Compositio Mathematica

John Mitchem
 The point-outerthickness of complete n-partite graphs

Compositio Mathematica, tome 29, no 1 (1974), p. 55-61
http://www.numdam.org/item?id=CM_1974_29_1_55_0
© Foundation Compositio Mathematica, 1974, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE POINT-OUTERTHICKNESS OF COMPLETE n-PARTITE GRAPHS

John Mitchem

A graph G is said to have property $F_{n}, n \geqq 1$, if G has no subgraphs homeomorphic from the complete graph K_{n+1} or the complete bipartite graph $K([(n+2) / 2],\{(n+2) / 2\})$. For a real number $x,[x]$ denotes the greatest integer not exceeding x, and $\{x\}$ is the least integer not less than x. For $n=1,2,3,4$ graphs with property F_{n} correspond respectively with totally disconnected, acyclic, outerplanar, and planar graphs. In [3] Chartrand, Geller, and Hedetniemi defined the point-partition number $f_{n}(G), n \geqq 1$, of a graph G as the minimum number of pairwise disjoint subsets into which the point set of G can be partitioned such that each set induces a graph with property F_{n}. Such a partition is called an F_{n} partition. The parameter f_{1} is the famous chromatic number, and f_{2} is the more recently introduced point-arboricity. (See, for example, [4], [5], or [8].) In this paper we consider f_{3}, the point-outerthickness.

By replacing the word 'point' in the definition of $f_{n}(G), n \geqq 2$, with 'line' we obtain the line-partition number $f_{n}^{\prime}(G)$. Nash-Williams [9] developed an exact formula for $f_{2}^{\prime}(G)$, the arboricity of G. The parameter $f_{4}^{\prime}(G)$ is called the thickness of G. The precise value of $f_{4}^{\prime}\left(K_{p}\right)$ is known for all p (See [7] and [6]). Beineke, Harary, and Moon [2] and Beineke [1] have determined $f_{4}^{\prime}(K(m, n))$ for most, but not all, values of m and n.

Before beginning our investigation of $f_{3}(G)$, which henceforth is denoted simply $f(G)$ we need some additional definitions and notation. The cardinality of set S is denoted by $|S|$. Let $V_{1}, V_{2}, \cdots, V_{n}$ be finite, nonvoid, mutually disjoint sets with $\left|V_{i}\right|=p_{i}, 1 \leqq i \leqq n$, and $p_{1} \leqq p_{2} \leqq \cdots$ $\leqq p_{n}$, the complete n-partite graph $G=K\left(p_{1}, p_{2}, \cdots, p_{n}\right)$ has point set $\bigcup_{1}^{n} V_{i}$ and two points of G are adjacent if and only if they are in different V_{i}. The V_{i} are called partite sets of G. The complete bipartite graph $K(1, n)$ is called a star. Now, in four theorems we develop an exact formula for the point-outerthickness of any complete n-partite graph and also give the desired decomposition. Chartrand, Kronk, and Wall, [4], developed the analogous formula for point-arboricity.

We begin with a number of observations.
Remark 1: For every positive integer $p, f\left(K_{p}\right)=\{p / 3\}$.

Remark 2: A complete n-partite graph $G, n \geqq 2$, is outerplanar if and only if G is isomorphic to one of the following: $K(1,1,2), K(2,2)$, $K(1,1,1)$, or $K(1, m)$ where m is any positive integer.

Remark 3: Let S be a set of at least five points of a complete n-partite graph G. If the graph induced by S is outerplanar, then it either has no lines or is a star, and S has all but possibly one point from a single partite set.

Throughout the remainder of the paper we use the following notation:
$G=K\left(p_{1}, p_{2}, \cdots, p_{n}\right)$
$p_{0}=0$
$a=$ least positive integer such that $\sum_{i=1}^{a} p_{i} \geqq n-a$.
$r=\max \left\{i: p_{i} \leqq 2\right\}$
$k=\max \left\{i: p_{i} \leqq 1\right\}$
$s=\left\{\left(\sum_{1}^{r} p_{i}+3(n-r)\right) / 4\right\}$ if $(k+r-n) \leqq(2 / 3)(2 r-n)$ and $p_{a+1} \leqq 2$.
$s=\{(2 n-r) / 3\}$ if $(k+r-n)>(2 / 3)(2 r-n)$ and $p_{a+1} \leqq 2$.
Theorem 1: If $p_{a+1} \geqq 3$, then $f(G)=n-\max \left\{b: \sum_{1}^{b} p_{i} \leqq n-b\right\}$.
Proof: We consider two cases and in each case show that the desired result is an upper bound for the point-outerthickness of G. Then, combining the two cases, we verify that there is no smaller outerplanar partition of $V(G)$.

Case (i) Suppose $\sum_{1}^{a} p_{i}=n-a$. We can partition $V(G)$ into $n-a$ sets $S_{1}, S_{2}, \cdots, S_{n-a}$, where $S_{j}=V_{n+1-j} \cup\left\{v_{j}\right\}, 1 \leqq j \leqq n-a$, and each v_{j} is an element of $\bigcup_{1}^{a} V_{i}$. Since each S_{j} induces a star we have that $f(G) \leqq n-a$ $=n-\max \left\{b: \sum_{1}^{b} p_{i} \leqq n-b\right\}$.

Case (ii) Assume $\sum_{1}^{a} p_{i}>n-a$. Since $\sum_{1}^{a-1} p_{i}<n-a+1$, the number of elements in $\bigcup_{1}^{a-1} V_{i}$ is less than the number of sets in the collection $\left\{V_{a}, V_{a+1}, \cdots, V_{n}\right\}$. We form $r=\sum_{1}^{a-1} p_{i}$ mutually disjoint subsets $S_{1}, S_{2}, \cdots, S_{r}$ of $V(G)$, with $S_{j}=V_{n+1-j} \cup\left\{v_{j}\right\}, 1 \leqq j \leqq r$, and where each v_{j} is an element of $\bigcup_{1}^{a-1} V_{k}$. Next, form mutually disjoint point sets S_{r+1}, \cdots, S_{n-a} where, for $k=r+1, \cdots, n-a, S_{k}=V_{n+1-k} \cup\left\{v_{k}\right\}$ and the v_{k} are distinct elements of V_{a}. Since $\sum_{1}^{a} p_{i}>n-a$, we have some points of V_{a} which are not in any $S_{j}, j=1, \cdots, n-a$. Call this set of points S_{n-a+1}. The sets S_{1}, \cdots, S_{n-a} each induce a star and the set S_{n-a+1} induces a totally disconnected graph. It follows that $f(G) \leqq n-a+1=n-$ $\max \left\{b: \sum_{1}^{b} p_{i} \leqq n-b\right\}$.

In each of the aforementioned cases denote the upper bound by z and suppose $f(G)=t<z$. Then $V(G)$ has an outerplanar partition T_{1}, T_{2}, \cdots, T_{t} where $\left|T_{i}\right| \geqq\left|T_{i+1}\right|$. Let h be the largest integer such that $\left|T_{h}\right|>\left|S_{h}\right|$.

Then

$$
\left|\bigcup_{1}^{h} T_{i}\right|-h>\left|\bigcup_{1}^{h} S_{i}\right|-h
$$

From the formulation of the various S_{i} it follows that the cardinality of S_{h} is at least four. For $i<h,\left|T_{i}\right| \geqq\left|T_{h}\right|>\left|S_{h}\right| \geqq 4$. Remark 3 implies that each $T_{i}, i \leqq h$, has all but at most one point from a single partite set. If such a point exists for a given T_{i}, denote it by w_{i}. Then, for $i \leqq h$, define $T_{i}^{\prime}=T_{i}-\left\{w_{i}\right\}$ for all i for which w_{i} exists and $T_{i}^{\prime}=T_{i}$, otherwise. This implies that the set $\bigcup_{1}^{h} T_{i}^{\prime}$ has all of its points in h or fewer partite sets. However,

$$
\left|\bigcup_{n-h+1}^{n} V_{i}\right|=\left|\bigcup_{1}^{h} S_{i}\right|-h .
$$

Thus the union of any h partite sets has at most $\left|\bigcup_{1}^{h} S_{i}\right|-h$ points, but

$$
\left|\bigcup_{1}^{h} S_{i}\right|-h<\left|\bigcup_{1}^{h} T_{i}\right|-h \leqq\left|\bigcup_{1}^{h} T_{i}^{\prime}\right|
$$

implies that $\bigcup_{1}^{h} T_{i}^{\prime}$ cannot have all of its points in h or fewer partite sets. We have a contradiction and $f(G)=z$ in both cases.

Theorem 2: If $p_{a+1} \leqq 2$, then $V(G)$ can be partitioned into outerplanar sets $S_{1}, S_{2}, \cdots, S_{s}$, where $\left|S_{i}\right| \geqq\left|S_{i+1}\right|$.

Proof: We exhibit an outerplanar partition of $V(G)$ into the desired number of subsets. The inequality $r>a$ implies that $\sum_{1}^{a} p_{i} \geqq n-a>n-r$. Thus there are more elements in the set $\bigcup_{1}^{a} V_{i}$ than sets in the collection $\left\{V_{r+1}, V_{r+2}, \cdots, V_{n}\right\}$. We form $n-r$ mutually disjoint sets $S_{1}, S_{2}, \cdots, S_{n-r}$ where $S_{j}=V_{n+1-j} \cup\left\{v_{j}\right\}, 1 \leqq j \leqq n-r$ and $v_{j} \in \bigcup_{1}^{a} V_{i}$. Moreover, the points v_{j} are always selected successively from the set V_{i} with i minimum such that V_{i} has points remaining.

Each of the S_{i} induces a star with at least four points, and there are $\sum_{1}^{r} p_{i}-(n-r)>0$ points of G not in any S_{i}. Each of these points is contained in a partite set of G which consists of at most two elements.

Case (i) Suppose $k+r-n \leqq(2 / 3)(2 r-n)$. If $k-(n-r)$ is positive, we have $k+r-n$ unused one-point partite sets of G. In defining the S_{i} we used points from at most $2(n-r)$ partite sets of G. Thus, there are at least $n-2(n-r)=2 r-n$ partite sets of G which are disjoint from each S_{i}, $i=1, \cdots, n-r$. Since $k+r-n \leqq(2 / 3)(2 r-n)$, we form mutually disjoint sets S_{n-r+1}, \cdots, S_{q}, each consisting of two one-point partite sets and one two-point partite set until we have at most one unused singleton partite set. All remaining partite sets have precisely two points. If $k+r-n$ is not positive, then there are only two-point partite sets of G remaining and
perhaps one more point which is an element of a two-point partite set. Thus, in either case, we have two-point partite sets remaining, and possibly one extra point. With the remaining points, we may form mutually disjoint sets which consist of the unit of two of the remaining two-point partite sets until there are at most three points remaining. These points form an outerplanar set. Thus, we have partitioned $V(G)$ into

$$
\left\{\left(\sum_{1}^{r} p_{i}+3(n-r)\right) / 4\right\}=s
$$

outerplanar sets, each of which, with at most one exception, has at least four points.

Case (ii) Suppose $k+r-n>(2 / 3)(2 r-n)$. In this case, $2 r-n$ is nonnegative, and thus $k+r-n$, the number of unused singleton partite sets, is positive. This implies that for $1 \leqq i \leqq n-r, S_{i}=V_{i} \cup V_{n+1-i}$, and we have precisely $2 r-n$ unused partite sets of G. In this case there are more than twice as many unused partite sets with one point as unused partite sets with two points. It follows that we can form disjoint sets S_{n-r+1}, \cdots, S_{n-k} in such a way that each set consists of four points from three of the remaining partite sets. When this is done, there are $3 k-r-n$ points remaining in G. These points induce a complete subgraph and have an outerplanar partition into $\{(3 k-r-n) / 3\}$ sets. Let the sets in this partition be denoted by $S_{n-k+1}, \cdots, S_{s}, s=n-k+\{(3 k-r-n) / 3\}=\{(2 n-r) / 3\}$.

Theorem 3: Let $p_{a+1} \leqq 2$ and suppose that $V(G)$ has an outerplanar partition T_{1}, \cdots, T_{t} where $\left|T_{i}\right| \geqq\left|T_{i+1}\right|$ and $t<s$. Then there exists a largest positive integer h such that $\left|T_{h}\right|>\left|S_{h}\right|$, and furthermore $\left|T_{h}\right|=4$. Also if $m=\max \left\{i: p_{i} \leqq 3\right\}$, then the T_{i} can be reordered if necessary so that T_{h} does not contain $V_{i}, m+1 \leqq i \leqq n$.

Proof: Since all but perhaps one of the S_{i} has at least three points, it follows that $\left|\mathrm{T}_{h}\right| \geqq 4$. In order to verify the first part of the theorem we assume that $\left|\mathrm{T}_{h}\right|>4$ and obtain a contradiction. Since $\left|\mathrm{T}_{h}\right|>\left|\mathrm{S}_{h}\right|$, we have

$$
\left|\bigcup_{h+1}^{t} T_{i}\right|<\left|\bigcup_{h+1}^{s} S_{i}\right|
$$

which implies that

$$
\left|\bigcup_{1}^{h} T_{i}\right|-h>\left|\bigcup_{1}^{h} S_{i}\right|-h .
$$

For $i \leqq h, T_{i}$ has five or more points and Remark 3 implies that each such T_{i} has all but possibly one point from a single partite set. Define T_{i}^{\prime}, $1 \leqq i \leqq h$ as in Theorem 1. Then the set $\bigcup_{1}^{h} T_{i}^{\prime}$ has all of its points in h or fewer partite sets. We now consider two cases depending upon h.

Case (i) $h \leqq n-r$. From the fact that each $S_{i}, 1 \leqq i \leqq n-r$, consists of V_{n-i+1} together with one other point it follows that

$$
\left|\bigcup_{n-h+1}^{n} V_{i}\right|=\left|\bigcup_{1}^{n} S_{i}\right|-h
$$

Hence, the union of any h partite sets has at most $\left|\bigcup_{i}^{h} S_{i}\right|-h$ points. However,

$$
\left|\bigcup_{1}^{h} S_{i}\right|-h<\left|\bigcup_{1}^{h} T_{i}\right|-h \leqq\left|\bigcup_{1}^{h} T_{i}^{\prime}\right|
$$

Thus, $\left|\bigcup_{1}^{h} T_{i}^{\prime}\right|$ cannot have all of its points in h or fewer partite sets, a contradiction.

Case (ii) $h>n-r$. The sets S_{1}, \cdots, S_{n-r} exhaust all partite sets with three or more points. Since h is necessarily less than s, the sets S_{n-r+1}, \cdots, S_{h} each use partite sets with one or two points. Without loss of generality, we may assume that these are the partite sets $V_{n+1-(n-r+1)}, \cdots, V_{n+1-n}$. This implies that

$$
\left|\bigcup_{n-h+1}^{n} V_{i}\right|<\left|\bigcup_{1}^{h} S_{i}\right|-h .
$$

The union of any h partite sets has at most $\left|\bigcup_{n-h+1}^{n} V_{i}\right|$ points. However, the fact that

$$
\left|\bigcup_{n-h+1}^{n} V_{i}\right|<\left|\bigcup_{1}^{h} S_{i}\right|-h<\left|\bigcup_{1}^{h} T_{i}\right|-h \leqq\left|\bigcup_{1}^{h} T_{i}^{\prime}\right|
$$

is again a contradiction. Thus $\left|T_{h}\right|=4$.
For the second part of the Theorem we reorder the $T_{i}, 1 \leqq i \leqq t$, so that, if $\left|T_{i}\right|=\left|T_{j}\right|$ and T_{i} has more points from some partite set than T_{j} has from any partite set, then $i<j$.

We now suppose there exists $V_{i_{1}}, m<i_{1} \leqq n$, which is contained in T_{h} and obtain a contradiction. Since $\left|T_{h}\right|=4$ and $\left|V_{i_{1}}\right| \geqq 4$, we know that $T_{h}=V_{i_{1}}$. From our ordering on the partition T_{1}, \cdots, T_{t}, it follows that the sets T_{1}, \cdots, T_{h} have at most $h-1$ points from one-point partite sets of G. The sets T_{h+1}, \cdots, T_{t} have at most $\left|\bigcup_{h+1}^{t} T_{i}\right|$ points from one-point partite sets of G. The partition T_{1}, \cdots, T_{t} uses all one-point partite sets of G, and the number used must be not more than $h-1+\left|\bigcup_{h+1}^{t} T_{i}\right|$. Thus,

$$
\begin{equation*}
h-1+\left|\bigcup_{h+1}^{t} T_{i}\right| \geqq k . \tag{1}
\end{equation*}
$$

The set S_{h} is the union of three one-point partite sets of G, and thus the sets S_{h+1}, \cdots, S_{s} each consist of only points from one-point partite sets; that is, the sets S_{h+1}, \cdots, S_{s} contain $\left|\bigcup_{h+1}^{s} S_{i}\right|$ points from one-point
partite sets. However, each of the sets S_{1}, \cdots, S_{h} contains at least one point from a one-point partite set. Thus, the partition S_{1}, \cdots, S_{s} contains at least $h+\left|\bigcup_{h+1}^{s} S_{i}\right|$ points from one-point partite sets. It follows that

$$
\begin{equation*}
k \geqq h+\left|\bigcup_{h+1}^{s} S_{i}\right| . \tag{2}
\end{equation*}
$$

The fact that $\left|\bigcup_{h+1}^{s} S_{i}\right|>\mid \bigcup_{h+1}^{t} T_{i}$, together with (1) and (2), yields a contradiction and completes the proof of Theorem 3.

Theorem 4: If $p_{a+1} \leqq 2$, then $f(G)=s$.
Proof: Suppose that $V(G)$ has an outerplanar partition $T_{1}, T_{2}, \cdots, T_{t}$, $t<s$, with $\left|T_{i}\right| \geqq\left|T_{i+1}\right|$. Then the set T_{h} as given in Theorem 3 has cardinality 4. If $(k+r-n) \leqq(2 / 3)(2 r-n)$, then by the construction in Theorem $2,4 \leqq\left|S_{h}\right|<\left|T_{h}\right|=4$. Since this is impossible we need only consider $(k+r-n)>(2 / 3)(2 r-n)$.

Among the outerplanar partitions of $V(G)$ into t sets, select one which has a maximum number, say M, of $\mathrm{V}_{i}, m<i \leqq n$, with the property that each is contained in some set of the partition. Call this partition T_{1}, \cdots, T_{t}, and order the sets as in the second part of Theorem 3. According to Theorem $3,\left|T_{h}\right|=4$. Again let $m=\max \left\{i: p_{i} \leqq 3\right\}$ and consider two cases.

Case (i) Each of the sets V_{m+1}, \cdots, V_{n} is contained in some T_{i}. We may assume, without loss of generality, that $V_{i} \subset T_{n+1-i}$, for $i=m+1, \cdots, n$. From the facts that, for $1 \leqq i \leqq n-k, S_{i}=V_{n+1-i} \cup W_{i}$ where W_{i} consists of one or two points and S_{h} consists of three points from three different partite sets, we have that

$$
\begin{equation*}
h>n-k . \tag{1}
\end{equation*}
$$

The sets $T_{n-m+1}, T_{n-m+2}, \cdots, T_{h}$ each have at least four points and therefore at least two points from one partite set. However, all partite sets with at least four points are used in sets T_{1}, \cdots, T_{n-m}. Thus, we need $h-(n-m+1)$ +1 partite sets with two or three points, and there are only $m-k$ such partite sets. Hence, using inequality (1) we have a contradiction.

Case (ii) At least one of the partite sets with four or more points, say V_{i}, has points in two or more of the sets T_{i}.
If $V_{i_{0}}$ has at least three points in one T_{j}, say T_{b}, we add all other points of $V_{i_{0}}$ to T_{b}. We now have an outerplanar partition of $V(G)$ into t sets such that $M+1$ partite sets with at least four points are contained in various T_{j}. This is a contradiction.

If $V_{i_{0}}$ has exactly two points in some T_{i}, say T_{b}, then $V_{i_{0}}$ has one or two points in $T_{c}, c \neq b$. We add the points of $T_{c} \cap V_{i_{0}}$ to T_{b} and add one point of $T_{b}-V_{i_{0}}$ (if such a point exists) to T_{c}. We have an outerplanar partition
of $V(G)$ into t sets such that $V_{i_{0}}$ has three or more points in one set, and M partite sets $V_{i}, m<i \leqq n$, are each contained in some T_{j}. According to the previous paragraph, this leads to a contradiction.

We now suppose that $V_{i_{0}}$ has each point in a different T_{j}. Then T_{h} has at most one point of $V_{i_{0}}$. Let w_{1}, w_{2}, and w_{3} be points in $T_{h}-V_{i_{0}}$. Add all points of $V_{i_{0}}$ to T_{h}. Since $V_{i_{0}}$ has at least four points, three of these points must be in distinct T_{j} different from T_{h}, say $T_{i_{1}}, T_{i_{2}}$, and $T_{i_{3}}$. For $k=1,2,3$, insert w_{k} into $T_{i_{k}}$. As before, this yields a new outerplanar partition of $V(G)$ into t sets. By the second part of Theorem $3, T_{h}$ did not contain any partite sets with four or more points, and hence this new partition has $M+1$ sets, each of which contains a $V_{i}, m<i \leqq n$. This is a contradiction and we have shown that $f(G)=s$.

REFERENCES

[1] L. W. Beineke: Complete bipartite graphs: decomposition into planar subgraphs, \mathbf{A} Seminar in Graph Theory (F. Harary, ed.) Holt, Rinehart and Winston, New York, 1967, 42-53.
[2] L. W. Beineke, F. Harary and J. W. Moon: On the thickness of the complete bipartite graph. Proc. Cambridge Philos. Soc., 60 (1964) 1-5.
[3] G. Chartrand, D. Geller and S. Hedetniemi: Graphs with forbidden subgraphs. J. Combinatorial Theory, 10 (1971) 12-41.
[4] G. Chartrand and H. V. Kronk: The point-arboricity of planar graphs. J. London Math. Soc., 44 (1969) 612-616.
[5] G. Chartrand, H. V. Kronk and C. E. Wall: The point-arboriticy of a graph. Israel J. Math., 6 (1968) 169-175.
[6] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass. 1969, 120-121.
[7] J. Mayer: Decomposition de K_{16} en trois graphes planaires. J. Combinatorial Theory (B), 13 (1972) 71.
[8] J. Mitchem: Uniquely k-arborable graphs. Israel J. Math., 10 (1971) 17-25.
[9] St. J. A. Nash-Williams: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36 (1961) 445-450.

