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HECKE THEORY FOR GL(3)

H. Jacquet! and J. A. Shalika 2

In view of the recent results of Gelfand, Kajdan, and one of the authors
([1], [6]), it appears likely that the results of [2] — the Hecke theory —
will extend to all groups GL(p). In this note, we present nearly complete
results for the case p = 3. To avoid technical difficulties we restrict our-
selves to the case of a function field.

1. Global computations

Let F be a commutative field, G (resp. G') the group GL(p) (resp.
GL(p—1)) regarded as an algebraic group defined over F. We regard G’
as imbedded into G by the map

g 0
e d .
9700 1

We denote by Z (resp. Z’) the center of G (resp. G') and by ‘g the transpose
of a matrix g. The entries of a matrix g in G are written as g;;, the first
index being the column index.

In this section we take F to be a function field whose field of constants
has cardinality Q. We let A be the ring of adeles of F and [ the group of
ideles. Then G, = GL(p, A) is a locally compact group of which G, =
GL(p, F) is a discrete subgroup. A cusp form on G, is a complex-valued
function ¢, which satisfies the following three conditions:

(1.1) forall geG,, aeZ, =1, and ye Gy, ¢dlayg) = w(a)d(g),

where w is a quasi-character of I/F*,
(1.2) the function ¢ is invariant on the right by a compact open
subgroup of Gy,

(1.3) if P is a proper F-parabolic subgroup of
G and U its unipotent radical, then

J P(ug)du = 0, forallge G,.
Up\Ua
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76 H. Jacquet and J. A. Sjalika 2]

Let N be the group of p by p upper triangular matrices whose diagonal
entries are one. Let N' = N n G’ be the corresponding subgroup of G'.
Choose a non-trivial character y of A/F and define a character 0 of N,
by the formula

(1.4 0(n) = n l//(ni+1,i)'

1=igp—-1

Let ¢ be a cusp form on G4. The function

(1.5) Wig) = J P(ng)d(n)dn
NFp\Na

is called the “Whittaker function’ attached to ¢. It transforms on the left
according to the formula
W(ng) = 0mW(g),  forne Ny,

and the form ¢ has the following Fourier expansion:

(1.6) Plg) = Y W)

yeNF\Gr

Now let ¢’ be a cusp form on G, and let us compute the integral

(17) J | JO et g da,

where seC and dg is an invariant measure on G;\G. Replacing ¢ by
(1.6), we obtain

J ) Y, W(yg)¢'(g)ldet g*dg Y. W(yg)d'(yg)ldet (yg)l dg

Gy Ni\Gr J GH\Gy Ny\Gy
r

= Wi(g)¢'(g)ldet gI*dg

JNE\Gy
= [det gI*dg W(ng)¢'(ng)dn
YN,\Ga NNy

»

det gI*W(g)dg J 0(m)¢'(ng)dn.
J Ni\Gjy Np\Njy

Let W’ be the Whittaker function attached to ¢’ and ¢ the p—1 by p—1
matrix defined by

&ij = 0i.j (= 1),

Since 0 (sne ™ ') = O(n~'),in the last line the inner integral is actually W'(eg).
Thus (1.7) is equal to
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(18) Wig)W (eg)idet gl*dg.

N;_\\Gj‘
More precisely, for Res sufficiently large, all the above integrals converge
and are equal.

Since ¢ and ¢’ are compactly supported modulo GpZ, and G,Z;
respectively, the integral (1.7) is always convergent. Hence, the integral
(1.8), which converges only in a half-space, is, as a function of s, a poly-
nomial in Q% Q°.

Now, let w be the element of G defined by

wij=0 if i+j# p+1, Wp+1—i,i:(—1)i_1 1=ij=p
and let w’' be the corresponding element of Gy. Clearly
wNw™! =N, Own 'w™ 1) = O(n).
In particular, the functions ¢ and ¢’ defined by
Blg) = dwg™h) = ¢(g7"),  dg) = $w'g™") = ¢'(97 )
are automorphic forms on G, and G/, respectively, whose Whittaker
functions are the functions W and W’ given by

Wig) = Wiw'g™"),  Wig) = Ww'g™").

Changing g into ‘g~ ! in the integral (1.7), we easily obtain that (1.7) is
also equal to the following integral:

(1.9) P(9)P (g)ldet g|~*dg,

Gr\Ga

and conclude that (1.8) and the integral

(1.10) W(g)W'(g)ldet g|*dg

N3\Ga
are equal in the sense of analytic continuation - as polynomials in Q %,

Q.

2. Local conjectures

From now on and until Section 5, the field F will be a non-archimedean
local field whose residual field has ¢ elements. We denote by |x| or az(x)
or simply «(x) the module of an x in F. We denote by M(p x r, F) the space
of matrices with p columns and r rows whose entries belong to F, and by
S(p xr, F) the space of locally constant compactly supported complex-
valued functions on M(p x r, F).
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Fix a non-trivial character y of F and let 0 be the character of Ny
defined by (1.4). Let = be an irreducible admissible representation of G.
We say that = is non-degenerate if it can be realized by right translations
in a space ¥ of functions W on G, satisfying

W(ng) = 0(n)W(g), for all n in N, g in Gp.

If = is non-degenerate the space #” is unique and denoted by # (n, Y).
It is called the Whittaker model of = ([1], [6]).

Since ‘g and g are always conjugate in G, the representation 7 contra-
gredient to 7 is equivalent to the representation g — n('g~ ") ([17). In
particular, if 7 is non-degenerate so is #. More precisely, if W belongs to
W (m, ¥) then the function W defined by

W(g) = W(w'g™)
belongs to #,(%, /).

Let = and =’ be non-degenerate representations of Gy and G respec-
tively. For We# (n, ) and W e# (', ) and seC, we set

P(s, W, W) = W(g)W'(eg)ldet g~ *dg.
Ne\Gr
The global computations of Section 1 lead to the formulation of the
following conjectures.

(2.1) For Res sufficiently large the integrals ¥(s, W, W’) and ¥(s, W, W’)
are absolutely convergent.

(2.2) They are rational functions of g *. More precisely, for W e #(n, )
and W’ e# (', ¥) the integrals ¥(s, W, W’) span a fractional ideal
ClLq™* q°]1L(s, = x ') of the ring C[q~ % ¢°]; the factor L(s, = x 7)
has the form 1/P(q~*) where Pe C[ X] and P(0) = 1.

There is a similar factor L(s, & x @').

(2.3) There is a factor &(s, 7 x 7', ) of the form cq™" such that
Y(1—s, W, W)/L(1 —s, 7t x i)
= ¢&(s, X7, Y)w'(— 1)PWP(s, W, W)/L(s, = x ')
for We# (n, ) and W' e #' (', ), where o’ is the quasi-character
of F* such that 7'(ul,_;) = (@) 1.

Let us emphasize that in the above statements the pairs (r, 7') and
(%, #') play symmetrical roles, since, in fact, W (resp. W’) belongs to
W (T, ) resp. #(7, ) if W (resp. W’) belongs to # (r, y)(resp. # (7', ).

These conjectures have been proved for p = 2 (see below), and, in [1],
for all p under the additional assumption that = is supercuspidal. Indeed,
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under this assumption, the restriction of a W in #7(n, ) to Gy belongs
to the space CX(G/, 6) of all maps f from Gy to C which, on the left,
transform according to

f(ng) = 0n)f(g), neNp,
and are locally constant, and compactly supported modulo Ni. In fact,
the map W — W|G¥} is a bijection of #/(x, ) onto CX(G, ). It follows
that the integrals are convergent for all s and satisfy (2.2) with L(s, 7= x ')

= L(s, # x ') = 1. In order to prove (2.3) one need only show that there
is a constant ¢ such that, for all W in #'(rn, ) and W’ in #(x', ¥),

W(g)W'(eg)dg = ¢ J W(g)W'(eg)dg.

NF\GF Np\Gg

Indeed, the left hand side defines a bilinear form B on the product
C2(G, 0)x W(r', ). Tt satisfies the following invariance condition:
B(p(9)f, (g)W') = B(f, W),  where (p(g) f)h) = f(hg).
Therefore, it must of the form
B(f, W') = J Mm'(g)W")f (9)dg,
Np\Gr
where 4 is a linear form on #(r', ) such that
AW’ = OmAW’),  for ne Nj.

The uniqueness of the Whittaker model shows that A must be propor-
tional to the linear form W’ — W'(¢) and our assertion follows.

In the next sections we call the factor L(s, n x n') the ‘g.c.d’ of the
integrals ¥(s, W, W’) and set

s, mxn’, ) = &8, nxa', y)L(1 —s, & x 7T)/L(s, © x 7).

We shall use also the same notation and terminology for other integrals
which have similar properties.

3. The case p = 2

In this section we review the case p = 2. Accordingly, G = GL(2),
G'=GL(1), G =F*,
0 1
W =
-1 0

w' = 1. Moreover,w'g 'w™! =detg™'- g for g in Gg.
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Let 7 and 7’ be as above. Let w be the quasi-character of F* such that

a 0 _
n<0 a)—a)(a)-l.

Then 7 is equivalent to the representation 7 ® w ™! (i.e. the representation
g — m(g)w ™ (det g)). Moreover, for W in # (n, ) the function W is given
by

Wig) = Wigwo™'(det g).
On the other hand, the representation n’ is just a quasi-character of F*
and the function W’ coincides with the function n’. Therefore the integral
Y(s, W, W’) reduces to the integral

0 1
w(? lal* " *n'(a)d*a
o \0 1

and the integral ¥(s, W, W’) to

J WI:(“ 0 w ||s—% -1_/—1 dx
. 0 1 a’ Fo” 'n’" (a)d*a.

Hence, the results of [2] show that (2.1) to (2.3) are true with
L(s,rx7n') = L(s,t® 1), s, txn, ) = es,n @, ).

We shall need the fact that these factors are related to other integrals
as well. Indeed, let V be the space of m, ¥ the space of #, and <, -> the
invariant bilinear form on V x V. A coefficient of 7 is a function f of the

form f(g) = <nlgh, 5

where v is in V and & in ¥ The function f defined by f(g) = f(g !)isa
coefficient of 7.

Let f be a coefficient of 7, @ a function in #(2 x 2, F) and s a complex
number; we set

Z2(D,s, f) = j fix)ldet x|*d(x)d " x,
Gr

where d*x is a multiplicative Haar measure on Gj. These integrals
converge for Res large, the ‘g.c.d’ of the integrals Z(®,s+1, f) is
the factor L(s, m) = L(s, z x 1), and the integrals satisfy the functional
equation

(3.1) Z(®,3—s, f) = €(s, , YZ(D, s+1, f)

where & denotes the Fourier transform of @:

d(x) = J P(YW(Tr(yx))dy,
M(2,F)
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Tr denoting the trace of an element of M(2 x 2, F) and dy being the self-
dual Haar measure on M(2 x 2, F).

At least when = is supercuspidal, this can be derived from the following
lemma combined with the fact that on V x V = (%, ) x # (%, {) the
invariant bilinear form is given by

a 0 —a 0)\
Wowy=| Wil (| )de

LEMMA (3.2): Suppose @ is in S(2x2, F). Then

1 x\/a O
LSQ |:<0 1)(}) _ 1>:| Y(—bW(—x)dadbdx
ol o

The lemma itself is a simple consequence of the Fourier theorem in one
variable.

Finally, we shall need the results of [ 3] that we now state in a form ap-
propriate to our purposes. Let 7, and n, be non-degenerate representa-
tions of Gp= GL(2, F). For e S(1x2, F), W, e #(n,,¥), and
W, e W (ny, ¥), we set

¥(s, Wi, Wa, 9) =j Wi(9)W;(eg)p(0, Dglidet g*dg

NF\GF

(-1 0
=4y 1/
Then again, the integrals are convergent for Res large, have a g.c.d.

L(s, m x '), and satisfy a functional equation

(3.3) P(L—s, Wy, Wy, @) = 0y(=De(s, 1y x 715, Y)V(s, Wy, W, §)

where

where ¢ is the Fourier transform of ¢:

o(x, y) = J d(u, ) (ux +vy)dudo,
F2

and ;, for i = 1, 2, is the quasi-character of F* defined by

; (g 2) = w{a)- 1.
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4. The case p =3

In this section p = 3; accordingly, G = GL(3), G’ = GL(2),

0 01 ) 0 1 -1 0
w=0 -1 0], w=<_1 0), £=<0 1).
1 0 0
In addition, we let U be the subgroup of matrices of the form
1 0 u
01 v
0 0 1,

Fix an admissible irreducible representation ¢ of G and a quasi-character
uof F*. Let # be the space of ¢ and denote by ¥~ the space of all locally
constant mappings f from G to A, such that

0 s
f [("' a) g} = o(m)det m|~*px(a)/ (9)

forallmin Gy = GL(2, F),ain F*,and g in G. We call rr,, the representa-
tion of G in ¥ defined by right translations. From the results of [4], one
can prove that any irreducible admissible representation of Gp which is
not supercuspidal is a component of r,, for a suitable choice of ¢ and u.
Furthermore, according to a result of Rodier, if 7, has a non-degenerate
component, then ¢ itself is non-degenerate. So, from now on, we assume
o to be so. We also lets# be the space # (o, ¥). Then, one can show that
7, has exactly one non-degenerate component, 7 say.

In order to show that (2.1) to (2.3) are true for any non-degenerate
representation of Gp, it suffices to show that they are true for such a =.
In these notes, we assume in addition that i is irreducible and sketch a
proof of the fact that = = n,, is then non-degenerate and that the conjec-
tures are true for = and 7.

Let & = #(3 x2, F) ® # be the space of all locally constant compactly
supported maps from M(3 x 2, F) to . If @ is in &, then the function f
defined by

4.1) f(g) = po(det g) J‘ uo(det myo(m™)@(vmg)d*m,

1 00
v = ,
010

is an element of ¥~ — provided the integral converges. For ge G, f(g) is

where
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a function on Gy whose value at he Gy is denoted by f(g; h). A similar
notation is used for @. Accordingly, f(g; e) is simply

f(g; e) = po(det g) J po(det m)®(vmg; m~1)d*m.
G
Set now
4.2) W(g) = j £ (ug; )B(u)du.
Ufr

Then, when W is defined, it satisfies
Wi(ng) = 0(n)W(g), for n e Np.

Suppose now that @ has the form

b b

where ¢, is in S(2x2, F), ¢, in #(2x 1, F), and W, in #'(a, ). Then,
for ge Gy,

Wig) = J‘ fl9g™ 'ug; &)f(u)du
Ur

a*(det g) J f(u; g)0lgug™")du
Ur

a¥(det g) b1(m)p,[(x, yYmIW (gm™ WO, —1)g'(x, y)]
Gr-F?
x uo*(det m)d*mdxdy.
Let ¢ be the co-Fourier-transform of ¢,:

Pu, v) = f b2 YW=, 0)(x, y)]dxdy.

Then, we may write the above integral as
(44) W(g) = o¥(det g) j d1(m)$LO, Lygm™ IW,(gm™ "uat(det m)d*m,
Gy

an integral which converges ‘better’ than (4.2). It can be used to define W
even though (4.2) might not converge. Then, it can be shown that = is non-
degenerate and W belongs to #'(n, ). Actually, since the space & is
spanned by functions of the form (4.3), the space #(x, ) is spanned by
functions W for which W(g), g€ G}, is given by (4.4).

We also need an integral representation for W(g), g€ Gy. Now, if g is
in Gf,
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W(g) = Wwig™") = J fluw'g™"; e)(u)du
Ufr

= po(det g™1) po(det m)@[vmuw'g™*; m~*]0(u)d *mdu.

Gi-Ur
More explicitly,
1 0 a
u={0 1 b}, O(u) = Y(b), du = dadb,
0 01
and vmuw'g ™! is the 3 by 2 matrix obtained by the juxtaposition of the

2 by 2 matrix

a O
t,—1
’"(b —1>g

and the 1 by 2 matrix m(}). Hence, the above integral may be written in
the form

0
padet g™) | pori(det mig, [m (Z N 1) g ] ¢:L(1, 0)'m]
o x W,(m~ W(—b)dadbd*m.

The integral on G} can be realized as an integral on Ny and then on
G%/N5%. In this way, one obtains

po(det g~ 1) pod(det mygp,[(1, 0)'m]Wy(m~H)d*m
GgINF
x j ¢, I:mn (Z _01>‘g_1] Y(—b)dadbl(n)dn.

Using Lemma (3.2) to transform the inner integral, one arrives at

op” '(det g) po” ¥(det my,[(1, 0)'mIW,(m™)d*m

Gr/Ng

X J ¢, ['gw' ™ 'nm~110(n)dn.
Np

i

At this point, one puts back together the integrations on Gy/N% and N},
and changes m into 'm~''gw’ ™! to arrive at the following formula:

(4.5) W(g) = o*(det g) f p~ ta¥(det m)g, (m)PL(O, 1hgm ']
Gr
x Wi(gm™Hd*m.
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Here ¢,'(m) = $,('m) and ¢ = ¢, is the Fourier transform of ¢.

Now let n’ be a non-degenerate representation of G. For W' in
W (', ), the integral ¥(s, W, W’) may be written as a double integral
with respect to ge N#\Gf and me G. After changing g into gm we find
that

(4.6) Y, W, W) = J ¢, (mypo* *(det m) f (s, m)yd*m
Gr

where
f(s,m) = W(s, W, ’(m)W', ¢).

Since, for a fixed s, the function m — f(s, m) is a coefficient of 7', it is not
too hard to see that (2.1) and (2.2) are true with

L(s,nx7n') = L(s, #’ x 6)L(s, T’ ® ).

Similarly, one finds that

(4.7) P(s, W, W) = J Go(m)u™ a2 (m) f (s, 'm)d*m

Gr
where
f'(s,m) = (s, Wy, (W', §).
Now one observes that
RmW'= (n'(m™ )W)
and therefore that, by (3.3),
fA=s,"m) = o'(=De(s,nxn', ¥) f(s, m™ ).
Combining this with (3.1), one arrives at the functional equation (2.3) with
&s, tx ', ) = &s, w' X o, Yes, T’ @ u, ).

Hence (2.1) to (2.3) are now completely proved for p = 3. For instance,
if p, 7, and 7’ are ‘unramified’ — contain the trivial representation of a
maximal compact subgroup, the various factors have the following form:

L(s,p) = 1—cq 71, L(s,0) = (1—aq™ )" 11 —bg~ )1,
(4.5) Lis,n') = (1—dq™*) '(1-bq™*) ",

Lis,txn)" ! = (1—dcq )1 —b'eq N1 —ad'q )1 —ba'q )1 —ab'q ™)
x (1—bb'g™™).

If, in addition, the character y is of order zero, then the ¢ factor is one.
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5. Conclusion

Let us go back to the situation and the notations of Section 1. Let n
be an admissible irreducible representation of G, . Then, = is, in a certain
sense, an infinite tensor product ® n,, where, for each place v, =, is an
admissible irreducible representation of G, = GL(3, F,); almost all the
representations 7, are unramified. We shall assume that r is non-degener-
ate (i.e. that each &, is non-degenerate) and also that there is a character
w of I/F* such that

a 00
7[00 a 0 |=ow@-1 for ain [.
0 0 a

Let also ' be a representation of G)y satisfying the same assumptions.
Then, we define

L(s,ixn) = [[ L(s, m,xm),  e&smxn)=[]es n,xn,, ¥,).

The first product is an infinite Euler product whose factors are almost all
of the form (4.5); if, for instance, the representations are pre-unitary, then
it converges for Res sufficiently large. In the second factor, we have set
Y(x) = [ [¥,(x,); the product has only a finite number of terms # 1
and is actually independent of the choice of .

Suppose now that = and 7’ are contained in the corresponding space of
cusp-forms. They are then both pre-unitary and non-degenerate. The
factor L(s, = x ©') is a polynomial in Q %, 0%, and satisfies the functional
equation

L(s, n xn') = &(s, n x ')L(1 —s, 7t x 7).

The proof follows step by step the proof of (11.1) in [3].
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