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A graph G is said to have property Fn, n ~ 1, if G has no subgraphs
homeomorphic from the complete graph Kn + 1 or the complete bipartite
graph K([(n + 2)/2], {(n+2)/2}). For a real number x, [x] denotes the
greatest integer not exceeding x, and {x} is the least integer not less than
x. For n = 1, 2, 3, 4 graphs with property Fn correspond respectively with
totally disconnected, acyclic, outerplanar, and planar graphs. In [3]
Chartrand, Geller, and Hedetniemi defined the point-partition number
fn(G), n ~ 1, of a graph G as the minimum number of pairwise disjoint
subsets into which the point set of G can be partitioned such that each set
induces a graph with property Fn . Such a partition is called an Fn parti-
tion. The parameter fl is the famous chromatic number, and f2 is the more
recently introduced point-arboricity. (See, for example, [4], [5], or [8].)
In this paper we consider f3, the point-outerthickness.
By replacing the word ’point’ in the definition of fn(G), n ~ 2, with

’line’ we obtain the line-partition number f’n(G). Nash-Williams [9] devel-
oped an exact formula for f’2(G), the arboricity of G. The parameter f’4(G)
is called the thickness of G. The precise value of f’4(Kp) is known for all p
(See [7] and [6]). Beineke, Harary, and Moon [2] and Beineke [1] have
determined f’4(K(m, n)) for most, but not all, values of m and n.

Before beginning our investigation of f3(G), which henceforth is

denoted simply f (G) we need some additional definitions and notation.
The cardinality of set S is denoted by |S|. Let V1, V2,···,Vn be finite, non-
void, mutually disjoint sets with |Vi| = pi, 1 ~ i ~ n, and p1 ~ p2 ~ ···
~ pn, the complete n-partite graph G = K(pl, p2,···, Pn) has point set
~n1 Vi and two points of G are adjacent if and only if they are in different
Vi. The Vi are called partite sets of G. The complete bipartite graph
K(l, n) is called a star. Now, in four theorems we develop an exact formula
for the ’point-outerthickness of any complete n-partite graph and also
give the desired decomposition. Chartrand, Kronk, and Wall, [4], devel-
oped the analogous formula for point-arboricity.
We begin with a number of observations.

REMARK 1: For every positive integer p, f(Kp) = {p/3}.
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REMARK 2: A complete n-partite graph G, n ~ 2, is outerplanar if and
only if G is isomorphic to one of the following: K(l, 1, 2), K(2, 2),
K(l, 1, 1), or K(l, m) where m is any positive integer.

REMARK 3: Let S be a set of at least five points of a complete n-partite
graph G. If the graph induced by S is outerplanar, then it either has no
lines or is a star, and S has all but possibly one point from a single partite
set.

Throughout the remainder of the paper we use the following notation:

PROOF : We consider two cases and in each case show that the desired

result is an upper bound for the point-outerthickness of G. Then, combin-
ing the two cases, we verify that there is no smaller outerplanar partition
of V( G).

Case (i) Suppose 03A3a1 pi = n - a. We can partition V( G) into n - a sets
S1, S2,···, Sn-a, where Sj = Vn+1-j ~ {03C5j}, 1 ~ j ~ n - a, and each 03C5j is
an element of U i Vi. Since each Sj induces a star we have that f(G) ~ n - a
= n - max {b: 03A3b1 pi ~ n - b}.
Case (ii) Assume Li Pi &#x3E; n - a. Since 03A3a-11 pi  n - a + 1, the number of

elements in ~a-11 Vi is less than the number of sets in the collection

{Va, Va+1,···, Vn}. We form r = 03A3a-11pi mutually disjoint subsets

S1, S2,···,Sr of V(G), with Sj = Vn+1-j ~ {03C5j}, 1 ~ j ~ r, and where

each 03C5j is an element of ~a-11 Vk. Next, form mutually disjoint point sets
Sr+1,···, Sn - a where, for k = r+1, " -, n - a, Sk = Vn+1-k ~ {03C5k} and the
Vk are distinct elements of Va. Since Li Pi &#x3E; n - a, we have some points of
v;, which are not in any Sj, j = 1,···, n - a. Call this set of points Sn- a+1.
The sets S1,···, Sn - a each induce a star and the set Sn-a+1 induces a
totally disconnected graph. It follows that f(G) ~ n - a + 1 = n - 
max{b: 03A3b1pi ~ n - b}.

In each of the aforementioned cases denote the upper bound by z and
suppose f(G) = t  z. Then V( G) has an outerplanar partition T1, T2 ,
..., 1; where |Ti| ~ |Ti+1|. Let h be the largest integer such that |Th| &#x3E; |Sh|.
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Then

From the formulation of the various Si it follows that the cardinality of
Sh is at least four. For i  h, |Ti| ~ |Th| &#x3E; |Sh| ~ 4. Remark 3 implies that
each Ti, i ~ h, has all but at most one point from a single partite set. If
such a point exists for a given Ti, denote it by wi . Then, for i ~ h, define
T’ = Ti - {wi} for all i for which wi exists and T’ = T , otherwise. This

implies that the set U i T’ has all of its points in h or fewer partite sets.
However,

Thus the union of any h partite sets has at most |~h1 Sil- h points, but

implies that U i T’ cannot have all of its points in h or fewer partite sets.
We have a contradiction and f (G) = z in both cases.

THEOREM 2: If pa + 1 ~ 2, then V(G) can be partitioned into outerplanar
sets S1, S2,···, Ss, where ISil ~ |Si+1|.

PROOF : We exhibit an outerplanar partition of V(G) into the desired
number of subsets. The inequality r &#x3E; a implies that la pi ~ n - a &#x3E; n - r.
Thus there are more elements in the set Uï Vi than sets in the collection
{Vr + 1, Vr + 2,···, Vnl. We form n - r mutually disjoint sets S1, S2,···, Sn - r
where Sj = Vn + 1 - j ~ {03C5j}, 1 ~ j ~ n - r and 03C5j ~ ~a1 Vi. Moreover, the
points Vj are always selected successively from the set v with i minimum
such that V has points remaining.
Each of the Si induces a star with at least four points, and there are

03A3r1pi - (n - r) &#x3E; 0 points of G not in any Si. Each of these points is con-
tained in a partite set of G which consists of at most two elements.

Case (i) Suppose k + r - n ~ (2/3)(2r - n). If k - (n - r) is positive, we have
k + r - n unused one-point partite sets of G. In defining the Si we used
points from at most 2(n - r) partite sets of G. Thus, there are at least
n - 2(n - r) = 2r - n partite sets of G which are disjoint from each Si,
i = 1,···, n - r. Since k + r - n ~ (2/3)(2r - n), we form mutually disjoint
sets Sn - r + 1,···, Sq, each consisting of two one-point partite sets and one
two-point partite set until we have at most one unused singleton partite
set. All remaining partite sets have precisely two points. If k + r - n is not
positive, then there are only two-point partite sets of G remaining and
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perhaps one more point which is an element of a two-point partite set.
Thus, in either case, we have two-point partite sets remaining, and pos-
sibly one extra point. With the remaining points, we may form mutually
disjoint sets which consist of the unit of two of the remaining two-point
partite sets until there are at most three points remaining. These points
form an outerplanar set. Thus, we have partitioned V(G) into

outerplanar sets, each of which, with at most one exception, has at least
four points.

Case (ii) Suppose k + r - n &#x3E; (2/3)(2r - n). In this case, 2r - n is non-
negative, and thus k + r - n, the number of unused singleton partite sets, is
positive. This implies that for 1 ~ i ~ n - r, Si = Vi ~ Vn + 1- i, and we
have precisely 2r - n unused partite sets of G. In this case there are more
than twice as many unused partite sets with one point as unused partite
sets with two points. It follows that we can form disjoint sets Sn - r + 1,···,
Sn -k in such a way that each set consists of four points from three of the
remaining partite sets. When this is done, there are 3k - r - n points re-
maining in G. These points induce a complete subgraph and have an
outerplanar partition into {(3k - r- n)/3} sets. Let the sets in this partition
be denoted by Sn - k + 1,···Ss, s = n - k + {(3k - r - n)/3} = {(2 - r)/3}.
THEOREM 3: Let pa + 1 ~ 2 and suppose that V(G) has an outerplanar

partition T1,···, T where 1 Til ~ T + 1| and t  s. Then there exists a largest
positive integer h such that 1 Thl &#x3E; IShl, and furthermore 1 Thl = 4. Also if
m = max {i:pi ~ 3}, then the T can be reordered if necessary so that Th
does not contain Vi, m + 1 ~ i ~ n.

PROOF : Since all but perhaps one of the Si has at least three points, it
follows that |Th| ~ 4. In order to verify the first part of the theorem we
assume that |Th| &#x3E; 4 and obtain a contradiction. Since |Th| &#x3E; IShl, we have

which implies that

For i ~ h, T has five or more points and Remark 3 implies that each such
T has all but possibly one point from a single partite set. Define T’,
1  i ~ h as in Theorem 1. Then the set U1 T’ has all of its points in h
or fewer partite sets. We now consider two cases depending upon h.
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Case (i) h ~ n - r. From the fact that each Si, 1 ~ i ~ n - r, consists of
Vn - i + 1 together with one other point it follows that

Hence, the union of any h partite sets has at most 1 U? Sil- h points.
However,

Thus, |~h1 T’i| cannot have all of its points in h or fewer partite sets, a
contradiction.

Case (ii) h &#x3E; n - r. The sets S1,···, Sn - r exhaust all partite sets with
three or more points. Since h is necessarily less than s, the sets Sn - r + 1,···,
Sh each use partite sets with one or two points. Without loss of generality,
we may assume that these are the partite sets Vn + 1 - (n - r + 1),···, Vn + 1 - h.
This implies that

The union of any h partite sets has at most |~nn - h + 1 Vil points. However,
the fact that

is again a contradiction. Thus |Th| = 4.
For the second part of the Theorem we reorder the Ti, 1 ~ i ~ t, so

that, if |Ti| = 1 Tjl and T has more points from some partite set than T has
from any partite set, then i  j.
We now suppose there exists Vi1, m  i1 ~ n, which is contained in Th

and obtain a contradiction. Since 111,1 = 4 and |Vi1| ~ 4, we know that
Th = vi . From our ordering on the partition T1,···, 1;, it follows that
the sets T1,···, Th have at most h - 1 points from one-point partite sets
of G. The sets Th + 1,···, T have at most ~th + 1 TI points from one-point
partite sets of G. The partition Tl , ’ ’ ’, T uses all one-point partite sets of
G, and the number used must be not more than h - 1 + |~th + 1 Ti|. Thus,

The set Sh is the union of three one-point partite sets of G, and thus the
sets Sh+ 1, ..., Ss each consist of only points from one-point partite sets;
that is, the sets Sh + 1,···, SS contain |~sh + 1 Si| points from one-point
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partite sets. However, each of the sets S1,···, Sh contains at least one point
from a one-point partite set. Thus, the partition S1,···, SS contains at
least h + |~sh + 1 Sil points from one-point partite sets. It follows that

The fact that ~sh+1 Sil &#x3E; |~th+1 Ti|, together with (1) and (2), yields a
contradiction and completes the proof of Theorem 3.

THEOREM 4: If pa+1 ~ 2, then f (G) = s.

PROOF : Suppose that V(G) has an outerplanar partition Tl, T2,···, T ,
t  s, with |Ti| ~ |Ti+1|. Then the set Th as given in Theorem 3 has car-
dinality 4. If (k + r - n) ~ (2/3)(2r - n), then by the construction in

Theorem 2, 4 ~ 1 Sh  1 Th = 4. Since this is impossible we need only con-
sider (k + r - n) &#x3E; (2/3)(2r - n).
Among the outerplanar partitions of V(G) into t sets, select one which

has a maximum number, say M, of Vi, m  i ~ n, with the property that
each is contained in some set of the partition. Call this partition T1,···,
T , and order the sets as in the second part of Theorem 3. According to
Theorem 3, |Th| = 4. Again let rn = max {i:pi ~ 3} and consider two
cases.

Case (i) Each of the sets Vm+1,···, Vn is contained in some T . We may
assume, without loss of generality, that V c 1;,+ l-i, for i = m + 1,···, n.
From the facts that, for 1 ~ i ~ n - k, Si = v;. + 1 - ~ Wi where Wi consists
of one or two points and Sh consists of three points from three different
partite sets, we have that

(1) h &#x3E; n - k.

The sets Tn - m + 1, Tn - m + 2,···, Th each have at least four points and there-
fore at least two points from one partite set. However, all partite sets with
at least four points are used in sets T1,···, Tn-m. Thus, we need h-(n- m+ 1)
+ 1 partite sets with two or three points, and there are only m - k such
partite sets. Hence, using inequality (1) we have a contradiction.

Case (ii) At least one of the partite sets with four or more points, say
V ., has points in two or more of the sets T .

If Vio has at least three points in one T , say Tb, we add all other points of
Via to Tb . We now have an outerplanar partition of V(G) into t sets such
that M + 1 partite sets with at least four points are contained in various
T . This is a contradiction.

If Via has exactly two points in some T , say Tb, then Via has one or two
points in T , c ~ b. We add the points of T, ~ Vio to Tb and add one point
of Tb - Vio (if such a point exists) to Tc. We have an outerplanar partition
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of V(G) into t sets such that Vo has three or more points in one set, and M
partite sets JIi, m  i ~ n, are each contained in some T . According to
the previous paragraph, this leads to a contradiction.
We now suppose that Vo has each point in a different T . Then Th has

at most one point of Jlio’ Let wl , w2, and W3 be points in Th - Vio. Add all
points of Yo to Th . Since Tio has at least four points, three of these points
must be in distinct T) different from 11" say Ti1, 1i2, and Ti3. For k = 1, 2, 3,
insert Wk into 1ik. As before, this yields a new outerplanar partition of
V(G) into t sets. By the second part of Theorem 3, Th did not contain any
partite sets with four or more points, and hence this new partition has
M + 1 sets, each of which contains a Vi, m  i ~ n. This is a contradiction
and we have shown that f (G) = s.
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