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COMPUTATIONS OF IWASAWA INVARIANTS AND K,

Alan Candiotti

Introduction

Let I be an odd prime, and let k be a number field which contains y;,
the group of I-th roots of unity. Let W be the group of I"-th roots of unity,
1 =< n < oo. Then if K = k(W), we know that K/k is Galois and that
I' = Gal(K/k) ~ Z,. Corresponding to the subgroups I'" ~ I"Z,, there is
a unique tower of fields

(1) k=kyck c--cK

such that | ), k, = K and G(k,/k,_,) ~ Z/IZ.

Let A, be the [-primary subgroup of the ideal class group of k, and
define e, to be the integer such that the order of A4, is [*. Then Iwasawa
[6] has proven:

THEOREM: There exist integers p,, A., v, depending only on k and | such
that e, = p "+ .n+v, for sufficiently large n.

By Steinitz’s theorem, the ideal class group of a finite extension of
Q may be identified with the reducedK, of its ring of algebraic integers
[8]. We are then led to consider the behavior of the K, of the ring of in-
tegers in the tower (1). Garland [ 3] has shown that these groups are finite.
Let B, = K, 0, where 0, is the ring of integers of k, and define d, to be
the integer so that the order of B, is I*. Coates [1] has shown:

THEOREM: There exist another set of integers g, Ag, Vg, depending
only on k and | so that d, = ugl"+ dgn+ vy for sufficiently large n.

This theorem is proven in [1] for the tame kernel, which we denote
R, k, rather than for K, 0, but, by a recent theorem of Quillen [9], these
two groups are canonically isomorphic for finite extensions of Q. We
will also deal directly with the tame kernel.

In this paper we will study the invariants 4., u,., Ag, pg- It can be
shown that p, = pg (a result of little interest since both are conjectured
to be 0). It is also known that A = 4., and we give in this paper a class of
fields for which this inequality is strict. In the special case in which there is
only one prime of K above [, it turns out that A, = Ag, a result which has
been known for some time.
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90 A. Candiotti ”

It is natural to make a further restriction on k, namely (J), to assume
that k is a totally imaginary quadratic extension of a totally real field,
which we call k*. This implies directly that the same holds for k, for all n.
This additional assumption implies that there is an action of complex
conjugation, which we denote by o, on the groups 4, and R, k,, and that
the action is independent of the embedding of k in C. If we set 4, =
(14+0)4, and A, = (1—0)A,, noting that [ is odd, we get 4, = 4,7 ® A4, .
Similarly we have R,k,= (R,k,)" @ (R,k,)~. These decompositions
give rise to invariants u., A}, ug, A5, etc. It is shown in [1] that we always
have 1, = /g and 4] < J;.

Much of this paper is devoted to the study of 1/ and A;. (Entirely
different techniques have been used for 4. and Ag, cf. [2]). We obtain a
lower bound for A; which yields many examples of fields for which
Az > 0. By contrast, it has been conjectured that 1 is always 0. [4]. We
have been able to verify this conjecture for a number of fields. For exam-
ple, let | = 3 and k = Q(/d, \/—3) for d > 0 and d = 2(mod 3). Let ¢ be
the fundamental unit of k* = Q(,/d). Let A* and A~ be the 3-primary
subgroups of the ideal class groups of Q(,/d) and Q(,/— 3d) respectively.
Then we obtain

THEOREM : Assume that (1) A~ is cyclic, (2) A" has exponent 3, and (3)
k(3/e) is not embeddable in a Z,-extension of k. Then A} = u = \g =

pr = 0.

A similar result has been obtained independently by R. Greenberg [4].
This theorem is useful in practice because we show how (3) can be decided
by computations with norm residue symbols. This fact, although long
known in principle, has not been referred to explicitly in the literature
(Greenberg [4] uses a more ad hoc procedure). In this connection, it is
interesting to note that we have found, apparently for the first time,
examples of fields (e.g. k = Q(,/254, \/—3) for which (1) and (2) are
satisfied with both 4™ and 4~ non-trivial. but for which (3) fails. For these
fields it remains an open problem to decide whether 1 = uf = 0.

Finally, we use our general methods to obtain some information con-
cerning the size of the 3-primary subgroup of the tame kernel of a quadra-
tic field and, in fact, compute the order of the 3-primary part of the tame
kernel of all imaginary quadratic fields with descriminant d satisfying
|d] < 200, except d = —107.

The index of the wild kernel

Let F be a number field, [F: Q] < o0, and let X’ = K, F be the inter-
section of the kernels of the Hilbert symbols at all primes of F. Let X be
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the intersection of the kernels of all tame symbols. We then have the fol-
lowing commutative diagram:

0— X' — > K, F2wid, 3,0

L &

0——> X — > K,Flume, T 0

where = = Im (Awig) and T = Im (Aume). In all cases T = Y, k, where k,
is the residue class field of F at v and v ranges over all non-archimedean
primes of F. For each non-archimedean prime v of F, let u, be the group
of roots of unity in the completion F,. Let p, = p,(p) where pis the unique
rational prime such that v|p. For v real, let pu, = (+1).

Using Moore’s theorem, we have

0— T @ k, 0
Ia :r'éﬁinx;qedean ] (2)

02— @ py——pp—0
all v

By (1) we have X/X' ~ Kera. From (2) we get the exact sequence

0->Kera—> @ pu, > pup—0
Thus v

|X/X' CLL 1D

iy (F I ”

Let n, be the smallest integer such that K/k, is totally ramified at all
primes dividing . Let s be the number of divisors of [ in k, (hence in K)
and let s™ be the number of divisors of [ in k.

LEMMA 1: Let 2 be a prime of kg dividing l. Let B be a prime of k| lying
above 2 (for any n). Then P splits in the extension k/k™ if and only if B
splitsin k,/k.

Proor: We have, for all n, k, = k,/ (1;). Then 2 splits in k/k* if and only
if 4y = (k*),, and P splits in k,/k; if and only if y, = (k). Clearly, if

< (k*),, then p, = (k; ), so one implication is obvious. On the other
hand, since y; = k and [k:k*] = 2, we have [(k*),(w): (k),] divides 2.
Suppose i, = (k, ). Since [k, :k*] = I", we have [(k, )y: (k*)5] dividesl”.
Then, since (k*), < (k")) = (k) )y we have (k") (1) = (k¥), and

< (k*),.

Let £, k, be the l-primary part of the wild kernel for k,. Then the maps
in,m: R2k, = R, k,, induce maps i, ,,: R, k,/R,k, - R, k, /R, k,,.
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PRrOPOSITION 2: For m =z n = n,, the map i, , is injective.

PRrOOF: Let 2 be a prime dividing [ in k, and let 9 be the unique prime
lying above 2 in k,,. Since n > n, we have |uj,| = 147" and |ug| = 4™
Let Ay:K,k, - ug and A,:K,k, — p, be the Hilbert symbols. Let
Jj: Mg — pg be the inclusion and r: ug, — p, be the homomorphism given
by raising elements to the power "™ ". By a lemma proved by Tate, the
following diagram commutes:

Kka A-_) Uyp

Kan —}:g_—" Hop

where ¢, ,,or =jo N and N is the norm map from pg to u,. We notice
immediately that on ug we have N =r. Let (R, k,, ¢ X, k,. Then for
some prime 2 of k,, dividing [, we have 2,(¢) # 1. Suppose Ag(i, (&) = 1.
Then ¢, ,.(45(8)) = 1. Let 0 € ug so that r(0) = 4,(¢). Then ¢, ,,or(0) = 1,
hence jo N(0) = 1 and N(6) = r(0) = 14(£) = 1. This is a contradiction.

ProposITION 3: For n = ny, |Rk,/R,k,| = (""" and
IRy k)™ /(R k) ™| = (77" L.

ProOF: We have |R, k,/ 2, k,| = (1/lu(kJOD [ Ti=: lus - Since n = n,,
for each i we have |u,| = [7*" Thus, since |u(k,)])| = 1*", we have
IR, K,/ k| = (1)1,

Now, in k. we first observe that k,f /k, is totally ramified at all primes
dividing . Thus the number of primes dividing [ in k; is also s*. Let
By, -, P, be the primes above [ in k,” which split in k, and let B, ,, - -,
P,. be those which do not. Then p,.n <= (kS )y for i=1,---, ¢t and
w & (k) )g fori=t+1,---, s*. The number of primes of k, lying above lis
then (s*)+t. Then we have |R, k, /%, k,| = (1D L (R, k)T (R, k)"
is isomorphic to R,(k,;)/Z (k) which is isomorphic to

I__[ (Wy)= l__[ (1is,)»

so its order is (17*™) and the conclusion follows.
We may define the group R, K/#Z,K = ILIQ R, k, /2, k, using the maps

Ly m:

ProposITION 4: (R, K)/#,K) ~ (Q,/Z)) " and
(R K) (R, K)™ ~(QJZ)" "

Proor: From the exact sequence
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0 = Ryk/Ryky > [ ] 1z = pk,X1) - 0
21

since the map «: [ [, u — p(k,)(0) is given by a(x, -+, x) =Xy " X,
we see that R, k,/Z,k, is isomorphic to (Z/I"*9Z)*~! and, from similar
considerations, that (R,k,)™/(#,k,)” is isomorphic to (Z/I"*Z)" ~1.
The fact that the maps i, ,, are injective yields the desired result.

If k is also Galois over Q, our assumption (J) is equivalent to the fact
that k* is also Galois. Then the same holds for k, and k,’, so that either
s=s% or s = 2s", the former if the primes of k* do not split in k, the
latter if they do.

CoROLLARY 1: Ifk/Q is Galois and the primes of k™ dividing [ split in k,
then forn = n,

(Rok,)™ [(Ro k)™ = (Z[1*"Zy> .

CoroLLARY 2: If k/Q is Galois and the primes of k* dividing | do not
split in k, then for n = n,

Ry k)™ (R k)™ =~ (Z/1*"Zy ™

If we consider the Iwasawa invariants of the extension K/k, we get the
following:

THEOREM 1: Ag = s* —1.

ProOF: This is clear from the fact that [(R,k,)” /(#,k,) | = (I"T9" 1
for n = n,.

COROLLARY 1: Let F be a Galois field satisfying (J), [F:Q] < o0, such
that F/Q is unramified at I. Let d* be the number of primes of F* which
divide I. Let k = F(u,;) and let K/k be the cyclotomic Z-extension. Then
(R,K) /@, K)” =~ (QyZ)" ™" and iz 2 d* —1.

Proor: Since ! is unramified in F, we have k/F completely ramified at
all primes over I, and [k: F] = I— 1. Let 2 be a prime of F* which divides
I. Then if 2 splits in F we find that ¢ does not fix either of the primes above
# in F. Then certainly 2 cannot split in k*/F*. Thus k*/F* must be
totally ramified at 2 and k/k* split at the prime above 2. On the other
hand, if # fails to split in F/F*, since £ is totally ramified in k/F, we find
that 2 fails to split in k/F*. In either case, there is a unique prime above 2
in k*. Since k/Q has ramification I—1 at primes dividing I, we have
M2 ¢ kg for any prime 2 dividing [, so the extension K/k is totally ramified
at all primes above I (i.e. ny = 0). Thus d* = s™ and the result follows.
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COROLLARY 2: If F is a real quadratic field in which | splits, then
(R,K) (#,K)” ~Q/Z, and Jx = 1.

The invariants ;] and 1.

In this section we will describe some classes of fields for which A} =
u =0, including some examples for which 1z > 0. Let F be a totally
real field, [F: Q] < oo, and let S be the set of primes of F dividing 1. Let
K be the cyclotomic Z;-extension of F and M be the maximal abelian
I-ramified l-extension of F. Let J be the group of ideles of F and 4 and
Ag the l-primary subgroups of the ideal class group and I-ideal class
group of F respectively.

We define J® = {IeJ:(I), = 1 for veS, (I),e U, for v ¢S} (there is no
requirement on (I), for v archimedean). Then, by class field theory, we
have G(M/k) ~ J/FJ5(]) and

0 - FJg/FJS(I) > JJFIS(l) > Ag — 0

The term on the left is isomorphic to [ [,cs F,/U4(l) where Ug is the group
of S-units of F, embedded diagonally in [[,csF,. Let U, = [[ s U,
Then we have

PROPOSITION 5: Assume that | does not divide the class number of F,
that u, & F, for any ve S, and that the fundamental units of F are linearly
independent in U,/(U)). Then M = K.

Proor: If the class number of F is prime to I, we have Ag = 0, hence
G(M/F) ~ [],sF./Us(]), and also that [],sF,/Usg, ~ U,/U, where U is
the group of units of F, embedded in U,. Let n = [F: Q]. Since F is totally
real, we have U = (+1) x U’ where U’ is free on n—1 generators ¢, , - - -,

&,— 1. Since y, ¢ F, for all ve S, we know that U, has no I-torsion. From
the exact sequence

0-0U-U,-UJ/U->0

we deduce that if ¢,, - -, ¢,_, are linearly independent in U/(U,), then
U,/U has no I-torsion. Since U/(l) is a free Z,-module of rank n, and since
rank (U)=n-1, we have U/U ~ Z,. Hence G(M/F) ~ Z, and, since
K = M, we have K = M.

We note that if the class number of F(y,) is also prime to [, then we must
have {¢,, """, &} linearly independent in U,/(U,)'. Otherwise, suppose

n—1

p=T]emey.
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Then F(w;) ({/7?) gives an unramified extension of F(u;) which cannot
exist.

Let F = ky = k; = --- = K be the intermediate fields in the Z;-exten-
sion K/F. Let A, be the I-primary part of the ideal class group of k,. Then

THEOREM 2: Under the hypothesis of Proposition 5, A; = (0) for all j.

Proor: Since the class number of F is prime to | and [k,: F] =, k,/F
must ramify at some prime above I(K/F is I-ramified). Then K/F is totally
ramified at that prime 2. Let L; be the maximal abelian unramified
l-extension of k;, and let L; be the maximal subfield of L; which is abelian
over F. Then k; = L; = L;. Since L; must be [-ramified over F, we have
L; = M. But, by Proposition 1, M = K, so L; = K. Then L;/k; must be
both unramified and totally ramified at the prime of k; lying over 2,
so L; = k;. Let y be a generator of G(k;/F). We then have G(L;/k;) ~ A;
and G(Lj/k;) ~ A;/(y—1)A;. Since L;=k;, we have 4; = (y—1)4;, so
A; = (0).

CoROLLARY 1: If F = Q, the class number of k, is prime to | when | is
odd. (This result was first proven by Iwasawa) [5].

Proor: Since I is odd, we have y; & Q,.The other hypotheses of
proposition 5 are verified trivially for Q.

COROLLARY 2: Let F be a real quadratic field. Let ¢ be the fundamental
unit of F and assume that ¢ ¢ (F,) for some v dividing 1, and that if | = 3, the
discriminant d # —3(mod9). Assume that the class number of F is prime
to . Then A, = (0) for all n.

Proor: For [ > 3, we have y, & F, for v|l. For [ = 3, the condition
d # —3(mod9) guarantees that uy ¢ F, for v|3. The rest of the hypotheses
of Theorem 2 are assumed, hence the result follows.
We remark that if [ = 3 and k = F(u;), then k™ = F, so we have shown
that uf = A7 =0.
We note that if F = Q(,/d), then F(u3) = Q(,/d, \/—3). Then

Apgy) = Ar @ Ag=3a)

so if both Q(,/d) and Q(,/ — 3d) have class numbers prime to 3, then we
have ¢¢(F,)* for some v dividing 3. We note that if F = Q(,/7) (d = 28),
¢ =8+3,/7. Q(/7) has class number 1 and we verify either directly or
by noting that 3 does not divide the class number of Q(,/—21), that
e (F,)? for v|3. We conclude that i} = 4 = 0 for thisTield. On the other
hand, we have shown in Theorem 1 that Az = 1.

We will now investigate a special situation, when /=3 and k=
Q(/d, \/—3) where d is a positive square-free integer > 1, and there is
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only one prime of k dividing 3. It is easy to see that this happens exactly
when d = 2(mod 3) or d = 3(3m+ 1) for some positive integer m. We have
k* = Q(,/d) and we let k~ = Q(,/—3d). Let Ag, A;, and A, be the
3-primary parts of the ideal class groups of k*, k™ and k respectively.
Then let ¢ and 1 be the non-trivial elements of G(k/k™) and G(k/k™)
respectively. Let K be the cyclotomic Z;-extension of k and F be the ex-
tension obtained from K by adjoining all 3"-th roots of 3-units of k
(1 £ n < o). Let F, be the maximal abelian extension of k contained in
F, P, the compositiumof all Z;-extensions of k, and M, the maximal
abelian 3-ramified 3-extension of k.

ReMark: Since [ is odd, we see that the natural maps
Rzk+ - (R, kY, A(;r %
R, k™ — (R, k), Ag — (Ay)

are all isomorphisms and, since the class number of Q(,/—3) is 1 and
R, 0(,/—3) =0 for all ] [11], we see that, in fact

R k™ ~ (RyK)oipy,  Ag =~ (Ao)e+n
R, k™ ~ (RyK) 41y Ay =~ (Ao)e+1

Since G(k/Q) acts on G(F,/k), G(Py/k) and G(M,/k) in a natural
way and 12 =1, we can decompose these groups into eigenspaces.
We will write X = X* @® X~ where X* will denote the eigenspace
X+pand X~ the space X(._p,. Let Fy, Py, M, be the fixed fields of
G(Fo/k)", G(Py/k)* and G(M,/k)" respectively. Then we have G(P; /k) =
G(Py/k)” and G(Mg /k) = G(M,/k)”. Clearly we have P, < M,. It
follows from Iwasawa’s work [7] that we also have P, = F|,.

PRrOPOSITION 6: Let B be a representative of a class of order 3 in Ag.
Let P* = (a), aek™. Then B becomes principal in k, for some n if and only if
ae(F,).

Prook: First let feF, be such that f* = &. Then K(B) = K(3/k) for
some 3-unit x of K. Then 8 = 7y for some y € K. Choose n large enough
so that «, yek,. Then, in k,, we have a = f = x>, so in 4], we have
io. o(*B’) is trivial. Since 4, = A4, ‘B becomes principal in k,,.

Conversely, suppose ‘B becomes principal in k,. Then, in k, we have
io, (B)? = (®) = (y)*. Then ax = y* for some unit k of k,. But xe(F)*
hence xe(F)>. Since k(3/a)/k is an abelian extension, we have xe(F,)>.

We remark that Greenberg [ 3] has proved that under our assumptions,
a necessary and sufficient condition so that uf = A} = 0 is that the map
i:Ay — A be the zero map. Using this fact we get:
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COROLLARY : Suppose Ag has exponent 3. Let B, , - - -, ‘B, be representa-
tive for a set of independent generators of Ay and let a.,, - - -, os be elements
of k* so that (B,)® = (o) fori=1,---,s. Then p = A} =0 if and only if
o;€(Fy)? for all i.

Let J and J, be the idele groups of k and k™~ respectively. In any subfield
of K, there is only one prime dividing 3 and we will use S to denote the one
point set containing that prime in a given field. We then have the exact
sequence

0 — k™=(J,)s/k"J303) = G(Mq [k) — (Ap)~ — 0 *)

and the isomorphism k™ (J )g/k~JS ~ k,/Ug where Uy is the group of
S-units of k= and 2’ is the prime above 3 in k™. When d = 2(mod 3) we
have k, = Q5(,/3) and when d = 3(3m+1) we have k; = Q,(,/2). In
either case Ug = (4 1)(3) and k,./U(3) is torsion free, hence isomorphic
toZ,®Z,.

We remark that since the unique prime £ dividing 3 in k is principal,
we have Ay = Ay, hence (4)” = (4,) - Let B, - - -, B, be a set of repre-
sentatives for independent generators of (47);, and U, - -+, U, a set of
representatives for independent generators of (4g);. Then there are
elements oy, -, a,ek™, B, -, B,ek™ so that P? = (x,) and U3 = (§))
for all i and j. Any cubic extension of k is of the form k(i/g) for some
xek. Clearly the extension depends only on the residue class of x in
k/k3. Let

N = {yek/k>: k/y) = M, when y = y'k*}
N™ = {yek/i*:kQ/Y) = My when y = yk*}

Let ¢ be the fundamental unit of k* and { be a primitive cube root of
unity. Then the classes of the elements {(, 3, &, 01, " *, &, By, ", B} form
a Z/3Z basis of N. By observing the action of ¢ on the Kummer pairing
N x G(My/k) — us, we see that the classes of {{, ¢, &, - - -, &t} form a basis
forN~.

PROPOSITION 7: s <t < s+2.

ProOF: Let X = G(M, /k), Y = k;,/Us(3). Then we have X ~ Z2 @ T,
where T is a finite 3-group. Using the snake lemma on the commutative
diagram obtained from the cubing of (*), we obtain the exact sequence of
Z/3Z vector spaces

0> Ty 5 (45); > Y/Y? > X/X* 5 A5 /(45)° - 0
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because Y is torsion free. X/X? is the Galois group of the maximal sub-
field of My of type (3, 3, -, 3). Then we have

dimz/3Z(X/X3) = dimZ/3z(N_) = 2+S

Since X/X? ~(Z/3Z)* ® T/T>, we have dimg;,(T/T?)=s. The in-
Jectivity of f shows that s < t and the surjectivity of g shows that 2 +s = t.
(This result was originally obtained by Scholz [ 10] in 1932, using a slightly
different method.)

CorOLLARY : If Ag is cyclic, then Ay is cyclic.
Proor: If A, is cyclic then t = 1. Hence s < 1 and A, is cyclic too.

THEOREM 3: Suppose Ag is cyclic and that A§ has exponent 3. If k(3/e)
is not embeddable in a Z-extension of k, then u = 17 = 0.

PrOOF: We note that, by the above corollary, Ay is cyclic of order 3.
Since k(3/¢) is not embeddable in a Z;-extension of k, we know that ¢ is
not orthogonal to T in the Kummer pairing. Since k(3/¢) = K, we know
that ( is orthogonal to T. The only possibility is that there is an element
aek™ so that (x) = P>, the class of P generates A4, and « is orthogonal
to T Hence k(3/x) = Py < Fg. Thus ae(F,)® and pf = A = 0.

Let L be the maximal unramiﬁe(i‘ abelian 3-extension of k. Then
G(L/k) ~ A, = Aj,. Hence every unramified cubic extension of k splits
completely at 2. When A is cyclic, there is a unique unramified cubic
extension of k lying in M . Then there is a subgroup N* < N~ such that
IN*| = 3 and satisfying xk3e N* if and only if xk>*e N~ and xe(k,)*,
that is, that the extension k(3/ x) = Mg is completely split at 2.

PROPOSITION 8: Assume Ag is cyclic. Let xk® e N*. Then k(3/x) is em-
beddable in a Z4-extension of k if and only if |T| < |A4g |-

PRrOOF: Since Y is torsion free, we know that T injects into A, . Since
k(3/x) is the unique unramified cubic extension of k in Mg, we have
G(k3/x)/k) ~ Ay /(Ag)?, and this isomorphism is compatible with the
exact sequence (*). Thus Im (T) = (4;)? if and only if | T| < |44 |, hence a
generator of T fixes 3/} if and only if | T| < |4, |- Thus x is orthogonal to
T if and oiily if |T| < |4, | and the result follows.

COROLLARY : If e (ky)®, then k(i/g) is embeddable in a Z 4-extension of
k if and only if |T| < |Ag |-

Before giving some examples of how one computes whether k(i/g) is
embeddable in a Z;-extension of k, we make the following remark.
When, as in this case, there is only one prime above I in a cyclotomic
Z-extension K/k, we have the isomorphism R,K =~ .7 ® A[1] and,
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observing the action of complex conjugation on .7, we have (1", A.) =
(ug, Ag), so in the preceding cases we have also shown that uz = g = 0.

We will now describe how to determine whether k(3/e) is embeddable
in a Zs-extension of k and will give the result of this determination for
some fields. We are considering fields Q (\/a, / —3) in which there is only
one prime above 3, and such that the class number of k* = Q(\/ a) is
divisible by 3 (otherwise u = A} =0 by Greenberg). There are six
such fields for a < 500 and they are a = 254, 257, 326, 359, 443, and 473.
We also consider the values a = 761, 1223, and 1367 since they fall
easily within the scope of these calculations. In five of these fields, when
a = 257, 326, 359, 1223, and 1367, we have |As| = |4, | = 3 and ee(ky)?
where 2 is the prime above 3. Since T is non-trivial (c.f. Prop. 7) and
injects in A,, we have |T| =3, and, by Proposition 8, k(3\/s) is not
embeddable in a Z;-extension of k. Then for these fields u” = 1 = 0.
The values of ¢ are tabulated below

a 257 326 359 1223 1367

e 164257  325+18./326  360+19./359  1224+35./1223  1368+37,/1367

In the rest of the cases we proceed as follows: Suppose |T| = 3", and
|Ag | = 3“Then r < u because T injects into A, , and since T =~ (4g )5,
we find that the map Y/Y* —X/X"" is injective. Let B be an ideal which
represents a generator of the cyclic group Ay, and for convenience,
choose B so that only one prime divides it. Let ek~ be an element
so that (B) = P>, and let N,-o(*B) = ¢* for some rational prime g.
Clearly we may assume that 3 does not divide b. Consider the ideles I,
and I, of k™ given by

(Io)y = ¢° when v|%, (Io), = 1 when vt P
(I1), = B when v|3, (I;), =1 when v t 3.

By class field theory, we have the isomorphism X ~ J,/k~J5 (3).
Making this identification, and, identifying T with its image in J,/k~J3
we see the following:

I, maps to the class of § in A; and I, represents a non-trivial class
in Y. Also, I,1,**ek™J3, so the class of I, 1, is trivial in X. Since the
class of I, is thenin Y n X3* hence in Y n X", it must be in Y*"; hence
B must be in (k)3 and r is necessarily the largest integer < u for which
this is true. Let y = " in k. and let I, be given by (I,), =y, (I,), =
q>* "™ for v|B and (I,), = 1 for all other v. Then (I,)>" = I,(I,)* in X
and it is clear that the class of I, generates T.

To decide whether 2/5 is embeddable in a Z;-extension of k, we must
decide whether T (considered as a subgroup of X) fixes 3/e, since the
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fixed field of T is the compositum of the Z;-extensions of k contained
in Mg . To make matters simpler, we will perform our calculations in
G(Mo/k) ~ J/kJ® (3), identifying J; with its image under the canonical
map J, — J. Then using class field theory the Kummer pairing

N x G(My/k) - p4
translates into the 3-symbol N x J/kJ5 J3 — u; given by

(d, Iv) - n(a9 Iu)v,3'

Explicitly we must evaluate

(& 1) = (& 757" l_ll (e g™ )3

where v is the unique prime of k™ dividing . Then 3/ is embeddable in
a Zj-extension of k if and only if it is orthogonal to T in the sense that
(¢, I,); given above is 1.

To compute (¢, y)5?/> we note that it certainly suffices to approximate
by ¢ and y modulo U? where U is the group of units in k,. We have
k, = Q3(/—3,/2) and a basis for the Z/3Z-vector space U/U? is given
by {1+/—6,1+,/=3,1+3/2,4,1+3,/—3}. We note that ¢ and y
will always be units taken from the subfields Q3(,/2) and Qs(,/—6) and
that they will not both be in the same subfield.

LEMMA 9: Let x be a unit in Q3(,/2) and y be a unit in Q3(\/v— 6). Then
(x, g2 = [PWOwhere o(x) and Y(y) are the coefficients of 1 +3,/2 and
1+ ./ —6 respectively in the expansions of x and y with respect to the above
basis of U/U>.

Proor: Since x € Q5(,/2), we may write x(modulo U?) as (1+3,/2)*

(4)%, and since ye Qs(,/ —6), we may write y (modulo U3)as (1+./—6)"
(4y2. Then -
(6, Y)p = (1434/2), 14/ =037 (143,/2, 4574, 1 +./ — 6)371(4, 43,

We then raise to the power m,,/3 and see immediately that (4, 4)52/* = 1.
Furthermore, since u; is not contained in either Q5(,/2) or Q3(\f —06),
we have

(Triyun {1432, 4)722); = (1+3/2,4"27); = 1
hence (1+3,/2, 4)37"° = 1, and similarly
(Treyi0sv=0{4 1+ —6}"21%); = (4, 1+/—6)"2); = 1
hence (4, 1 +./—6)5#"> = 1. We are then left with
(x, 905 27 = (1432, 1 +/ =623
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We check directly that (1+3,/2, 1+.,/—6)32/> = { where

—1+,/-3
{=—"5"—

and note that x, = ¢(x) andy, = ().

To compute ¢(x) and y(y) we note the following: If x = 1(mod 3) we
may write x = 1 +3(a+b,/2) and then ¢(x) = b(mod 3). In general, we
may adjust x by a cube without changing ¢(x). We note that x* = +1
(mod 3). Let x = a+b,/2(mod9). Then

x* = (a*+12a%b* +4b* +./2(4a’b + 8ab?)) (mod 9)

and, since x* = + 1 (mod 3), we have 3|(4a®b + 8ab®) and a*+ 12a%b* + 4b*
= 41(mod 3). Then we have

1 4a*b—ab?
o(x) = o(x*) = 3 A1t (mod 3)

For y, we must have y = + 1 mod #, the maximal ideal in Q4(,/—6).
In Qs(,/—6) we have the isomorphism log,: U™ — 2’ which exists
because u; ¢ Qs(/—6). Since —1 is a cube, we may assume y = 1
(mod#'). Let y=1+z, ze?. Then logy =) (—1)""'z"/n. We
note that v,(z"/n) > 1 when n =2 or n > 3, hence that logy = z+2%/3
(mod 3). Let z = a(,/—6)+3b. Then

2 = —6a>\/6—6- 3%a’b+3%ab:,/—6+33D?,

so z/3=a/—6 (mod3). Hence logy= —al(,/—6) (mod3). Since
y = l+ay —6+3b,wehavey(y) = a(mod 3),hencelogy = —y(y)/—6)
(mod 3).

Returning to our example, we must compute (g, y)5?/>. Assume that
(k*); = Q3(/2) (Otherwise (k7); = Q3(,/2) and the calculation is
similar.) Then we have

(8, y)';gﬁ — Ctp(ﬁ)!ll(v)‘

We must write ¢ in Q4(,/2) by expressing \/a in terms of /2. We use the
convention ,/a/,/2 = 1(mod 3). We compute the following congruences
(mod9) for /a when a = x(mod9)

X 2 5 8

a2 iy -y

We have y = B3, so logy = 1/3"log . For example, let a = 443. Then
|41 =9 and B = (B) = (99037 + 774,/ —3 - 443) where P is a prime
ideal dividing 13 in k~. We have log, B = —9.,/—6—27 (mod (%)),
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hence fe U® and r = 2.Log, 7 = §log, f = —./—6(mod 3),s0 Y (y) = 1.
We have ¢ = 442+21,/443 = 1+ 3,/2(mod 9), 50 ¢(¢) = 1. Thus (¢, y)"#’
= (. Finally we calculate straightforwardly the tame symbol (e, 13)g:*/>.
We observe that 13 splits completely in k, so m,; = 12, and thet &> = —1
(mod 13). Hence (e, 13) = 1 and we have (e, I,) = {. Then k(3/e) is not
embeddable in a Z;-extension of k and u = 1 = 0. Tabulated below
is the relevant information for the other fields.

a 254 443 473 761 -

€ 255+164/254  442+21,/443 87+4,/473 800 +29,/761

@(e) 2 1 1 2 R
89 99037 223+3,/—3-473 1901—39\/—3 - 761

B +12,/-3-254 +774\/-3-443 2 2

Ne-10(B) 7° 13° 56 11¢

r 1 2 1 1

1462] 1 1 2 2

tame symbol { 1 4 4

(CAFY) 1 ¢ 1 2

We conclude that when k = Q(,/a, \/ —3) and a = 443 or 761, k(,/¢) is not
embeddable in a Z;-extension of k, so u = A; = 0 for these fields. For
the cases a = 254 and a = 473, k(/e) is embeddable in a Z;-extension.
We note that when a = 443 and 761, the elements « = 10+.,/443 and
27+ M)/z have the property that P> = («) and B represents a genera-
tor of the 3-primary part of the ideal class group of Q(\/?t). In these cases
we check directly that k(3/ae™") for a = 443 and k(3/ae) for a = 761 are
embeddable in Z;-extensions of k.

Computation of the order of (R, k); for quadratic fields

Let k= Q(,/d, \/—3) where d is a square-free positive integer > 1.
Then k* = knR= Q(/d) and we define k™ = Q(/—3d). G(k/Q) is
generated by automorphisms ¢ and t where o fixes k™ and 1 fixes k™~
and ¢? = 1% = 1. Clearly, if F is any quadratic number field, then unless
F = Q(/—3) for which R, F = (0) [12], F(\/—3) is a field of the form k.
When F is real, we have F = k* and when F is imaginary we have F = k™.
Tate [13] has shown that when u; < k, the map a:k/k®> — (K, k), given
by a(x mod k%) = {x, {}, where { is a primitive cube root of unity, is sur-
jective. Then we have the exact sequence

0- X - k/k®> 3 (K, k); - 0,

where X = Kera. Let k be an algebraic closure of k (we may take k = C),
G, = G(k/k) and 7 = lim p3.. Then from the exact sequence

05T QT ST ®T - s @ uy >0
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we obtain the following sequence by taking Galois cohomology with
continuous cochains

0 HYGy, 7 ® 7)H' (G, 7 ® T)° > H'(Gy, pty ® p3) —
[HXG,,7 ® T)]; — 0.
Since pz < k, G, acts trivially on p3, we may identify H*(G,, us ® us)

with Hom (G,, us) (as groups). We then construct the following diagram

0> HYG,, 7 ® 7)HG,, T @ T —» H'G, 113 ® p3) » [HXG,, T ® T)]; = 0

I ?'/f I h
0 X k®ps —— (Kyk);
where (B(x ® {))o) = a(x'/3)/x/® for ¢ €G,. Tate [12], [13] has shown
the existence of the isomorphism h:(K, k); —» [H*(Gy, 7 ® 7 )], so that
the above diagram commutes. Then
X ~ H\G,, 7 ® 7)/H'G,, T ® T)’
and since HY(G,, 7 ® 7) is isomorphic to B@® Z* where B is a cyclic
group of order

|(E)|
Wy = 2 =
o= WO I or
we have X ~ (Z/3Z)' *®[10].

Recall that R,k is the 3-primary part of the tame kernel of k. Then,
since R,k =(R,k)* ® (R,k)~, we have (R,k); =(R,k); ® (Ryk);.
Suppose k' is a quadratic subextension of k. Then let G, = G(K'/k) =
G(k/k'). We have G, <= G, and |G/G,|=[k:k]=2. Since J is a
pro-3 group, we have

HYG,,7 ® 7) = H\G,, T @ T )% /%

But H(G,.,7 ® 7 ) ~ B @ Z?*) where B’ is a cyclic group of order
w;. [10]. Thus, since G,./G, ~ G(k/k') and 3|w;. for any k', we have

dim 3 XOKW = 141,(K)

Thus if k' = k™, we have ry(k') = 1, so dimg;3,(X") = 2, and if k' = k™,
r5(k") = 0, so dimg3,(X°) = 1. Since (R,k*); ~ (R, k); and (R,k™); ~
(R, k)5 we may now determine the orders of (R,k*); and (R, k7);.

Notation: If T is an abelian group of exponent 3, we will write d(T) =
dimg3,(T). Let Y = {yek® ps:a(y)e(R,k);}. We have a®@(eY if
and only if v (a) is divisible by 3 for all £ not dividing 3. We have the
exact sequence

0-X->Y->(R,k); -0
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where the maps are compatible with the action of G(k/Q), so to determine
(R, k)5 and (R, k); we need only determine Y” and Y*.
Let A be the 3-primary part of the ideal class group of k
A’ be the 3-primary part of the 3-ideal class group of k
B be the subgroup of 4 generated by the classes of the ideals divid-

ing 3 in k.
Then A’ = A/B and we have the exact sequence
(**) 0— B, — A, ™ A3 5 B/B> 5 4/4°

Case 1: There is only one prime dividing 3 in k.

In this case, if 2 is the prime above 3 in k, we have 2 = (\/—3), so
B =0and n: A; — A} is an isomorphism. Let B, - - -, P, be representa-
tives of independent generators of A;. For each i, let a;ek be so that
PB? = (o). Since A3 = (A7); D (47);, we may choose the elements a; so
that oy, -, a,ek’ where s=4d(43), and o, ", a,,,€k” where
t = d(A3) and s+t =r. Suppose a ® { €Y. Then (a) = (\/—3)°[ [oys 5"
Since a ® (e Y, we may write e; = 3f; for each i, and we observe that
[T@!9? is principal, hence in A

r

[Tef = [ %
i i=1

and we have
(@ = (J/=3—(]] o)x?).
i=1
Then

a = J=3(T] o'y
i=1
where y is a unit in k. Thus
“®l={-30(]@e el

Let U be the group of units in k. Then U ® p; is generated by ¢ ® {
and { ® { where ¢ is the fundamental unit of k*. Thus Y is generated by

W-3®Le®LIQLU{Lu® ;.

It is clear that these elements are linearly independent so we have d(Y)
=34r=3+s5+t.
Let Y; be the subgroup of Y generated by {o; ® {}i-

Y, be the subgroup of Y generated by {o; ® {}i ;.

LEMMA 10: For ye Y;, we have 1(y) = y, a(y) = y~ L. For ye Y,, we have
o(y) =y and ©(y)~ y~'. Furthermore, 1(c ® {) = (¢ ® () and o(¢ ® {) =
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E®)™H a(®)=1R®N=(® and o(/-3@ () =1/-3®)
=\/-3®0)7"

Proor: First we have e=¢° and &= t¢ ' (°==("! a
(/=3)" = (/=3)" = —/—3. From this we conclude, since —1isa cube
that (e ® ) = ® 0, 0E®@D=® ) el RD =1 ® ) =(®);
and o(,/-3® ) =1/-3®)=(-3®)".

Now, consider {o; ® (} for 1 £i<s. Then wek™, so o; =0of and
0(0 ® () = (;® {)~'. Also, we have P} = (06) s0 (o;.0) = (B ‘35)3 = (o)’
where &/ is an ideal of Q. Then «;of = x> for some xe Q. From this it
follows that (o; ® {) = o; ® . Similarly, if s+1 < i < r, we have of = o,
$0 7(0; ® {) = (o ® () and ;07 = y°, ye Q. Hence o(x; ® ) = (1, ® {).

We observe that, since (R, k)" = R 2(Q(\/ —3))=(0),wehave { ® (e X
and \/—3® (eX. By the above lemma, we have d(Y*)=2+s and
d(Y?) = 1+t. Since d(X®) = 2 and d(X°) =1 (in fact X° is generated by
{®Y{), we have d(R,k)5 =d(R,k™); =5 and d(R,k); d(R,k*); =t
That finishes Case 1.

Suppose there are two ideals above 3 in k. Then 3 must split in either
k* or k™. Let 2 and 2 be the primes above 3 in k. Then 22 = (/-3),
so 2 = 2! in the ideal class group of k. Furthermore 2’ = 2* or 2°
when 3 splits in k* or k™ respectively. Let ¢ be the order of £ in the ideal
class group of k.

Case 2: 3 does not divide c.

In this case we have B = 0, so again n: A; — A% is an isomorphism.
Let B4, - - -, B, be representatives for a set of independent generators of
As. We may assume that B, ---, B, are relatively prime to £ and 2.
Let o; €k be so that (a;) = PB?. Again, if s = d(A7) and t = d(A43), we may
choose «;, -+, a;ek™ and o, ;, -, a,€k”. Now let a® (e Y. Then

(@) = 22 ] vt
v ¥3
Again we have ¢; = 35, for each i and, since 2’ = (,/ —3), we have
@ = /=3@" [l @
v f3
Raising to the power ¢, we have (a°) = () [ [o.s (%) where y is a 3-unit
in k. Then [ [, ,5 (¢§%)° is principal, so we conclude that

(@) = O [T a)x)
and hence that .

(@) = ([T ap®
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where z is a 3-unit in k. Thus, if Y’ is the subgroup of Y generated by
{o; ® {}i=; and U is the group of 3-units of k, we have

@ ®Le(YNU ® u),

and, since 3 fc,

a® {e(Y)NU Q ps).

The Galois action on Y’ is described in Case 1. To determine the struc-
ture and Galois action on U ® pu3, we observe the following. Let ¢ = (y).
If 3 splits in k™, we have (yy") = (/= 3)". Then yy* = u(/—3)° where u is
a unit in k. Replacing y with y? if necessary, we may assume yek™*. Let
x = y%y°. We then have the following:

U ® psis generated by {{ ® {, e ® {, /-3 ® {, x® {} where ¢ is the
fundamental unit of k*. The Galois action on the first three is given in
Case 1. Since x* = x and xx* = (yy%)?, we have 1(x ® {) = x ® { and
ax® 0 =(x® ™' We observe finally that

{C@CJ@L\/—?’@C,X@C}U{“i@é}:=1

is linearly independent, so we have d(Y?) = s+ 3 and d(Y°) = ¢+ 1. Then
we conclude that d(R,k*); = d(R, k)5 =t and d(R,k™); = d(R,k) =
s+ 1. By an analogous argument, if 3 splits in k~, we let x = y?y° and
conclude that d(R,k*); = t+1 and d(R,k™); = s.

Case 3: 3 divides ¢, but the class of £ is not a cube.

Let ¢ = 3"c’ where 3 t ¢'. Then B is cyclic, generated by 2, and B, is
generated by 23" '¢'. In the exact sequence (**), we now have B ¢ A3,
so g is injective. Then f is zero and we get

0By > Ay 5 Ay > 0.

Let P, - - -, B, be independent generators of A5. Then they may each be
lifted to classes 45, which may be represented by ideals B,, -, B,
which are relatively prime to 2 and 2. Let o; € k be such that P7 = («,).
Suppose 3 splits in k*. Then we may assume o, -, o, ;€k™ where
s = d(A3). (The extra term is accounted for by the fact that B; < 43),
and o, -, a,ek” where t =r—s+1 = d(43). We note that s = d(A45)
= 1+d(A%)* and t = d(A43) = d(A3)".
Now let a® (e Y. Then

(@ = /=3 [ @)

v,k3

as in Case 2. In the ideal class group, we must then have
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[Tvi = (TT ¥

v 43
Hence we may write

(@ = (X [T e

where y is a 3-unit in k. Again a ® {€(Y'(U ® p3) with Y’ and U defined
as in Case 2. Again let 2° = (y). Then U ® p; is generated by {{ ® (,
e®(/—3® 7y ® (). Replacing y by y? if necessary, we may assume
yek*. Then y° =7y and yy*=({/—3)° is a cube because 3|c. Hence
oy ®)=0r® !and 1(y ® () =y ® {. Again the given generators of
Y’ together with those of U ® 5 are linearly independent and the Galois
action on the other generators has already been described. Putting it all
together, we have d(Y") = s+2 = d(A43)* +3, and d(Y°) =t+1 = d(43)
+1, so d(R,k*); =t =d(As)” and d(R,k™); =s = 1+d(A43)". By an
exactly analogous argument, if 3 splits in k= rather than k™, we get
d(R,k3) = 1+d(A5)~ and d(R,k™); = d(45)*.

Case 4: 3 divides ¢ and the class of £ is a cube.

Again we write ¢ = 3"¢’ where 3 } ¢’ and again B is cyclic, generated
by the class of ¢, and B, is generated by the class of 23" '¢. This time
we have B < 43, so in (**) the map g: B/B®> — A/A3 is zero. Then f is
surjective and we have 0 —» By — A3 5 (4'); = B/B> - 0, hence 7(4,)
has index 3 in A%. Again assume 3 splits in k™. Then we may write P> =1
in A for some ideal . Let (B) = 2P>. We may choose fek™. Then let
P, - -+, B, be independent generators of n(A;) in A5. These may be lifted
to classes in A5, represented by ideals B,, - - -, B,, relatively prime to 2
and #'. Choose o, -, o, in k* and o« ;, -, o,k so that (a;) = P?,
where s = d(A3)" =d(4;)" and r—s=t=d(4;)” =d(4;)". Let a®(
€ Y. Then we have

(@) = (/=3"@" [] @Y.

v, 43

In the ideal class group,

1= 2" 19 = ([]of)

vk3 v43

Then we conclude that
@ = p([T o)x?)
i=2

where y is a 3-unit in k. Finally we have
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r
a = 2p"(T] o
i=2

where z is a 3-unit in k. Let Y’ be the subgroup of Y generated by
{0, ® {}i—,. Let Y" = U ® p3 and Y’ be generated by f ® {. Again, if
P° = (y), then Y" is generated by {{®(, e®(,/—3®( 7@} with
Galois action previously described. The given set of generators of Y/,
Y”, and Y taken together are linearly independent. To get a more con-
venient Galois action on Y, we let a; = B*f*. We have of = «; and
a0 € k3. Since (Bf7) = P2 P3(P)? = ({/ —3x°) for some xek, we see
that the group generated by {\/—3®{, f®{} is the same as that
generated by {\/—3 ® {, a; ® {}. Then we have t(¢; ® {) = a; ® { and
o(a; ® ) = (a2; ® )~ 1. Putting it all together and counting, we find
d(Y)=s+3and d(Y°) = t+1. Then d(R,k*); = tand d(R, k7); = s+1.
Again, an analogous argument shows that if 3 splits in k™, we have
d(R,k™); =t+1 and d(R,k™); = s. We now collect the results of this
discussion as follows: For any field F, let 4p = {x ¢F: 3|v(x) for all non-
archimedean valuations v not dividing 3}. Then F* < A,. Let Y, = 4,/F>.

THEeOREM 4: There are surjective homomorphism p . : Y+ — (Ryk™); and
p-: Y- = (R, k" )3 givenby p (@) = Try-({a, C}) and p_(a) = Try+({a,(})
where a is the class of a in Y, . or Y, - . Furthermore Ker(p_) is of order 3
and is generated by the class of 3 in Y- . Ker (p 1) is of order 9 and contains

the class of 3in Y,..

Proor: We need only remark that for any field we have an exact
sequence

0 Up/Up > Yr = (4p)s > 0

where Uy is the group of 3-units of F and A4 is the 3-ideal class group of
F. Then d(Yz) = d(U/U3)+d(AF)s. But d(Uy+/UR+) = 1+n where n is
the number of primes above 3 in k*, and d(U,-/U3-) = m, the number of
primes above 3 in k™. Let s = d(4); and t = d(A');. We have d(Y;.) =
1+s+n and d(Y;-) = t+m. The previous discussion shows that in all
cases p, and p_ are surjective and that

dR,k*); = t—1+m

dR,k7™); = s—1+n

We conclude that d(Ker p ) = 2 and d(Ker p_) = 1. Finally we observe
that {3, {} =1 in R,k completing the proof.

COROLLARY : Let By, -, B, be independent generators of n(A;)” in
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(A);. Let B, -, B, be representative of classes in A3 with n(;) = B;.
Let a,, -, o, be elements of k= with (P)> = (o). Then the elements
{a;, {} are linearly independent in (R, k)3 . Furthermore, they form a basis
for (Ryk)5 unless 3 splits in k™.

We will now compute the order of (R,k); for all fields k = Q(\/?i)
where d is the discriminant of k and |d| < 200. We observe that (R, k),
= (1)ifand only if R, k = (1) and (R, k);| = 3 if and only if R, k is a non-
trivial cyclic group. When d < 0, we have |(R,k);| = 371" where n is
the number of primes dividing 3 in k* = Q(,/—3d) and s = d(4')5.
where (4")" is the 3-primary part of the 3-ideal class group of k™. We find
that the only value of d, 0 > d = —200 for which s # 0 is d = — 107 for
which s=1. We note that n =2 when d = 3(3m—1) for an integer
m < 0 and n = 1 otherwise. Then we conclude that for 0 > d = —200

R,(Q/D),| = 3 when d = —39, —84, —107, — 111, —120, —183
IR:(Q ol = 1 otherwise.

ProrosiTION 11: Let d = 3(3m—1) for an integer m < 0. Suppose the
field Q(./d) has class number prime to 3. Then R, Q(,/d) is cyclic of order 3
generated by Tro z =3y0 @ {6 {} where ¢ is the fundamental unit of the

real field Q(/—d/3), and #,Q(,/d) = 1.

Proor: First we note that there are two primes £ and £’ dividing 3
ink™ = Q(,/—d/3). Let M be the maximal 3-ramified abelian 3-extension
of k™ and (A4')* be the 3-primary part of the 3-ideal class group of k™.
Then we have the exact sequence

0 — kj xk}./{3-units of k*> - G(M/k™) - (4)* - 0

We know that G(M/k™) ~ Z, @ T where T is a finite group and, by the
methods of the previous section, we establish that for fields of this type,
d(T/T?) = d(A~ (A™)?) where A~ is the 3-primary part of the ideal class
group of Q(,/d). Then in this case T =0, hence M is the cyclotomic
Zs-extension of k*. Thus M is totally ramified at all primes above 3, so
(A)* = 0. Weknow that R, Q(,/d) is cyclic and that |R, Q(,/d)/ %, Q(,/d)|
= 3 (cf. proposition 4). The completion of Q(\/Zi) at the prime above 3 is
Q;(,/—3) and a direct calculation shows that in Qs(,/—3), we have
(3,0;=1 and (4,0)# 1. We now consider Troz ,=3,0.a& (€
R, Q(,/d). Any unit in Q5 may be written as (4)'x*, so in order for {, {} to
be locally trivial at the prime above 3, it would be necessary for ¢ to embed
locally as a cube at both of those primes. Then there would be an un-
ramified cubic extension of Q(,/d) which contradicts the hypothesis that
the class number of Q(,/d) is prime to 3. Hence Tro . —30waié (¢
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R, Q(/d), so we conclude that R, Q(,/d) is cyclic of order 3 and 2, Q(,/d)
= 1.

The hypotheses of the above proposition are verified for d = —39,
—84, —111, —120, and — 183, hence R, Q(,/d) is determined for those
fields. For d = — 107, we know that R, Q(,/d) = %, Q(,/d), a non-trivial
cyclic group,

When 0 < d <200, we have |R,Q(,/d);| = 3'~'*™ where m is the
number of primes above 3 in k~ = Q(,/—3d) and t= d(A');, where
(A’)” is the 3-primary part of the 3-ideal class group of k™. There are ten
positive values of d < 200 for which ¢ = 1, and those are d = 29, 77, 85,
93,109, 113,137,172,173, and 181. For all other cases, t = 0. Againm = 2
when d = 3(3u— 1)for a positive integer uand m = 1 otherwise. The values
of d of the form 3(3u—1) are d = 24, 33, 60, 69, 105, 141, 168, 177. Hence
we have |(R,Q(,/d);| = 3 and R, Q(,/d) = %, Q(/d) when d =29, 77,
85, 93, 109, 113, 137, 172, 173, 181 (Coates and Lichtenbaum have de-
termined that the order of R, F is the power of 3 dividing w,(F){g(—1)
for these fields [2]). |R, Q(\/d);]| = 3 and |R, Q(/d)/%, Q(,/d)| = 3 when
d =24, 33, 60, 69, 105, 141, 161, 177. R, Q(ﬂ) = 1 for all others.

In each of the eight fields where d = 3(3u— 1), let 2 be one of the ideals
above 3 in k. Let ¢ be the order of £ in the ideal class group of 4~ and
let #¢ = (y), ye k™. Then, by checking the local symbols (y, {) at the ideals
above 3 in Q(,/d, / —3), we determine that for d = 24, 33, 60, 69 and 177,
R, Q(,/d) is cyclic of order 3. For d = 105, 141, 168, we find

Trowz y=si0ws {1 (€ 2, Q(/d),

hence R, Q(\/ZI) is cyclic of order divisible by 9. This is consistent with the
conjecture that the order of R, Q(\/Zl) is the power of 3 dividing

o(F){p(—1).
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