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CONTINUITY PROPERTIES OF THE INJECTIVITY
RADIUS FUNCTION

Paul E. Ehrlich

Let M" be a smooth manifold and let R(M) be the space of smooth
Riemannian metrics for M. Fix a complete metric g, in R(M) and an
arbitrary point p in M. Much of the Riemannian geometry of (M, g,)
is determined by the configuration of g,-radial geodesics at p, that is,
with the set of all g, ‘half geodesics’

c:[0,0) > M

with ¢(0) = p and ¢,(&(0), &(0)) = 1. Let C, (p) be the g,-cut locus at p,
let i) (p) : = dist, (p, C, (p)) be the g,-injectivity radius of M at p, and let
the g,-injectivity radius of M be

ig,(M) : = inf {i, (p); p in M}.

In understanding the global geometry of M, most notably in the proof
of the sphere theorem, it has been necessary to find lower bounds on
i, (M) for positively curved manifolds and to understand the map
p i (p) from M — R for a fixed complete metric g, e R(M). However,
no explicit study of the map

(9, p) P i,(p)

from R(M)x M — R has been made.

Our study of this map presented in this paper was motivated by our
study of metric deformations of curvature in [4]. We needed to know
that for M compact, the convexity radius function on R(M) was C?
locally minorized. That is, if g, € R(M) was given we can find constants
d(g,) > 0 and C(g,) > 0 such that if g in R(M) is d(g,) close to g, in the
C? topology on R(M), then any g-metric ball of g-radius < C(g,) would
be g-convex. In order to obtain this local minorization, we used Klingen-
berg’s minorization for i, (M) in terms of an upper bound for the sectional
curvature of (M, g,) and the length of the shortest smooth closed non-
trivial g,-geodesic. The first step was to show there exist constants
3(go) > 0 and L(g,) > 0 such that ge R(M) and g C? (g,) close to g,
implies that the length of the shortest smooth closed g-geodesic is greater
than L(g,). This we did by applying a result of J. Cheeger, [ 2], minorizing

151



152 P. E. Ehrlich [2]

the length of the shortest smooth closed geodesic for families of Rieman-
nian n-manifolds (M", g) with diameter less than d, volume greater than V,
and sectional curvature greater than H, for fixed constants d, V, and H.
The lower bound H on the sectional curvature evidently forced us to use
the C2-topology on R(M) to apply this local minorization. However
we will see in this paper that to prove the local minorization of the length
of the shortest smooth closed non-trivial geodesic, we need only C!-
closeness in R(M). Also there is no way to prove any of the lower semi-
continuity theorems using a result such as Cheeger’s theorem. It is
necessary to study the behavior of the radial geodesic configuration at
a point p in M for all metrics in a C* neighborhood of a given metric.

Let M, be a non-compact manifold, g, R(M,) complete, and let C
be a compact subset of M,. Then

Fe (M) @ = {gGR(M1)§ g = goin TMllM1—Int(C)}

is a family of complete metrics in R(M ). In order to prove a result in [4],
we needed to know that g - i (M) was C? locally minorized on families
of the form F. , (M,). Since M, is non-compact, the result of Cheeger
mentioned above does not apply and his proof cannot be modified to
apply to F¢ 4 (M). Hence the geometry of compact and non-compact
manifolds would be different if g > i)(M) was not C? locally minorized
for families of complete metrics F , (M), M non-compact. But it seemed
intuitively clear that R(M) and F , (M) should not seem different to the
injectivity radius functional g+ i (M). Once we take the point of view
of this paper that the local minorization of the injectivity radius functional
on R(M) for M compact should be derived by considering the radial
geodesic configuration, the local minorization for families of metrics of
the form F , (M) is immediate. The geometry of R(M) and F ,(M,)
from the point of view of the minorization of the injectivity radius
functional is identical.

In Section 1, we review some basic facts from Riemannian geometry
that relate i (p) to the behavior of the configuration of g-radial geodesics
from p. In Section 2 we prove an estimate for systems of first order
O.D.E’s which enables us in Section 3 to study the behavior of the
configuration of radial geodesics from p for all metrics in a C*' §-ball
about a given metric in R(M). In particular, if g is sufficiently close to
go in the C' topology and i,.(p) > Ry, there is no smooth closed g-
geodesic through p of g-length less than R,. In Section 4 for compact M
we uniformize this result to prove the C! local minorization of the
length of the shortest smooth non-trivial closed geodesic. In section 5
we prove for M compact and p in M fixed that g i (p) from R(M) > R
is lower semicontinuous. In Section 6 we use the continuity of p =i, (p)
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for g, e R(M) fixed and the lower semicontinuity of g +i,(p) for p in M
fixed to prove the lower semicontinuity of (g, p) =i (p) from R(M) x M — R
for M compact. We also discuss briefly the problem in extending these
results to the complete non-compact case. The basic problem is just the
technical difficulty involved in defining a C? topology for R(M) that is
independent of the choice of Riemann normal coordinates when M is
non-compact. In Section 7 we prove that for M compact the map g i (p)
is upper semicontinuous and hence continuous from R(M) — R with the
C? topology on R(M). We note that for the upper semicontinuity we need
the C? topology on R(M) to control (B) of Basic Lemma I of Section 1
whereas for the lower semicontinuity the C! topology on R(M) suffices
to control (B). It is then possible to see that for M compact, the map
9, )~ ip) from R(M)x M — R is upper semicontinuous and hence
continuous. Finally in Section 8 we show that the map g+ i (M) from
R(M) - R is continuous with the C? topology on R(M) for M compact.

We thank Professors J. Cheeger and C. D. Hill for several conversations
on the elementary theory of ordinary differential equations. We thank
the staff and members of the Centre de Mathématiques of the Ecole
Polytechnique for their kindness to the author during his stay in Paris.
We thank Jean-Pierre Bourguignon of the Centre de Mathématiques for
criticizing a preliminary version of this manuscript. We thank Professor
H. Karcher for suggesting that we prove g - i,(M) is continuous and for
discussions concerning perturbations of the conjugate locus summarized
in Section 1 of this paper. We thank Professor W. Klingenberg for
inviting us to visit the Mathematisches Institut der Universitit Bonn
during early December, 1973 where Section 8 of this paper was written.
Finally we thank Professor E. Zaustinsky for suggesting a study of the
upper semicontinuity of the map g + i (p) using the lower semicontinuity
during the early stages of our work on this paper.

Notational Conventions

Fix a smooth n-manifold M,n = 2. Let n: TM — M be the tangent
bundle of M. Let R(M) be the space of smooth Riemannian metrics for
M. Given g in R(M) and a sectionally smooth curve c:[a, b] > M,
define the g-length of ¢, written L (c) by

b
Lfo): = J(g(é(t), o(t)¥de.

Then let dist, : M x M — [0, o) be the distance function for M defined
in the usual way by
dist(p, q) : = inf {L[c); c is a sectionally smooth curve from p to g}.
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Given ge R(M) and R > 0, let
B, x(p) : = {qg e M; dist(p, q) < R},
Uy ) : = {veM,;g(v,v) < R?},
and
SiM,g): = {ve TM; g(v,v) = 1}
which is the g-unit sphere subbundle of TM with fiber at p
S$;(M, g)l,: = {veM,;g,v) = 1}.

Define the injectivity radius function
i:RM)xM — [0, 0]
written
9, p) = 1,(p)
by
iyp) : = sup {R > 0;exp, : U, z(p) > B, g(p) is a diffecomorphism}

where exp : TM — M is the exponential map determined by g. We call
i,(p) the g-injectivity radius at p. Define the g-injectivity radius of M,
written i,(M), by

iy(M) : = inf {i(p); p € M}.

Given a chart (U, x,,---,x,) with x = (x,,- -, x,) smooth in U and
g€ R(M), define the Christoffel symbols

g+ Tifg, %, q)
from the functions
q + g(0/0x;, 0/0x))|,

in the usual way. When a chart (U, x) is fixed as in section 1, we will

sometimes write I';{g, q) for I'f{g, x, q). Let
ITll(g, U) : = sup {I['{g, x, Pl; e U, 1 < i,j,k < n}

and

0 _
llorig, U) = = Sup{)éx—(F?j(q,x,q))';qu,l Sijkp= n}.
14
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1. A review of local Riemannian geometry of geodesics

References for this section are [1] or [6]. Since this material is standard
no explicit further references will be given. Fix a complete metric g, for
M. For all ve S,(M, g,) let

¢, :[0,00) > M

be the unique ‘half geodesic’ determined by g, with ¢,(0) = n(v) and
¢,(0) = v. If exp : TM — M is the exponential map determined by g, then
c,(t) = exp,, tv. Define

5 :8,(M, go) - [0, 0]
by
s(v) :

sup {t > 0; dist, (c,(t), n(v)) = t}

sup {t > 0; ¢, : [0, t] > M is the unique minimal

go-connection between c¢,(0) and c,(t)}.

If p:=n(v) and q: = exp,s(v)v, then g is said to be the cut point of p
along the radial geodesic c,, : [0, c0) > M. For instance, if s(v) = oo, then
¢, is a ray and if in addition s(—v) = oo, then the geodesic ¢ :R— M
with ¢(0) = v is a line. Given p in M, let C(p): = {s(v)v; ve S (M, gy)l,}
and define C, (p): = exp,(C(p)), called the g,-cut locus at p. Then the
do-injectivity radius at p defined above satisfies

igo(p) = disty(p, Cyy(p) = inf {s(v); v € §,(M, go)|,.}-

If M is compact, every radial geodesic from p has a cut point so i,(p)
is finite for all pe M. Klingenberg showed that s:S,(M, g,) — [0, o] is
continuous and hence p +i, (p) from M — R is continuous.

An important result in the local geometry of geodesics is the character-
ization of points q in C, (p) with dist, (p, q) = i, (p) for i, (p) < co and
go complete in terms of the behavior of the g,-radial geodesic configura-
tion at p.

Basic LemMAa I: Either one or both of the following holds.

(A) qis a first conjugate point to p along some radial geodesic from p, or

(B) there exist v, weS,(M, go)l,, v# w such that if t,: = i, (p) then
c(to) = e (to) = q and &fty) = —¢,(ty). Alternately, there is a geodesic
loop at p through q.

Let M be compact. Choose p,e M with
*) iyo(Po) = ig(M) : = inf {i, (q); q € M}.
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Choose q,€C, (p) with disty(po, q0) = iz,(Po) and assume (B) of Basic
Lemma I holds. Then by (*), p, must satisfy i, (q,) = dist,,(p,, 9o) and
the two loops given by (B) in fact form a smooth closed geodesic. This
discussion together with the theory of conjugate points yields a minoriza-
tion of Klingenberg, namely

Basic LemMa II: Let M be compact, g, € R(M), and let kig,) > 0 be
any upper bound for the g,-sectional curvatures. Then

igo(M) g min {n/\/ k(go)’ % : Length (gO)}
where
Length(g,) = inf {L,(c); ¢ is a smooth non-trivial closed g,-geodesic}.

It is then clear from Basic Lemma I that to see that (g, p) - i,(p) is
continuous, we need to see why first conjugate points and geodesic loops
cannot jump inward or outward for metrics close to a given metric. The
analysis of the conjugate point behavior with the C? topology is fairly
standard. After sketching below an argument of Dr. H. Karcher (personal
communication) to indicate that (A) perturbs nicely, we will make no
further mention of (A) in this paper, treating only (B) below in our proofs.
We remark here that while C? closeness is clearly needed for the lower
semicontinuity of (g, p) - i(p) because of (A), C' closeness is all that is
needed to prevent the geodesic loop of (B) from jumping inward.

Recall that conjugate points along the radial geodesics at p can be
interpreted as singularities of the differential of the exponential map
exp,:M,— M. Let ¢ > 0 be given. Suppose for veS,(M, g,)l,, there is
no conjugate point along ¢, :[0, d] - M. It is then standard that for
metrics g sufficiently C? close to g, and tangent vectors w sufficiently
close to v in TM, there will be no conjugate points along the g-radial
geodesic with initial condition w up to at least time d —e¢. In particular,
this implies that (g, p) ~i,(p) cannot fail to be lower semicontinuous
because of conjugate point behavior.

To see that the first conjugate point cannot jump outward, we must
consider the index form (formula (1), p. 142 of [6]). In the appendix to
[5], Karcher shows that the index form for a given metric can be viewed
as an operator of the form I+k where k is a compact operator which
changes continuously with a continuous perturbation of the curvature
tensor. It is then standard that the spectrum of these operators is upper
semicontinuous (but not necessarily lower semicontinuous) under con-
tinuous perturbations. This implies that the first conjugate point cannot
‘jump outward’ with C? perturbations of a given metric.

Define C contained in (M, g) to be g-convex iff for all p and q in C,
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there is precisely one minimal normal geodesic segment in C from p
to g. The basic result on the existence of convex neighborhoods (from
[6], p. 160) is

Basic Lemma I11: Let B, (p) satisfy the following two properties.

(A) For all qe B, g(p), exp,:U, ,z(p) = B, ,x(p) is a diffeomorphism.

(B) For all veS,(M, g,)|,, the index form is positive definite for all
Jacobi fields J along ¢, :[0, R] —» M with g(J, ¢,) = 0 and J(0) = 0.

Then B, x(p) is g-convex.

By standard comparison theory in Riemannian geometry, it is clear
that (B’) is locally minorized with the C? topology on R(M). (See [4] for
details.) Hence the key step in minorizing the convexity radius functional
on R(M) is to minorize the injectivity radius functional. We thus leave
to the reader the formulation of the analogues of theorems 4 and 5 of
section 4 for the convexity radius functional.

2. An estimate for systems of ordinary differential equations

For completeness, we prove an estimate for first order systems of
O.D.E.'s similar to the estimate stated in [2] without proof which is not
found in any standard text known to us. For X = (x,, x,,", X,,) e R™,
let

IX11; = = (X (x)2)*

PROPOSITION 1: Suppose X(t) = (x,(t)," - -, x,,(t)) is a solution of

dxi_ = f(X
E_fnz(xl’ ,Xm)—f;( at)

far te[O,R], i=1,--:,m, where the f; are continuous and satisfy a
Lipschitz condition

*) IAX, )—f(X, 0] < LIX - X|I,

fori=1,---m.
Suppose Y(t) = (y,(t)," - -, y,.(t)) is a solution of

Vi ) = g{¥,1)
dt —giy1s ’ym’ _gi ’

for te[0,R], i=1,--,m where X(0) = Y(0), the g, are continuous, and
If(X, )—gdX, 1) =6
forall(X,t)andi=1,"--,m.



158 P. E. Ehrlich [8]

Then for te[0,R]andi=1,-"",m
[x{t)— y{e)] < mdte™.

Proor: Recall the following elementary facts. First, if X(¢) # 0 then
(IX@l) = 1X" Ol
and second, if F(X, t): = (fi(X, 1), - -, £, (X, t)) then from (*¥)
IF(X, 0)il, = mL|IX]l,.

It is enough to show that || X(t)— Y(t)||,e™ ™ < mdt. Now

X&) —yi0)l = 1f(X, )—gd ¥, )]
= X =AY Ol +IAY, )—gdY, )] = LIIX(6)— YOIl +0.
Hence
X' =Y @l = mLIIX(®)— Y@l +mé.
Thus if X(¢) # Y(t), we have

(IXO =Y ®ll,e™™) = (IX'(®) = Y'Oll, —mLIX () = Y(O)l )™

< mée ™ < md

since t = 0, L = 0. If X(¢) = Y(¢), the desired estimate clearly holds. Thus
suppose X(t) # Y(¢). Choose t,€[0,t) such that X(t,) = Y(¢,) and
X(s) # Y(s) for all se(t,, t]. Then

t

IX@®—Y@lle™™ = j (I1X ()= Y(s)ll,e™™=)ds

s =to

t
< mo j ds = mé(t—t,) < mot. Q.E.D.

S=to
3. The local behavior of the configuration of radial geodesics

In this section, let M" be a fixed smooth manifold not necessarily
compact with n = 2. Fix a complete g,eR(M) and pe M. Choose
R, with 0 < R, < i, (p). Fix for this section a g,-orthonormal basis
{e1, -, e,) = M,.Letx = (x;, ", X,) be go-Riemann normal coordinates
centered at p for B, g (p) defined by {e,," -, e,}. Explicitly if g B, g (p)
we may choose a unique ¢t > 0 and ve §,(M, g,)|, such that g = exp, tv
where exp,:M,— M is the exponential map determined by g,. If
v =) ;a4;e;, then x,(q) = ta;. Define for i=1,---,n
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Xitn By ro(P)—{P} > R
as follows. Given qeB, gr(p)—{p}, choose t,v=>a;e; with t>0

uniquely so that g = exp,tv and put x;,,(q): = ;. Thus |x;,,|<1 on
By g0 —{p} fori=1,-,n

Let g, e R(M) be complete. We want to study the difference in the
configuration of radial geodesics at p determined by g, and g,. We fix

the following notation. For veS,(M, g,)|, let
Co.,: [0,R] > M

be the unique g,-geodesic with ¢, (0) = p and ¢, (0) = v. Let
¢1,,:[0,R)] > M

be the unique g,-geodesic with ¢; (0) = pand ¢; ,(0) = v. Fixv = ) ;a;¢;
inS;(M, g,)|,. Identifying as usual x; and x; - ¢, ,,, the differential equation
forcy,, written in terms of the g,-Riemann normal coordinates is

dx;
di = Xitn

*)

dx; .,

n
dr = - Z ng(go’ Xi5tt0 xn)xj+nxk+n
Jk=1

with initial conditions x{0) =0 and x;,,0)=aq; for i=1,---,n Let
X =(X1, " Xny Xpp 15" 5 Xp,)and Y = (V15" Yus Yus 15" " " Y2u) be arbi-
trary points in the domain of definition of (*) which is of course the
diagonal of B, ..(p)x B, g,(p) modulo the identification of M, and R"
given by the g,-frame {e,,--, e,} in M,. Then we may write (*) as

dx;
- = fiX,¢t
o= A
fori=1,---,2n where
ﬁ(X’ t) = xi+n
and
f;+n(X’ t) = - Z F;’k(gO’ X157 xll)xj+nxk+n
qk=1

fori=1,---,n Let

2n
IX =Yl : = ) =i
i=1

Then fori=1,"--,n
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X, = (X O] = X = Yisn S IX =Y,
and
|f;+n(X’ t)—.f;-i-n(Y, t)l
é 2’:‘ |F§'k(go’ X157 xn)xj+nxk+n—r;k(gO7 YVis'' 5 y,,)yj+nyk+n|
Js

é Z |Fj'k(q0’ xls' T xn)xj-i-nxk-f-n—[‘j'k(.QO’ Vi, yn)xj+nxk+n|
Jrk

+ Zk |F;k(go, Vi sl Ixj+nxk+n_yj+ny.k+nl

J
< n?|10X1(9o5 Byo, ro(PIX — Y1I; +202(T1l(90 > Byy, r,(PIIX —Yl4
< (W119T11(go» Byg, roP)+21° 111190 Byo, reIIX — Y,

since |X;, |, [y;+,/ = 1 by construction. Thus if we put

L, : = min {1, n||0T|l(go, Bgy, re(P) +27°IIT11(G0 > Byo, r,(P))}
we have
[f(X, )=f(Y, t)] £ Lol X =Y]|,

for all X, Y in the domain of definition of (*) and i =1, -, 2n.

In terms of the Riemann normal coordinates x = (x,,- "', x,) for
B, r,(p), the system of differential equations for the g,-radial geodesic
¢,,, has the form

dy,
dt

for i =1,---, 2n with the initial condition Y(0) = X(0) where

= gVi>, 5 Vw 1) = g(Y, 1)

g, 0) = Yisn

and

2n
Gisnl X 1) = _Zk lr;'k(gl’ Vis > Ya)VjtnVitn
J, =

fori=1,"-n
Suppose

Ir;k(gla X, q)_rj'k(g(), X, q)l é 0
for all ge B, . (p) and for all i, j, k= 1,---,n. Then
|gi(X’ t)_fi(X’ t)l = |xi+n_xi+n| =0

go, Ro

and
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Igi+n(X’ t)_f;+n(X’ t)l
n
i .. i 2
s Z (915 X155 %) —T'(go, X150 XX n Xgl S 170
k=1
Hence Proposition 1 of Section 1 with m : = 2n implies

PROPOSITION 2: Let veS (M, g,)|, and define L, as above. Suppose

IF;k(gl’x Q)—Fj'k(go,X, P Lo

for all qugO Ro(p) and all i,j,k=1,---,n. Then for all te[O0, R,] and
i=1,--

10, © Co, )= (s 0 € NO)| S 2mStemhor
and

16ci © co,o) () —(x; o €1 ) (B)] = 2n°5te?™ e,

Since e*"of < e?"oRo for 1[0, R,] this estimate quantitatively
measures the fact that for g, 6 — C! close to g, (as in Proposition 2) and
o0 small, the g, -radial geodesic configuration at p is close to the g,-radial
configuration at p near p. We can interpret the first estimate geometrically
as follows: for all veS,(M, g,)|, and for all metrics g, in a C' §-ball
about g,, the g, radial geodesic ¢, , lies in a J ‘cone neighborhood’ of
the g, radial geodesic ¢y, ,,.

In order to make this more precise, define a distance function

dist : B, g(p) X B,y go(p) = [0, o)

by
dist(@,1): = (3 (5@~ ()

where x ={x, ", x,) are the fixed Riemann normal coordinates for
B, r, (D) It is elementary that [Bgo (D), dist] is a metric space.
We say g, € R(M) is d-close to g, on B, g (p) inthe C* topology, written
191 —9olct, . By ry®) < 0, with coordinates x = (x," -, x,,) iff

(1 _5)290(05 U) é gl(v, U) é (1 +(S)2g0(l7, U)
for all ve TM IT and the Christoffel symbols I'(g,, x,") and

Ro(P)

I'ygy, x, ) satisfy tl:e condition of Proposition 2.
From the transformation formulas for the Christoffel symbols under
a change of coordinates, it is clear that although for § > 0 fixed the
inequality |9, —golc,x, Byy RyD) = 0 is not invariant under coordinate
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change, the notion of a sequence of metrics {g,} = R(M) with

|gn—g0|C1,x,Bgo’R0(p) -0

is well defined. This will become quite explicit in the construction of
Section 4.

By Proposition 2, for g, € R(M) that is -close to g, on B, g,(p) in the
C! topology, te[0, R,], and ve S (M, g,)|, we have

dist (co_ (1), €1 (1) < 2n*Ste"to".

Let g, € R(M) be 5-close to g, on B, ¢,(p) in the C! topology. Suppose
there is a smooth closed non-trivial g,-geodesic ¢ through p contained
in By, g,(p). We may choose a smallest ¢, > 0 and veS,(M, g,), such
thats: = ¢, ,(to) = ¢, (—1to) = ¢, _,(to) (that is, ¢ is the union of the two
g, radial geodesics ¢; ,:[0,t,] > M and c¢; _,:[0,t,] > M). Assume
c is sufficiently short that ty < R,,. Let q: = ¢, (to) and r: = ¢, _(to).
Then since R, < i,(p), by basic Riemannian geometry, dist(q,7) =
dist (p, g)+dist (p, r) = 2t,. But the triangle inequality for the metric
‘dist’ implies

dist (g, ) = dist (co, lto) Co, - ulto))

< dist (¢o, lto), €1, {to)) +dist (cg, (to), €1, - u(to))
+dist (cy, - ,(t)s Co, - ulto))

< 2n*6ty e+ dist (s, s)+2n*dt,e* "ot < 4n*5t, e oRo,

Thus we have the inequality 1 < 26n*e?"toRo which is false as 6 — 0.
Hence

THEOREM 3: Given g,e€ R(M) complete, Ry < i (p), and a fixed g,-
Riemann normal coordinate system x = (x,,- -, x,) on B, g (p) as above.
There exists a constant d(g,, x, p)€(0, 1) such that ge R(M) and

lg—go|cl,x, Bg,, Ro(® < d(go» X, p)

implies there is no smooth closed non-trivial g-geodesic ¢ through p of
g-length < R,. Hence there is no sequence of metrics {g,} < R(M) with
9.~ Yolc ., By, RyD) 0 and such that g, has a smooth closed non-trivial
geodesic c, through p with L, (c,) — 0.

Proor: If (1—8)%g, < g < (1+6)%g,, then for any sectionally smooth
curve ¢, we have

(1=0)Lyy(c) = Ly(c) = (140)Ly(c)-
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Thus if ¢ is a smooth closed g-geodesic through p of g-length <R,
it follows that the ‘t,’ of the paragraph preceding Theorem 3 satisfies

to = (Ro/2)(1+0(go, x, p))

SO

to < R, if 8(gq, %, p) <1l QED.

From the proof, it is clear that making the upper bound on d(g,, X, p)
smaller, the upper bound on Lc) can be improved.

4. The local minorization of the length of the shortest smooth closed
non-trivial geodesic on R(M) for M compact

Fix g,eR(M) and choose R, >0 with 4R, < i, (M). Since M is
compact, fix p;, -, p,, in M so that

mo
M = 'U1 Bgo, R0/2(pi)'

For each i, fix a g,-orthonormal basis {e; ,," -, ¢; ,} for M, thus defining
once and for all g,-Riemann normal coordinates x' = (x},---, x}) on
By, arop) fori=1,...,m,.

For each p;, parallel translate (using g,) the basis {¢; ;, -, ¢; ,} for M,
along radial geodesics getting a gy-orthonormal frame {E; ;, -, E; ,}
on B, ,r.(p;) for each i=1,---,m,. Hence for each point q in M we
obtain at most m, orthonormal bases for M, by this procedure which
we will call distinguished bases for M,,.

DEFINITION: g € R(M) is é-close to g, in the C* topology iff
(1-9)’g, < g < (1+9)*g,
and for each i = 1, - -, m,, using the fixed Riemann normal coordinates
x' = (xip' T x;) on B, 2R0(Pi),
ITi(g, x', @ —Tifgo, X', @) < 0

for all ge B, ,r,(P)-
We define smooth maps

Glicl’ Fi: B, R0/2(pi) X BgO,Ro/Z(pi) - R

for each i and 1 <k, I < n as follows. Fix i for the moment and write
(x5, x,) for (x4, - -+, x3). Given (g, 5) in By, r,/2(P;) X By, 2r,(P;) parallel
translate {e; ;, ', ¢; ,} from M, along the unique unit speed g,-radial
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geodesic from p; to g getting a distinguished basis {E, ," ", E, } for
M Let y =(y,," ", ¥,) be go-Riemann normal coordinates defined on
By, 2ro@) by {E,) " " E, }- Then for se B, 2r,(p;)

5R
m%@mgm%@mﬂm%%wgff<mo

so (¥4, ', y,) are smooth at g. Thus we may define

oxt . 0
| and Glig.9): = 2

1ls

Fu(g,s) : =

lls

Since B, r,;2(P;) X B,,, 2r,(P;) is compact, we may choose a constant C;
such that

IFil(g, s)l, 1Giulg, )| <

for all k and ! and all (g, s)e B, r,/2(p)) X B, 2r,(P:)- In particular, for a
fixed ge B, g,2(p), the maps from By g (q) > R given by s+ |Fj (g, s)|
and s - |Gi/(q, s)| are bounded by C;. Doing this construction for all
pi, i=1,---,m,, we get constants C; for i=1,"--,m,. Put C:=
max {C,," , Cp,}.

Recall that if (U, x) and (¥, y) are two local coordinate systems with
x=(xy, " ,x,)and y=(y., -, y, then for se UV,

" 9%y, ox " 9y, dy, O
Fk s Ny = ! ‘k P 4
”0“)£wﬁﬁh Zaxma

(gO» ya S)

pqr=1
Thus if ge B, g,2(p;) and y = (y,," -, y,) are the g,-Riemann normal
coordinates on B, g(q) obtained by g,-parallel translation of
{ei,1, ", e ) to M, we have for ge R(M) 6-close to g, in the C* topology

lrij(ga Y, S)—F{“J 0> S)l é n3C35

Hence for any ge M, if ge R(M) is d-close to g, in the C! topology,
then using g,-Riemann normal coordinates x = (x;," -, X,) on By, r.(q)
defined by any distinguished basis for M, we have

ITi{g0, X, 8)— g, x, )| £ n>C34.
ij\Jo

for all se B, g,(g). In particular, the C' neighborhoods of g, defined as
above are independent of the choice of distinguished bases.

To apply the results of section 3, it only remains to see that for any ¢
in M and any Riemann normal coordinate system defined by any
distinguished basis for M, that we have a uniform Lipschitz condition
on the O.D.E’s for the g, radial geodesics. Fix i with 1 <i < m,. Let
S =5:(M, 90) 5, 55 < [0, Ro]. We define maps §3,:S—R and
:S—>Ras fofiows Let (v, t)eS. Letg: =mn(v)and let y = (y;," ", V)

nqrs
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be g, Riemann normal coordinates defined on B, 2r.(G) by g, parallel
translation of {e;,, -, ¢;,} = M, along the g,-unit speed radial
geodesic from p; to g in By,  (p;)- Thenforall 1 <j, k, I, p, g, r, s < nput

S;'kl(”» t) L= ;'k(gOa y7 cO, v(t))
and
i 6 S
’I;qus(v’ t) L= a (qu(go, y’ Co,v(t)))
Vp

where ¢, , is the unique g, geodesic with ¢ ,(0) = g and c; ,(0) = v as
before. From basic Riemannian geometry these maps are continuous.
Thus we can choose constants I';, oI'; > 0 such that |Si,(v, 1)) < I'; and
|Topdv, )| £ 0T, for all (v, t)eS and 1 £j,k, 1, p, g, 7, s < n. Doing this
construction for all i = 1,---, m,, put

1M (go)ll : = max {[y, -, T, }

and
0L (go)l| : = max {oI;," -, 61",,,0}.
Put '

Lip (g,) : = max {1, n*|18T(g,)ll +2n°IT(go)lI}-

For any pe M, using g,-Riemann normal coordinates x = (x,,- -, X,)
on B, r,(p) from any distinguished basis at p to define the system of
differential equations

dx;
dt

f;(xla ) x2n3 t) = f;(X’ t)
for any radial geodesic ¢, , at p as in section 2, we have

If(X, )— f(Y, ) = Lip (g9) - IX =Y,

on x(B,, g,(p)). Now determine 8(g,, X', p;) for B, ,g.(p;) fori=1,--,m,
as in Theorem 3, Section 3. Let

5(90, xl’ pl) . 5(.90’ xmo’ pmg)}

b b
n3C3 n3C3

o(g,) = max{

In particular,

(**) 25(g0)n4e2” Lip (4o)Ro - 1,

THEOREM 1: Let M be compact, g, R(M) and 4R, < i, (M). With the
C! neighborhoods of g, defined as above, there exists a constant §(g,)
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with 0 < 8(g,) < 1 such that g, e R(IM) and

191 —olc: < 0(g0)

implies the g,-length of the shortest smooth non-trivial g, geodesic is
greater than or equal to R,,.

ProoF: Suppose there exists a smooth closed non-trivial geodesic ¢
with L, (c) < R, for g, € R(M) with |g; —golc: < 6(go)- As in Theorem 3,
Section 3, L, (c) < 2R,. Let p: = ¢(0) and choose v and t, < R, as in
the proof of Theorem 3, Section 3. Put s : = ¢, (o) = ¢;, —,(to). Choosing
any distinguished basis at p, put g,-Riemann normal coordinates on
B,,. ro(p)- Write the O.D.E’s for ¢, , and ¢, _, in the form

dx;
d = f;(xl’“"xbn t) = f;(X, t)
t
and for ¢, ,and ¢, _, as
dy;
g = 9 Yo ) = 94X 1)

as before. By the construction of d(g,), we have

IAX, = f(X, 0] = Lip (90) - IX — X,

and
(X, )—gdX, )] = 3(go)-
Hence as in the proof of theorem 3, we obtain
25(g0)n4e2" Lip (g90)Ro z 1

contradicting (**). Q.E.D.

REMARK : L. Berard Bergery has shown us an example of a perturbation
of a surface of revolution shaped like a bowling pin to show that the map
from R(M)— R given by g~ Length (g) (defined as in Basic Lemma II,
Section 1) is not upper or lower semicontinuous with the C* topology
on R(M). Thus the local minorization of g - Length (g) given by Theorem
1 is the best possible result in general.

The following result is clear but seems not to be present in the standard
literature so we state it. A proof can be found in [4].

LEMMA: Let M be non-compact. Let g, be a complete metric for M.
If g is any other metric agreeing with g, off a compact subset of M, then g
is complete.
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Hence for M non-compact, given a complete metric g, for M and a
compact subset C contained in M, we may define a family of complete
metrics F¢ ,(M) by

Fc o(M): = {ge R(M); g = gy on TM|y_1, )}

The following result is a consequence of the lower semicontinuity of
g~ i,(p)provenin Section 5 together with the type of uniformity argument
given in proving Theorem 4 of this section from Theorem 3 of Section 3.

Let i,(C) : = inf {i,(q); e C}.

THEOREM 5: Let g, € F¢ ,,(M). Then there exists constants &(g, , C) > 0
and I(g, C) > 0 such that g, € F¢ ,(M) and

191 —9>lc2 < 0(g,, C) implies i, (C) > I(g,, C).

5. The lower semicontinuity of g~ i ,(p) from R(M) — R for M compact

In this section we show using a modified version of Proposition 3.2.

THEOREM 1: Let M be compact and fix any point pe M. With the C?
topology on R(M), the map R(M) — [0, co] given by
g+ iyp)

is lower semicontinuous.

Fix g, € R(M). By compactness, i,(p) < oo. Given ¢ > 0 we must show
that there exists a 6 > 0 such that ge R(M) and

19— 9ol < 0
implies i,(p) = i,,(p)—e. Put R,:=1i,(p)—¢/100 and R,:=i,(p)—e.

= "9o0
By Basic Lemma II of section 1 and our subsequent remarks, it suffices
to show that given & > 0, there exists 6 > 0 with the following property.

For g, e R(M) with
191 —9ole: < 6,
there does not exist a t,e€(0, R;) and two g,-radial geodesics from p

¢y, [0, tol > M
and

cw [0, t0] > M

with v #w, v, weS,(M, gl S:= ¢y, (to) = €1, wlto), and &, (to) =
—él.w(to)-



168 P. E. Ehrlich [18]

Given § > 0, we will suppose we have such a t,e(0, R,) and two such
g,-radial geodesics forming a loop and see what inequality this forces §
to satisfy.

Choose d, > 0 such that 6e[0, d,] and g, e R(M) with

19, —9olcz = 4

implies that R,\/gy(v,v) = R, and go(v,v) <2 for all veS,(M, g,)l,.
(This is possible because R; = R,+(99/100)- ¢ and go(v, v) < (14 0)g(v, v)
from C° closeness for all ve TM.)

Let {e,,  ",e,} = M, be a gy-orthonormal basis. Let x = (x, -, x,)
be g,-Riemann normal coordinates defined on B, .(p) by {e;, ", €,}.
Define x;,,:B, g(p)— R as in Section 3. Then if g,(v,v) =1 and
|90 —9g1lco < d, we have

[(Xi 40 © Co, XO = |(x; 0 ¢, ) (O = 2

for alli = 1,---, n. Thus substituting |x;, ,| <2 for |x;,,| =1 in the proof
of Proposition 3.2 we obtain

PROPOSITION 3.2": Let
Ly : = min {1, 4n%10T|(go, By, ro(P)+4m°IT11G0 Bgy, ro(P))}-
Suppose g, € R(M) satisfies |g, —golco < o and
g1, %, 8)—T5(go, X, )| < 6

for all se B, g,(p). Then for any veS (M, g)|, and te[0, R,] we have

[(x; © Co, o)) = (x; 0 1 NO)| < 2nPte?"tot
and

(x; © o, o) () —(x; 0 ¢y Y (@) < 2n35te* Lo,

Let ¢ :[0, A] - B, r.(p) be a smooth curve. Then for t,e(0, A),

go, Ro
) = 3 élto)x)
oty = Y to)x;
0 i=1 ° 0X; legeo)
S (xp 0 €Y(tg) —
— xio e
i=1 0 0%; |oo)

Thus &y (to) = —¢&; ,(to) Il (X;o¢y,,)(te) = —(x;0¢y,,) (L) for all
i=1,---,n

Write v =Y7_,a,e; and w =Y 7_, b;e; in terms of the fixed g,-ortho-
normal frame. Let 0,(v, w) be the g,-angle between v and w.

We have three cases.
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Case I: cos 0y(v, w) = 1—-1/100.
We have
la;+by| = |(x;  co, o) (Eo) +(x; © Co,w) (o)l
= |(x; ° cO,u)l(tO)—(xi ° cl,v)/(t0)+(xi ° cl,v)l(t0)+(xi ° co,w)’(t0)|
= |(x; © o, o) (E)—(X; cl,v)l(to)l +1(x; 0 €o, ) (Eg) —(x; © 01,w)l(to)|
< 8n35t, e o,
Thus

Y (a;+b;)* < 64n76>RG e oko,
i=1
But

Y (@+b) =Y a?+2y ab+ ) b}
i=1 i=1 i=1 i=1
= gO(Ua U)+2go(v’ W)+go(w’ W)
= 2(1—3)+2 cos (Bo(v, W) - \/gol©, v)go(w, W)
= 2(1-90)+2(1—1/100)1 —0) = 2—1/100.
Thus
2—1/100 = z (ai+bi)2 < 64n752R(2,e4""°R°

i=1
Choose 8, €(0, 3] such that for any &[0, é,]
2—1/100 > 64n7 3R e*"LoRo,
Case 1I: 0 < cos 0,(v, w) < 1-1/100.
Define dist : B, .(P) X B, r,(P) > R by

dist (9,7) : = (X (xil@)=x0))*
i=1
as before. We have
dist (g, r) < dist (g, s)+dist (s, r) < 4n35ty e o

and
dist (g, 7) : = (), (toa;—1o b)?)*
i=1

£0(go(v, 1) —2 €08 (Bo(v, W)\/Go(v, V)go(W, W) +do(W, W)
> 14(2(1—8)—2(1—1/100)(1 +8))* = t44/2(1/100—(199/100)9)z.
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Thus
J2(1/100— (199/100)3)} < dist (g, Pty < 4nSe2mbore,
Choose J, > 0 such that for all 5[0, J,]
\/ 2(1/100—(199/100)9)* > 4n3se?ntoko,

Case I1I: —1 < cos Oy(v, w) < 0.
The idea is the same as in Case II but the arithmetic is different. Again,
dist (g, ) < 4n5t, e ko', But

dist (g, 1) = to(go(v, v) —2 cos (B(v, W)\/Go(v, V)go(W, W)+ go(w, w))*
2 to(golv, V) +go(w, w))2.
Thus

V2 /1=6 < 4n35e?rloRo,

Choose 5 > 0 such that [0, §,] implies

V2J1=08 > 4n?de?rloRo,

Let d(g4, X, p, €) : = min {d,, d;, 0,, 03}. We have shown

PROPOSITION 2: Let ¢ > 0 be given. There exists a constant 6(g,, X, P, €)
> 0 such that ge R(M) and

Lq_gOICl,x,Bgo’ igo(p)—e/loo(p) < 5(g09 X, D, 8)

implies there do not exist minimal g-normal radial g-geodesics c,, c,:
[0, to] > M with ¢,(0) = ¢,(0) = p, o < iy,(P),
¢y(to) = cy(ty) € Byo, igo(p)—e(p),

and ¢&(to) = —¢,(to).
With Proposition 2 and the compactness of M insuring that the C>
topology on R(M) is well defined, the proof of Theorem 1 is now clear.

ReEMARK: The added difficulty in proving Theorem i of this section
over Theorem 4 of section 4 is that the following situation may occur.
Fix pin M and ¢ > 0. Let B= B, ,.go(p)_s(p). Suppose g e R(M) and -the
closest points on the cut locus C,(p) to p lie in B. Let g be such a point
and suppose there is a loop at p through g with initial vectors v and w
as in (B) of Basic Lemma I of Section 1. Let 64(g) be the g,-angle between
v and w. The method of proof of Theorem 4, Section 4, fails precisely
when there exist {g,};>-, = R(M) with g, — g, in the C! topology but
6,(g,) — 0. H. Karcher noticed that in the C* topology on R(M), Topono-
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goff’s triangle comparison theorem ([6], p. 183) implies no such sequence
exists. However, to apply this result, a lower bound on the sectional
curvatures of the metrics g, is needed which we do not have with the C*
topology on R(M).

Now let M be non-compact. Suppose for pe M and g, € R(M) complete
we have i (p) < c0. Fix a go-orthonormal frame at p to define Riemann
normal coordinates x on B, ,.go(p)(p). Since K : = B, "yo(l’)(p) is compact,
we can define C? closeness of g € R(M) to g, on K independent of a choice
of Riemann normal coordinates. Hence, the proof of Proposition 2
carries through and we have lower semicontinuity at (g,, p) € R(M) x M
in the sense that given ¢ > 0, there exists a 6 > 0 such that ge R(M) and
|9 —9olcz, x < 0 implies i(p) = iz (p)—e.

If M is non-compact and i, (p) = co, then M is diffeomorphic to R".
In this case, we cannot necessarily define a C? neighborhood of g,
independent of the choice of the g,-orthonormal basis at p used to define
Riemann normal coordinates. However, the following analogue of
Proposition 2 holds. Fix N > 0 and a g,-orthonormal basis for M, thus
defining Riemann normal coordinates x on any ball B, g(p) for any
R > 0. Then given N, let R, : = N and R, : = 2N. Then the same proof
(using Lipschitz estimates on B, g (p)) shows that there exists a constant
0(gy, X, p, N) > 0 such that ge R(M) and

|g_g1lC‘,x, Bg,, 2N(P) < 5(g09 X, D, N)

implies that no g-geodesic loop through p lies in B, y(p). Hence given
N > 0, there exists a constant d(g,, X, p, N) > 0 such that

|g_gO|Cz,x,Bgo’ 2N(D) < 5-(gOa X, D, N)
implies i, (p) = N.

6. The lower semicontinuity of (g, p) - i,(p) from R(M)x M - R
for M compact

We prove

THEOREM 1: For M compact, (g, p) =i (p) from R(M) x M — R is lower
semicontinuous with the C? topology on R(M).

Proor: Fix (g,, po)€ R(IM) x M. By compactness, iy (p,) is finite. Let
¢ > 0 be given. Fix a g,-orthonormal basis {e,, -, e,} < M.

Step 1: By continuity of p+ i, (p) from M — R, choose R, > 0 with
2R, < i4(p,) such that dist, (p,, q) < R, implies |i, (po)—i,,(q)| = /2.
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Then we will show there exists 6 > 0 such that qe B, Ro(pﬁ and
|9 —9olc> < & implies i(q) = i, (q) —¢&/2. This completes the proof for then

i(@) Z ig,(@)—&/2 = (ig (@) = igo(Po)) +ig,(P) — /2 Z ig(Po) —&.
Step 2: Let

= {(9, 5) € B, ro(Po) X M; dist, (g, 5) < i,(po)—&/100}

= U {q} x B,, igo(q)—s/IOO(q)'

qeBg, R,(Po)

Since (g, s) > dist, (g, s)—ig(q)—&/100 is continuous from M x M — R,
S, is closed in M x M and hence compact.

Step 3: Parallel translate with the g, metric the g,-orthonormal basis
{e), -, e,} for M, along the g,-unit speed radial geodesics from p,
getting a g,-orthonormal frame field {E,- -, E,} for B, B, &,(p). For each
qe B, g(p) we define g,-Riemann normal coordlnates x(g) in
By, i@~ #100(@) from the gy-orthonormal basis {E,|,- -, E,|}. Fix
closed balls B,, -, B, covering M to define the C? topology on R(M).
Given any 6 > 0, there exists a § > 0 such that g, e R(M) and |g, —golc:

< § implies for all ge B, ¢ (p,) that

9o, Ro

ITt{90, X(@), )= Tifg,, X(q), 5)| < &

for all se B, igo(q)—a/loo(‘I) and 1 =i j,k<n

Step 4: Define continuous maps F};:S,—> R and Gj;:S,—> R for
1=1i,j,k 1 =nby

Fi"j(q’ S) L= F?J(go, X(q), S)

and

Gialg, ) 1 = —— (I'f{9o» X(q), 5))

,()

where x(q) = (x,(g), " - -, x,(q)) are the g,-Riemann normal coordinates on
Bgo, @ ¢/100)- Choose by compactness a constant B < oo with |F}},
|G ]kl < Bon §,. (Note that these maps can be defined on a shghtly
larger open set containing S, since ¢ > 0 and 2R, < i, (p,).)
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Step 5: Using
1% +(@)] = 2,

calculate a Lipschitz constant Lip(g,, py, R,, €) using Step 4 such that
for all geB,, r(Po) on By, igol@) - ¢100(@) the g0-O.D.E. system for the
g, radial geodesics written as in Section 2 in terms of the go-Riemann
normal coordinates x(q) satisfies

|f(X9 t)_f(X’ t)l g Llp (g(), Do> RO’ B)”X_XHZ'
Let k, : = max {i, (q); g€ B

B, zo(Po)} > 0 and k, : = ky—¢/100.
Then as in Section, if |

|F1‘] l’x(q)5 )_Ff Oax(q)’ ‘)l é 0

on B, igo(@— ¢/100(q) and some pair of g,-radial geodesics from g meets
at an angle of 180 degrees in B, @~ [q) we have the three estimates
(i) 2— 1/100 < 64n757K3 (10U . Fo. 0
(ii) /2 (1/100—(199/100)5)* < 4n3§e>"Lir@o: po. Ro. e)ks
(i) \/2/1—0 < 4n35e>"Lir@o: po- Ro.ohks,

Step 6: Choose 6, > 0 such that for all ge B, g (po), 19 —9olco < 6, on

By, r(Po) implies (ig,(q)—&/100)\/go(v, v) < ig,(q)—& and go(v, v) < 2 for
all veS,(M, g)|,. (This is possible by the continuity of p - i, (p).) Make
0, smaller if necessary so that 0 < § < §, implies

(i) 2—1/100 > 64n752k?2 ¢*nLip @o. po. Ko, ks
(i) /2(1/100—(199/100)5)* > 4n3Ge*"Lip @o: po. Ro, )k
(iii) /2/T—8 > 4n35e>"Lip@o. po Ro. ks

Step 7: By step 3, choose 6 > 0 such that |g—g,lc: < & implies

490, X(9), ") — Tifg, X(a), ) < o 0n By, ;. (5~ 41100(q) for all ge By, & (po).
The proof of Theorem 1 is now clear. Q.E.D.

Suppose M is non-compact. Let g, be a complete metric for M.
Suppose p, e M and i, (p,) < co. Then C? neighborhoods of g, restricted
to B, iy (po)(l’o) are well defined by the compactness of this set. From the
proof above it is clear that given ¢ > 0, we can find a 6 > 0 such that
geR(M),

o

— <
l9—9olc Bgo, ig, (po)(PO)

and dist, (p- q) < 6 implies that i (q) = i, (p,) —&. However, if i; (p,) = oo
difficulties similar to those mentioned at the end of Section 5 oceur.
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7. The upper semicontinuity of g i (p) from R(M)— R for M compact
Fix pe M and let M be compact.

THEOREM 1: With the C* topology on R(M), the map g+ i(p) from
R(M) — R is upper semicontinuous and hence continuous.

ReMARK: Upper semicontinuity is more delicate than lower semi-
continuity in that to control the ‘closing up’ of the radial geodesics to
form a loop (alternative (B) of Basic Lemma I, Section 1) in our proof
of Theorem 1 we need the C? topology whereas the C! topology on
R(M) sufficed for alternative (B) in the proof of Theorem 5.1.

Proor: Fix g,e R(M). If g~ i (p) is not upper semicontinuous at g,,
then there exists an ¢ >0 and {g,,}m-; = R(M) with |g,,—golc: < 1/m
and i, (p) > i,(p)+e. As a matter of notation, for ze S,(M, g,)|, let

Cm.,:[0,00) > M

be the g,,-radial geodesic from p with ¢, ,(0) = z.
For geR(M) let diam(M, g, p) = sup {dist, (p, q); g€ M}. Suppose
first that i) (p) = diam (M, g,, p). Recall that

|9—9golco < 0

implies that /1— 6 dist,, < dist, < \/1+d dist,, (see [4], section 2). Thus
|9 — golc= < 6 implies that

i,(p) < diam (M, g, p) £ \/1+06 diam (M, g,, p) < i, (p)* /149
It is then clear that g, — g, and i, (p) = i, (p)+e¢ is impossible.

Now we may suppose i, (p) < diam (M, ggoo, p)so choosing a new ¢ > 0
if necessary we may as well assume i, (p) < diam (M, g,, p)—e.

Choose g€ C, (p) with dist, (p, q) = i, (p). It is clear from our remarks
following Basic Lemma I of Section 1 that i, (p) > i, (p)+e¢ and g, — g,
in the C? topology on R(M) implies that g cannot be a conjugate point
to p. Thus alternative (B) of Basic Lemma I must hold. That is, there
exist distinct v, weS,(M, g,)|, such that putting ¢,: =i, (p) we have

go-radial geodesics

€o,05 Co,w * [0, to] = Byy i, ((P)

withs: = ¢, (to) = ¢o, ,(to) and &, ,(to) = — & L, (o). We will show that
this is impossible hence deriving the required contradiction and showing
that g i, (p) is upper semicontinuous at g,. The idea is first to fix a
metric g,,, and thus minorize |x; o ¢,, .| forallm = m,and allze S, (M, g,)l,
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and second to use this minorization to find a uniform Lipschitz constant
for all g,, with m = m, so as to be able to apply the proof of the lower
semicontinuity of the map g+ i (p) to the sequence {g,,}.

We may choose m, > 0 with the following properties. First just using
C° closeness of metrics we may suppose that for all we S;(M, g,)|, and
m = m, that

Cm, w0, t0]) & By,,,o, igo(p)+s(p) nB,, igo(p)ﬂ@)'

Second we may suppose that |g,—g,lc: < 1/100 and |g,,~ g, |c> < 1/100
for all m = m,,.

Let B: =B, (p)”(p) Fixing a g,, -orthonormal basis at p, define
fixed g,,, -Rlemann ‘normal coordinates x = (x4, ", x,) that are smooth
on an open set containing B. We will use these coordmates to make all
our estimates.

We may assume |g,,— g, |2, . p < 1/100 and |g,, —golc2, .. p < 1/100 for
all m = m,. Explicitly, for all m = m, and all 1 £, j, k, p < n we may
assume

\rx > %)= TG0, X, 7) < 1/m on B,
\—(F(g x,")—T{go,X,")l < 1/m  on B,
|r* A9o> X, 1) — F e X5 )| < 1/100 on B,
and

‘ (T{Gm> %, )= T{Gmy» X, 7)) | < 1/100  on B, etc.

Let L(g,,,) be the appropriate Lipschitz constant calculated on B for the
system of g, -radial geodesics (with |x;| < 2). Then by Proposition 3.2,
for all m = m,

(x; 0 €, ()= (X; 0 )| = n— te?"LGmy)t
’ ° 50
and
106 0 G V()= (X; © e (O] S - 12" Lm0

for all ve §,(M, g,)|,. Write for m = m,

|(xi © cm, u)(t)l é |(xi © cmo,:;)(t)l + |(xi ° cm, u)(t)—(xi ° cmo, v)(t)l
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and
k . k . k . k .
|Fij(gm’ X, )l é |Fij(gm0’ X, )|+|F” m> X, )_Fi] mg? X, )l’

etc. Clearly we can find a constant Lip(g,, ) such that for any m = m,
the system of O.D.E.s for the g,,-radial geodesics c,, , written on B as in
Section 3 in terms of the fixed g,, -Riemann normal coordinates x =
(x5, x,) has the Lipschitz constant Lip(g,,,).

Set R, : =i, (p)+e. Let 0,(v, w) be the g,-angle between the g,-unit
vectors v and w which are the initial directions of the g,-loop through p
contained in B assumed to exist above. By the arguments of Section 5
applied to g,, and g, we derive the inequalities

(i) if cos O,(v, w) = 1—1/100, then for all m = m,
2—-1/100 = é‘1n7e4"L*!’(gmo)"o
= 5

(i) if 0 = cos O,(v, w) < 1—1/100, then for all m = m,
3

1 4 .
J2(1/100—199/100 m)} <~ ¢2nLip@mgRo
m

(iii) if cos By(v, w) < 0, then for all m = m,
3

V2J1=1/m < an” 2P LiP Gmo)Ro.
m

Evidently these inequalities fail to hold as m — o0 so that the g,-geodesics
¢o,, and ¢, ,, cannot meet at s to form a loop giving the required contra-
diction. Q.E.D.

We now consider the map (g, p) - i,(p) from R(M) x M — R. We claim
this map is also upper semicontinuous. Fix (g,, p,) € R(M)x M. If the
map is not upper semicontinuous at (g,, p,), then there exists a sequence
{9mte_, = R(M)and {p,,} = M withg,, - g, in the C* topology on R(M),
Pm— Po On M, and i, (p,,) 2 i, (po)+¢ for some ¢ > 0 and all m. Choose

R, > 0 such that ge B, p (p,) implies
ligo(@)—ige(Po)| = &/100.

Then there exists m, > 0 such that m = m, implies

igo(Pa) < go(P0) +£/100 }
*)

and
igm(pm) z igo(pO) +e.
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Modulo uniformizing the estimates used in proving g+ i,(p) is upper
semicontinuous, it is clear that essentially the same argument given for
the upper semicontinuity of g - i (p) yields a contradiction in equations
(*) thus proving the upper semicontinuity of (g, p) - i,(p) at the point
(90> Po)- But in light of the proofs of Theorem 4.4 and 6.1, taking R,
sufficiently small, the uniformity follows just as before.

THEOREM 2: Let M be compact. Let R(M) be given the C? topology
defined as in Section 4. Then in the product topology on R(M)x M, the
map (g, p) & iy(p) from R(M)x M — R is continuous.

8. The continuity of g+ i (M) from R(M)— R for M compact

We prove

THEOREM: Let M be compact. Then the map g+ i (M) is continuous
with the C? topology on R(M).

Step 1: The upper semicontinuity of g+ i (M).
Fix g, in R(M). If the map is not upper semicontinuous at g,, then
there exists ¢>0 and {g,},-, = R(M) with i, (M) =i, (M)+¢ and

g = 9o in the C? topology on R(M). Choose p, with i, (p,) = i,,(M). Then

ig,,(l’o) g lg,,(M) g igo(po) +é

which is impossible by the upper semicontinuity of g i (p,).

Step 2: The lower semicontinuity of g - i (M).

Fix g, in R(M). Suppose g i, (M) is not lower semicontinuous at g, .
Then there exists ¢ > 0 and {g,};>-, = R(M) with |g,—g,lc: < 1/n and
i, (M) =i, (M)—e. Since M is compact, choose p, with i (p,) = i, (M)

= "9o0
for all n. By compactness, {p,} has a convergent subsequence which we

will relabel as {p,} with p, — p,. We have
ig,,(pn) = lg“(M) é igo(M)_S é igO(Po)_s-
By the continuity of p+ i, (p), choose d > 0 such that dist, (p, po) < o
implies
|ig0(p) - igo(pO)I < 8/2
Choose n, so that n = n, implies dist, (p,, po) < 6. Then n = n, implies
i, (P) = igo(Po)—& = (igy(Po) — igo(Pw)) + (i, (D) — &)
8/2 + igo(pn) —&= igo(pn) - 8/2

A
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Thus we have {g,},.,, contained in R(M) and {p,} contained in
B, s(po) with i, (p,) < i, (p,)—¢/2 and g, — g, in the C? topology on
R(M). But this is impossible by the proof of the lower semicontinuity of
(9, p) P iy(D). Q.E.D.

n=ng
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