COMPOSITIO MATHEMATICA

JAMES AUSTIN FRENCH

A condition equivalent to covering dimension for normal spaces

Compositio Mathematica, tome 28, nº 3 (1974), p. 223-227 <http://www.numdam.org/item?id=CM_1974__28_3_223_0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A CONDITION EQUIVALENT TO COVERING DIMENSION FOR NORMAL SPACES

James Austin French¹

In this paper a concept called *boundary covering dimension* is defined. Boundary covering dimension is proven to be equivalent to covering dimension for normal spaces. Also included is a definition of complete boundary covering dimension. Complete boundary covering dimension is proven to be equivalent to complete covering dimension for paracompact T_2 -spaces (complete covering dimension is equivalent to covering dimension for paracompact T_2 -spaces).

NOTATIONS: If X is a space and $V \subset X$, then B(V) denotes the boundary of V. If X is a space, $M \subset X$, and $H \subset M$, then B(M, H) denotes the boundary in the subspace M of H.

DEFINITIONS: The collection G of subsets of the space X is *discrete* means every point of X is contained in an open set that intersects at most one element of G.

Covering dimension is denoted by dim. dim $X \leq n$ means if G is a finite open cover of X, then there exists an open cover R of X such that R refines G and ord $R \leq n+1$.

Boundary covering dimension is denoted by bcd. For $n \ge 1$, bcd $X \le n$ means if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and discrete collections $G_1, G_2,$ \cdots, G_n of closed sets such that $H \subset V \subset W$, $\bigcup_{j=1}^n G_j$ refines G, and $B(V) = \bigcup (\bigcup_{j=1}^n G_j)$. Now bcd X = n means bcd $X \le n$ and bcd $X \le n-1$.

Complete covering dimension is denoted by complete dim. Complete dim $X \leq n$ means if G is an open cover of X, then there exists an open cover R of X such that R refines G and ord $R \leq n+1$.

Complete boundary covering dimension is denoted by complete bcd. For $n \ge 1$, complete bcd $X \le n$ means if H is a closed set, W is an open set, $H \subset W$, and G is an open cover of X, then there exist an open set V and discrete collections G_1, G_2, \dots, G_n of closed sets such that $H \subset V \subset W$, $\bigcup_{j=1}^n G_j$ refines G, and $B(V) = \bigcup (\bigcup_{j=1}^n G_j)$.

¹ The work for that paper was done while the author was on a Cottrell College Science Grant for Research Corporation.

REMARK: What is meant by $\operatorname{bcd} X \leq 0$? Let us note that the definition for bcd can be written another way. bcd $X \leq n$ means if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and a collection T of at most n elements such that $H \subset V \subset W$, each element of T is a discrete collection of closed sets, $\bigcup T$ refines G, and $B(V) = \bigcup (\bigcup T)$. So when n = 0, $T = \phi$ and $B(V) = \phi$. Thus, bcd $X \leq 0$ means Ind $X \leq 0$. In our proofs we will not be considering the case where n = 0 since it will be evident what the proof would be for n = 0.

LEMMA 1: If X is a topological space, $bcd X \leq n$, and M is a closed subset of X, then $bcd M \leq n$. (The proof is straight-forward and will not be given.)

LEMMA 2: If X is a topological space and bcd $X \leq n$, then if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and finite discrete collections G_1, G_2, \dots, G_n of closed sets such that $H \subset V \subset W$, $\bigcup_{i=1}^n G_i$ refines G, and $B(V) = \bigcup (\bigcup_{i=1}^n G_i)$. (The proof is straight-forward and will not be given.)

LEMMA 3: If each of G_1, G_2, \dots, G_n is a finite open cover of the topological space X, then there is a finite open cover G of X such that for every $i \in \{1, \dots, n\}$, G refines G_i .

PROOF: For every $p \in X$, let $T(p) = \{g | \exists i \in \{1, \dots, n\}$ such that $g \in G_i$ and $p \in g\}$. Let $G = \{\bigcap T(p) | p \in X\}$. G is a finite open cover of X such that for every $i \in \{1, \dots, n\}$. G refines G_i .

LEMMA 4: If X is a paracompact T_2 -space, $M \subset X$, M is closed, n is a positive integer, G is a collection of open sets of X covering M, and no point of M belongs to n+1 elements of G, then there exist discrete collections G_1, G_2, \dots, G_n of closed sets such that $\bigcup_{j=1}^n G_j$ refines G and $\bigcup (\bigcup_{j=1}^n G_j) = M$.

PROOF: Since every paracompact T_2 -space is collectionwise normal, Theorem 2 of [1] can be applied to prove the Lemma.

LEMMA 5: If X is a normal topological space, $M \subset X$, M is closed, n is a positive integer, G is a finite collection of open sets of X covering M, and no point of M belongs to n+1 elements of f, then there exist discrete collections G_1, G_2, \cdots, G_n of closed sets such that $\bigcup_{j=1}^n G_j$ refines G and $\bigcup (\bigcup_{j=1}^n G_j) = M$.

PROOF: The proof is similar to the proofs of Theorem 1 and Theorem 2 of [1]. Only normality is needed instead of collectionwise normality since the open cover G is finite.

THEOREM 1: If X is a normal topological space, then bcd X = dim X.

PROOF:

Part I: Show dim $X \leq bcd X$. Assume *n* is a positive integer and $bcd X \leq n$. Assume *G* is a finite open cover of *X*. Let $G = \{g_1, \dots, g_m\}$. Let $H_1 = g_1 - (\bigcup_{j=2}^m g_j) = X - \bigcup_{j=2}^m g_j$. Now g_1 is an open set containing the closed set H_1 . Since $bcd X \leq n$, by Lemma 2, there exist an open set V_1 , and finite discrete collections L_1, L_2, \dots, L_n of closed sets such that $H_1 \subset V_1 \subset g_1, \bigcup_{j=1}^n L_j$ refines *G*, and $B(V_1) = \bigcup (\bigcup_{j=1}^n L_j)$. For every $j \in \{1, \dots, n\}$, let $S(1, j) = L_j$. Let $X_1 = X$.

Assume k is a positive integer such that $1 \le k \le m$ and for every $i \in \{1, \dots, k\}$,

(a) $X_i = X - \bigcup_{j=1}^{i-1} V_j = X_{i-1} - V_{i-1}$ (b) $H_i = X_i - \bigcup_{j=i+1}^{m} g_j$

(c) $H_i \subset V_i \subset g_i$, $V_i \subset X_i$, V_i open in X_i (Hence X_i and H_i are closed in X)

(d) $\forall j \in \{1, \dots, n\}$, S(i, j) is a finite discrete collection of closed sets and S(i, j) refines G, and

(e) $\bigcup \left(\bigcup_{j=1}^{n} S(i,j)\right) = \bigcup_{j=1}^{i} B(X_j, V_j).$

Now let $X_{k+1} = X - \bigcup_{j=1}^{k} V_k = X_k - V_k$ and let $H_{k+1} = X_{k+1} - \bigcup_{j=k+2}^{m} g_j$

Now $H_{k+1} \subset g_{k+1}$. For every $j \in \{1, \dots, n\}$, let $E_j = \{e(j, w) | w \in S(k, j)\}$ and $F_j = \{f(j, w) | w \in S(k, j)\}$ be finite discrete collections of open sets such that F_j refines G, $\forall w \in S(k, j) \ w \subset e(j, w) \subset \overline{e(j, w)} \subset f(j, w)$ and f(j, w) intersects only one element of S(k, j), and let $T_j = \{f(j, w) \cap X_{k+1} | w \in S(k, j)\} \cup \{[g - (\overline{\bigcup E_j})] \cap X_{k+1} | g \in G\}$. By Lemma 3, there is a finite cover T of X_{k+1} such that each element of T is open in X_{k+1} , and for every $j \in \{1, \dots, n\}$, T refines T_j . By Lemma 1, bcd $X_{k+1} \leq n$ so by Lemma 2 there exist a set V_{k+1} , open in X_{k+1} , and finite discrete collections G_1, G_2, \dots, G_n of closed sets such that $H_{k+1} \subset V_{k+1} \subset g_{k+1}, \bigcup_{j=1}^n G_j$ refines T, and $B(X_{k+1}, V_{k+1}) = \bigcup (\bigcup_{j=1}^n G_j)$. $\forall j \in \{1, \dots, n\}$, $\forall w \in S(k, j)$, let $b(j, w) = \{w\} \cup \{h|h \in G_j \text{ and } h \subset f(j, w)\}$. $\forall j \in \{1, \dots, n\}$, let $M_j =$ $\{h|h \in G_j \text{ and } \forall w \in S(k, j), h \notin b(j, w)\}$ and let $S(k+1, j) = \{\bigcup b(j, w)|$ $w \in S(k, j)\} \cup M_j$. $\forall j \in \{1, \dots, n\}$, S(k+1, j) is a finite collection of closed sets and S(k+1, j) refines G.

Assume $j \in \{1, \dots, n\}$. It will now be shown that S(k+1, j) is discrete. Since S(k+1, j) is finite, we need only to show that no two elements of S(k+1, j) intersect. It should be clear that no two elements of M_j intersect and no two elements of $\{\bigcup b(j, w)|w \in S(k, j)\}$ intersect. Assume $\exists w_0 \in S(k, j)$ and $h_0 \in M_j$ such that $\bigcup b(j, w_0)$ intersects h_0 .

Case 1: $\exists h_1 \in G_j$ such that $h_1 \subset f(j, w_0)$ and h_1 intersects h_0 . Since no two elements of G_j intersect, $h_0 = h_1$. $\forall w \in S(k, j), h_0 \notin b(j, w)$ since

 $h_0 \in M_j$. But h_0 , which is h_1 , is an element of $b(j, w_0)$. Contradiction.

Case 2: h_0 intersects w_0 . Since G_j refines T which refines T_j , there is an element g_0 of T_j such that $h_0 \subset g_0$. Thus g_0 intersects w_0 , and $w_0 \subset \bigcup E_j$. No element of $\{[g-(\bigcup E_j)] \cap X_{k+1} | g \in G\}$ intersects $\bigcup E_j$ so $g_0 \in \{f(j, w) \cap X_{k+1} | w \in S(k, j)\}$. Thus $\exists w_1 \in S(k, j)$ such that $g_0 = f(j, w_1) \cap X_{k+1}$. This means $h_0 \subset f(j, w_1)$. So $h_0 \in b(j, w_1)$. Since $h_0 \in M_j$, we know that $\forall w \in S(k, j)$, $h_0 \notin b(j, w)$. This means $h_0 \notin b(j, w_1)$, but $h_0 \in b(j, w_1)$. Contradiction. Therefore, no two elements of S(k+1, j) intersect.

It follows that $\bigcup (\bigcup_{j=1}^{n} S(k+1, j)) = \bigcup_{j=1}^{k+1} B(X_j, V_j)$. We have now completed our inductive definition. Thus each of S(m, 1), S(m, 2), \cdots , S(m, n) is a finite discrete collection of closed sets that refines G. $\forall j \in \{1, \dots, n\}$, let Z_j be a finite discrete collection of open sets such that S(m, j) refines Z_j and Z_j refines G. $\forall i \in \{1, \dots, m\}$, let $V'_i = V_i - [\bigcup (\bigcup_{j=1}^{n} Z_j)]$. Now $\{V'_1, V'_2, \dots, V'_m\}$ is a finite collection of mutually exclusive closed sets such that $\forall i \in \{1, \dots, m\}, V'_i \subset g_i$. Let $Z_{n+1} = \{a_1, \dots, a_m\}$ be a finite discrete collection of open sets such that $\forall i \in \{1, \dots, m\}, V'_i \subset a_i \subset g_i$. Let $Z = \bigcup_{j=1}^{n+1} Z_j$. Z is an open cover of X such that Z refines G and ord $Z \leq n+1$. Thus dim $X \leq n$.

Part II: Show bcd $X \leq \dim X$. Assume *n* is a positive integer and dim $X \leq n$. Assume *H* is a closed set, *W* is an open set $H \subset W$, and *G* is a finite open cover of *X*. Let *F* be a finite open cover of *X* such that *F* refines *G* and every element of *F* that intersects *H* is a subset of *W*. Let $T = \{t_i | i = 1, \dots, k\}$ be a finite open cover of *X* such that *T* refines *F*, ord $T \leq n+1$, and if $i \neq j$, then $t_i \neq t_j$. Let $R = \{r_i | i = 1, \dots, k\}$ be an open cover of *X* such that $\forall i \in \{1, \dots, k\}, r_i \subset t_i$. Let $V = \bigcup \{r_i | i \in \{1, \dots, k\}\}$ and r_i intersects *H*. Assume $p \in B(V)$ and n+1 elements of *R* contain *p*. There exist positive integers $j_1 < j_2 < \dots < j_{n+1} \leq k$ such that $\forall i \in \{1, \dots, n+1\}$, $p \in r_{j_i}$. Since *R* is finite, $\exists j_{n+2} \in \{1, \dots, k\}$ such that $p \in B(r_{j_{n+2}})$. $\forall i \in \{1, \dots, n+2\}$, $p \in t_{j_i}$ since $r_{j_i} \subset t_{j_i}$. Thus, n+2 elements of *T* contain *p*, which is a contradiction. Therefore no point of B(V) is contained by n+1 elements of *R*. By Lemma 5, there exist discrete collections G_1, G_2, \dots, G_n of closed sets such that $\bigcup_{j=1}^n G_j$ refines *G* and $B(V) = \bigcup (\bigcup_{j=1}^n G_j)$. So bcd $X \leq n$.

THEOREM 2: If X is a paracompact T_2 -space, then bcd $X = \dim X =$ complete bcd X = complete dim X.

PROOF: Assume X is a paracompact T_2 -space. Theorem II.6 page 22 of [2] makes it clear dim X = complete dim X, Theorem 1 gives us bcd X = dim X. It is trivial that bcd $X \leq$ complete bcd X. It will now be shown that complete bcd $X \leq$ bcd X. Assume n is positive integer and bcd $X \leq n$. Thus dim $X \leq n$, and hence complete dim $X \leq n$.

Assume *H* is a closed set, *W* is an open set, $H \subset W$, and *G* is an open cover of *X*. Let *F* be an open cover of *X* such that *F* refines *G* and every element of *F* that intersects *H* is a subset of *W*. Let $T = \{t_b | b \in B\}$ be a *locally finite* open cover of *X* such that *T* refines *F*, ord $T \leq n+1$, and if $b_1, b_2 \in B$ and $b_1 \neq b_2$ then $t_{b_1} \neq t_{b_2}$ (Theorem 3 of [1] assures the existence of such a *T*). Let $R = \{r_b | b \in B\}$ be an open cover of *X* such that $\forall b \in B, r_b \subset t_b$. Let $V = \bigcup \{r_b | b \in B \text{ and } r_b \text{ intersects } H\}$. Assume $p \in B(V)$ and n+1elements of *R* contain *p*. There exist n+1 elements b_1, b_2, \dots, b_{n+1} of *B* such that $\forall i \in \{1, \dots, n+1\}, p \in r_{b_i}$. Since *R* is locally finite, there exists $b_{n+2} \in B$ such that $p \in B(r_{b_{n+2}})$. $\forall i \in \{1, \dots, n+2\}, p \in t_{b_i}, \text{ since } \overline{r_{b_i}} \subset t_{b_i}$. Thus n+2 elements of *R* contain *p*, which is a contradiction. Therefore, no point of B(V) is contained by n+1 elements of *R*. By Lemma 4, there exist discrete collections G_1, G_2, \dots, G_n of closed sets such that $\bigcup_{i=1}^n G_i$ refines *G* and $B(V) = \bigcup (\bigcup_{i=1}^n G_i)$. Thus complete bcd $X \leq n$. Therefore bcd $X = \dim X = \text{ complete bcd } X = \text{ complete dim } X$.

COROLLARY: Assume X is a normal topological space. Then dim $X \leq n$ if and only if for all mutually exclusive closed sets H and K, for every finite (the word 'finite' can be deleted for X a paracompact T_2 -space) open cover G of X, there exist mutually exclusive open sets D_H and D_K and a collection T of at most n elements such that $H \subset D_H$, $K \subset D_K$, every element of T is a discrete collection of closed sets, $\bigcup T$ refines G, and $X - (D_H \cup D_K) =$ $\bigcup (\bigcup T)$.

PROOF: The proof follows from Theorem 1 (If X is T_2 -paracompact and the open cover G is not necessarily finite, then the proof follows from Theorem 2).

REMARK: Note the similarity between the above Corollary and the following familiar theorem on large inductive dimension (denoted Ind): For X normal, Ind $X \leq n$ if and only if for all mutually exclusive open sets H and K, there exist mutually exclusive open sets D_H and D_K and a closed set T such that $H \subset D_H$, $K \subset D_K$, Ind $T \leq n-1$, and $X - (D_H \cup D_K) = T$. The similarity of the Corollary and this theorem on Ind enable one to pattern some dim proofs after some Ind proofs.

REFERENCES

- JAMES AUSTIN FRENCH: A characterization of covering dimension for collectionwise normal spaces. *Proceedings of the American Mathematical Society*, Vol. 25, 3, (1970) 646–649.
- [2] J. NAGATA: Modern dimension theory. Bibliotheca Math., vol. 6, Interscience, New York, 1965, MR 34 #8380.

(Oblatum 1-X-1973)

David Lipscomb College Nashville Tenn. 37203