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Our purpose in this paper is to give upper bounds for the first non-zero
eigenvalue (henceforth denoted by 03BB1) of the Laplace-Beltrami operator
on compact Riemannian manifolds without boundary as consequences
of the non-negativity of the Ricci curvature of the _given Riemannian
metric. We give two separate results, which are obtained by the same
method, modeled on the phenomena of zonal harmonics and their nodal
sets on spheres of constant curvature. We first state our results:

THEOREM (1): Let M be a Riemannian manifold diffeomorphic to the
real projective plane, p2, and assume the Gauss curvature, K(p), p E M,
satisfies

for all p E M. Set p = arcsin 1/J3 E [0, n/2]. Then

THEOREM (2) : Let M be a compact Riemannian manifold without boun-
dary of dimension n ~ 2, with non-negative Ricci curvature on M. Let d &#x3E; 0

be a fixed positive number, and assume there exist points p-, p + E M with
distance to one another ~ d and each having injectivity radius &#x3E; dl2. Then

where jn/2 -1 is the first zero of the n/2 -1 st Bessel function.

By W. Klingenberg’s result [ 11, Theorem 1 (b)] we immediately obtain

COROLLARY (3) : Let M be a compact Riemannian manifold without
boundary of even dimension ~ 2. Assume that for every 2-section, (5, tangent
to M the Riemannian sectional curvature of (5, K(u), satisfies

1 This paper was partially supported by NSF Grant # 0393 and C.U.N.Y. Grant
# 01645.
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We first note that if M is a Riemannian manifold diffeomorphic to
the 2-sphere, S2, then J. Hersch [10] has proven, via conformal mapping
and the standard imbedding of S2 in R3, Euclidean 3-space, that

vihere vg is the volume of M relative to Riemann metric g. Equality is ob-
tained in (6) if and only if the Riemannian metric on M has constant
curvature. Therefore, if we assume that the Gaussian curvature, K(p),
on M satisfies

for all p E M, then we obtain immediately by the Gauss-Bonnet theorem

(7) 03BB1 ~ 2k,
with equality if and only if M has constant curvature K. Our methods
also yield (7) for M diffeomorphic to S2 but only under the assumption
(1) where we also require the bound from below. For information on
Hersch’s method in higher dimensions we refer the reader to [2].
We do not believe the inequalities (2), (3), (5), are sharp; indeed Hersch’s

result suggests that 6k is the sharp upper bound in (2) without assuming
the curvature is bounded from below, and that 03BB1 = 6k would at the same
time characterize the real projective plane of constant curvature K. We
remark that if the Ricci curvature of M is bounded from below by a
positive constant then one does have the appropriate sharp inequality
to estimate 03BB1 from below. The result was obtained by A. Lichnerowicz,
and M. Obata, and one can find a complete exposition with references
in [3, 179-185].
We next note that (cf. [14, 486])

which implies in Theorem 2 that we have

If we set d to be the diameter of M this invites comparison to Cheeger’s
result [6] 

where only the non-negativity of the Ricci curvature is assumed.
We now turn to our results: M will henceforth be a compact, C~,

manifold of dimension n ~ 2, without boundary, and with Riemannian
metric g and its associated Laplace-Beltrami operator J acting on COO
functions on M, C~(M). A number 03BB ~ R is called an eigenvalue of 0394 if
there exists a function f E C~(M), not identically zero, satisfying 4 f = 03BBf
on all of M. It is known that there exists a sequence of eigenvalues



45

0 = 03BB0  03BB1 ~ 03BB2 ~ ··· with Àn ~ oo as n - 00. It is also known that 03BB1
is the solution of the following problem in the Calculus of Variations
[3, 186] :

Let dvg denote the Riemannian measure on M associated with 9 and Yt
the set of continuous functions f : M ~ R on M with square-summable
weak first derivatives (i.e.a we let , &#x3E; denote the pointwise inner
product of tensors on M, ~ ~ the induced norm, relative to 9 and assume
IIdfll2 is summable relative to the measure dvg). Set H’ = {f ~ H :
JM fdvg = 01. Then

Our method is to first write M = M+ U M- ~ M* where M+, M -,
M* are pairwise disjoint and M+, M- are open with reasonable boun-
daries. In M+, M - we introduce an n -1 field of geodesics via geodesic
polar or parallel coordinates and consider subspaces H+ (resp. H-) of
functions f in Yt with support of df in M+ (resp. M - ) and support of f
in the complement of M - (resp. M+). Furthermore the restriction of f
to M + (resp. M - ) will only be a function of arc length along the geodesics
of the field and will not depend on the geodesic. Finally at the boundaries
of M + (resp. M - ) f will either vanish or have vanishing normal deriva-
tive. We then let

and assume f+ ~ H+, f- ~ H-, neither identically zero, which satisfy
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one can invoke the appropriate existence theory, or adapt the following
argument to minimizing sequences. Then there exist numbers 11+, a - e R
such that the function F = a+ f+ + a- f- ~ H’. By (10) we have

= convex linear combination of 03BB+, 03BB-.

Thus our problem is to estimate À+ , 03BB- from above. But these lead to
a one-dimensional Sturm-Liouville problem on a finite interval with
boundary conditions : the function vanishes at one end of the interval
and has zero derivative at the other. Our tool here is W. T. Reid’s compari-
son theorm [13] which we quote for future use.

THEOREM (W. T. Reid): Let

be two ordinary differential operators on [a, 03B2], where 0 and P are COO
on [a, fi] and both positive on (a, fi). Let u and v be respective smooth
solutions of Lu = 0, Mv = 0 satisfying the boundary conditions

and furthermore assume that neither u nor v vanish on (a, fi). If (03A6/03A8)’ ~ 0
on all of (a, fi) then 03BB ~ y, with equality if and only if 03A6/03A8 ~ const on
(a, 03B2). If the boundary conditions are replaced with

then we have that (03A6/03A8)’ ~ 0 on (a, fi) implies 03BB ~ 03BC, with equality if and
only if 03A6/03A8 ~ const. on (a, fi).
We now collect for the reader notations used in the sequel : For p E M

we let Mp denote the tangent space to M at p, and TM the tangent bundle
of M (i.e., UPEMMp with standard differentiable structure). For any dif-
ferentiable mapping of manifolds f : M - N we let f* : TM - T N denote
the differential of f - in particular, for each p E M, f* maps Mp linearly
into Nf(p).
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As mentioned earlier, the pointwise inner products on tensor spaces
induced by the metric tensor g will be denoted by , &#x3E; and the induced

norm by 11 11. For any continuous piecewise differentiable path 03C9: [a, 03B2]
~ M we let m’ denote its velocity vector field, defined for all but at most a
finite number of points, and 1(m) = ~03B203B1 ~03C9’(t)~ dt the length of w. Also for
points p, q E M, d(p, q) will denote the distance from p to q induced by g;
and for p E M, E - M, d(p, E) will denote the induced distance of the
point p to the set E.

It will be convenient to set x = 1 for the remainder of the paper.
The authors wish to thank H. E. Rauch and S. Kaplan for many helpful

and illuminating conversations.

1. Proof of Theorem 1

Here we construct M +, M -, and M* as follows: Let y : [0, 1] - M
denote the simple closed geodesic minimizing the length of all paths
6: [0, 1] - M in the non-trivial free homotopy class of continuous

sectionally smooth closed paths in M (for the existence of y, cf: [1, 243]).
For given G &#x3E; 0 let y, = {q ~ M:d(q, y) = el and set co = y p where, as in
the statement of Theorem 1, p = arcsin 1/3 e [0, n/2]. We then set

and M* to be the complement of M- ~ M+.
Now N. Grossman’s estimate [8] of the distance from a totally geo-

desic submanifold to its focal cut locus on compact manifolds of strictly
positive sectional curvature can in the case of surfaces be proven valid
if we instead assume only (1). Thus the exponential mapping of the
Cartesian product of the unit normal bundle of y with (0, 03C0/2) is a diffeo-
morphism onto (M- ~ {03B3}) ~ {03C9} ~ M+. One easily sees that M - is

homeomorphic to a Mobius band and that m is null-homotopic. Let w be
given by 03C9: [0, 1] ~ M, IIw’(t)11 = 1(m), for all t.
We now introduce geodesic coordinates in M- ~ {03C9} ~ M + . Let 03BE(t)

be the unit vector field along co perpendicular to 03C9’(t) and pointing into
M+ for all t E [0, 1]. Define v : [0, 1] x [0, 03C0/2] ~ M by

and set
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Then 4l(0) = 1 since y is in the non-trivial homotopy class of M and is
covered twice as s ~ 0. To define the subspaces of real valued functions
onM, e - and H+, we first define

and

We define Jf by the following property : To each FEJe- there exists a
unique f E H - such that

Similarly Yt+ will be defined by: To each F ~ H+ there exists a unique
f ~ H+ such that

One now easily shows

vp

We set tp(s) = cos s and note that Sturmian arguments imply (03A6/03A8)’(s)
~ 0 for all s ~ [0, 03C0/2) which implies 4l(s) &#x3E; 0 for all s ~ [0, n/2). If cP(n/2)
= 0 then we have that M is a projective plane of constant curvature 1 -
so we assume cP(n/2) &#x3E; 0. Then there exists a function u: [p, n/2] - R E C2
such that

and u satisfies the Euler-Lagrange equation
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on [p, n/2] with boundary conditions u(p) = u’(03C0/2) = 0. Also u(s) ~ 0
for all s ~ (03C1, n/2). For 03A8(s) we have W(s) = cos s, and pick v(s) = 3 sin2 s -1.
Then

on [p, n/2] with boundary conditions v(p) = 03C5’(03C0/2) = 0. Reid’s theorem
then implies 03BB+ ~ 6.
To estimate 03BB- we have u : [0, 03C1] ~ R ~ C2 satisfying the Euler-

Lagrange equation

with boundary conditions u’(0) = u(p) = 0. Again, u(s) ~ 0 for all

s E (0, p). Here we have, however, (03A6(s)/cos s)’ ~ 0 but need the opposite
inequality for the given boundary conditions. So we set ll’(s) = 1 for all
P(s) = 1 for all s ~ [0, p], an k v(s) = cos (s03C0/203C1)d Then

on [0, p] with boundary conditions v’(0) = v(p) = 0. Also (1) implies
(03A6/03A8)’(s) ~ 0 for all s ~ [0, p], and from Reid’s theorem we conclude
03BB- ~ 03C02/403C12. Thus 03BB1 is less than or equal to a convex combination of 6
and 03C02/403C12 which implies Theorem 1.

2. Proof of Theorem 2

By hypotheses we have points p-, p + E M with distance d(p-, p+) ~ d
and such that the injectivity radius of p+ is &#x3E; d/2, and the injectivity
radius of p- is also &#x3E; d/2. We set

Also we set, for any s E [0, d/2]

By hypothesis, Exp maps B - diffeomorphically onto M - and B+ diffeo-
morphically onto M +. Set H = {f : [0, d/2] - R E C1: f’(0) = f(d/2)
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= 01. The set Yt - of functions F : M ~ R is defined by: To each F E Je-
there exists a unique f E H such that

Similarly H+ is the set of real-valued functions on M defined by: To
each F ~ H+ there exists a unique f E H such that

Finally, let 03C9n-1 denote the volume of the standard unit (n -1 )-sphere
and define 03A6-, 03A6+: [0, d/2] ~ R by

where vol y-(s) is the (n -1 )-dimensional volume of the submanifold
F-(s), and similarly for vol F+(s). Then

We work with 03BB+. The proof for 03BB- is exactly the same. Set 03A8(s) = sn-1;
then (03A6+/03A8)(s) ~ 1 as s ~ 0, and by Rauch comparison arguments
[5, p. 253], the non-negativity of the Ricci curvature implies (03A6+/03A8)’(s) ~ 0
for all s E [0, d/2].
Assume u : [0, d/2] ~ R, v: [0, d/2] - R are functions in C2 which satisfy

on [0, d/2], with boundary condition u’(0) = v’(0) = u(d/2) = v(d/2) = 0.
Also assume that neither u nor v vanish on (0, d/2). Then to prove
Theorem 2 it remains to discuss the existence of the functions u and v,
and to identify the numbery.
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Let J,,12 - 1(s) be the n/2 - lst Bessel function, i.e., let J n/2 -1 (s) satisfy

Then the function vo(s) = s1-n/2 Jn/2 - 1(s) has a power series expansion
and satisfies v’(0) = 0. Furthermore, vo satisfies the differential equation

Let jn/2 - 1 be the first zero of Jn/2 - 1; it is also the first zero of vo. If we set

then v satisfies (12) with y = 4(jn/2 - 1)2/d2. Also, v’(0) = v(dl2) = 0 and v
does not vanish on (0, d/2). It thus remains to consider u.
The existence question of u in H satisfying

requires attention because of the singularity W(0) = 0. One can remedy
this by a more delicate ‘Green’s function’ argument or can give an argu-
ment more in the geometric spirit of our approach. We present the second.

Let D be the closed disk in Rn of radius d/2 and (s, 0) denote polar
coordinates in D where s ~ 0, O E Sn-1 the unit n - 1 -sphere. A Rieman-
nian metric h on D is then uniquely determined by the following: At the
orifin of D, h will be the Euclidean metric, and for each 0 E Sn -1, the ray
y(s) = se is a geodesic. For any unit vector 03B6 orthogonal to O the vector
field Y(S) = {03A6+(s)}1/n-103B6 is declared to be a Jacobi field along y ortho-
gonal to y with length (03A6+(s))1/n-1 for each s. Then h is a smooth Rieman-
nian metric in D. If D is the Laplacian of h acting on functions on D
which vanish on the boundary of D, and Jf is the set of functions f : D ~ R
which are continuous on D with square-summable weak first derivatives
and which vanish on the boundary of D, then the first non-zero eigenvalue
of D, 03C31, on D [4, Part II, Chapter 4] satisfies
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where IldFllh is the norm induced by h and dvh the induced Riemannian
measure. Set

and Je 0 to be the set of functions F : D ~ R in Je of the form F(s, O) =
f(s) where f c- H. Then the rotational symmetry of the metric h implies
that the eigenspace of (5 1 contains a function U E Je 0 of the form U(s, O) =
u(s), which implies

Thus u satisfies (11) and hence (9) which implies Theorem 2.
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