn)~(03A3Xn)E: xn = xi for all nl satisfies
the hypothesis of Lemma 2. Letting E be the space Z constructed above,
we will thus have that contains no copy of any lp . The argument at the
end of Section 2 shows that Tl has a symmetric basis. Also, V is uniformly
convex. To see this, observe that the unit ball of X n is the image of the
unit ball of F = (lp (D lq)r under the linear operator Qn : F - lq defined by
Qn(y, z) = 2n y + 2 - "z, hence the modulus of convexity of X n (and inciden-
tally also of X:) is not worse than that of F. Thus by [2] or [6], (E Xn)z
is uniformly convex. (Alternatively, one can check directly that Theorem
3.1 can be applied to (E Xn)Z.) Let j be the projection of V onto the first
coordinate; jv = x for v = (x, x, x,···) in E Since all the norms Il lin are
equivalent to ~ Illq, it is sufficient to show that j is strictly singular when
considered as an operator into lq . Suppose to the contrary that there is
an infinite dimensional subspace U of V and a constant c so that

c~jv~lq ~ ~v~V for all v in E It is convenient for us to identify the element
v = (x, x,···) of V with jv = x in lq and write lllxlll for Ilvllv and ~x~ for
Ilxlllq. We thus have for x~jV that d~x~ ~ lllxlll, where d = IUII-1, and
for xEjU that lllxlll ~ cllxll.
Now fix positive integers n and N. A standard gliding hump argument

yields a sequence (xi) in jU and mutually disjoint finite sets (Ei) of integers
so that

We have

Consider a decomposition
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Since Ei xi = 2"E, w + 2 -"Ei z, we have 1 ~ IIEixil1 1 :,g 2nllEiwil +2-nIIEizll,
and thus one of the events IIEi wll ~ 2 - n -1 or IIEizl1 ~ 2n -1 must occur at
least N times, so by disjointness of the Ej’s we have that

From the definition of 11 - lin and the fact that p  q it thus follows that if
N is large relative to n, then

On the other hand, for all N

Of course, this estimate on ~03A32Ni=1 Eixi~n is incompatible with (4.3) if n
is large enough relative to c and d-1. This completes the proof that j
is strictly singular.

REFERENCES

[1] W. J. DAVIS, T. FIGIEL, W. B. JOHNSON, and A. PELCZYNSKI : Factoring weakly
compact operators. J. Functional Anal. 17 (1974).

[2] M. M. DAY: Some more uniformly convex spaces. Bull. Amer. Math. Soc. 47 (1941)
504-507.

[3] E. DUBINSKY, A. PELCZYNSKI, and H. P. ROSENTHAL : On Banach spaces X for which
03C02(£~, X) = B(£~, X). Studia Math. 44 (1972) 617-648.

[4] P. ENFLO: Banach spaces which can be given an equivalent uniformly convex norm.
Israel J. Math. 13 (1972) 281-288.

[5] P. ENFLO and H. P. ROSENTHAL : Some results concerning LP(03BC) spaces. J. Functional
Anal. 14 (1973) 325-348.

[6] T. FIGIEL : An example of an infinite dimensional Banach space non-isomorphic to
its Cartesian square. Studia Math. 42 (1972) 295-306.

[7] R. C. JAMES: Uniformly non-square Banach spaces. Ann. of Math. 80 (1964) 542-550.
[8] W. B. JOHNSON: On finite dimensional subspaces of Banach spaces with local un-

conditional structure. Studia Math. 51 (1974).
[9] B. MAUREY: Théorémes de factorisation pour les opérateurs linéaires á valeurs dans

les espaces Lp. Société Mathématique de France (1974).
[10] H. P. ROSENTHAL: On subspaces of Lp. Ann. of Math. 97 (1973) 344-373.
[11] B. S. TSIRELSON: Not every Banach space contains lp or c0.

(Oblatum 6-V-1974) The Ohio State University and
The University of California at Berkeley
The Ohio State University


