Compositio Mathematica

James Austin French

A condition equivalent to covering dimension for normal spaces

Compositio Mathematica, tome 28, no 3 (1974), p. 223-227
http://www.numdam.org/item?id=CM_1974__28_3_223_0
© Foundation Compositio Mathematica, 1974, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

A CONDITION EQUIVALENT TO COVERING DIMENSION FOR NORMAL SPACES

James Austin French ${ }^{1}$

In this paper a concept called boundary covering dimension is defined. Boundary covering dimension is proven to be equivalent to covering dimension for normal spaces. Also included is a definition of complete boundary covering dimension. Complete boundary covering dimension is proven to be equivalent to complete covering dimension for paracompact T_{2}-spaces (complete covering dimension is equivalent to covering dimension for paracompact T_{2}-spaces).

Notations: If X is a space and $V \subset X$, then $B(V)$ denotes the boundary of V. If X is a space, $M \subset X$, and $H \subset M$, then $B(M, H)$ denotes the boundary in the subspace M of H.

Definitions: The collection G of subsets of the space X is discrete means every point of X is contained in an open set that intersects at most one element of G.

Covering dimension is denoted by $\operatorname{dim} . \operatorname{dim} X \leqq n$ means if G is a finite open cover of X, then there exists an open cover R of X such that R refines G and ord $R \leqq n+1$.

Boundary covering dimension is denoted by bcd. For $n \geqq 1$, bcd $X \leqq n$ means if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and discrete collections G_{1}, G_{2}, \cdots, G_{n} of closed sets such that $H \subset V \subset W, \bigcup_{j=1}^{n} G_{j}$ refines G, and $B(V)=\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$. Now bcd $X=n$ means bcd $X \leqq n$ and bcd $X \not \leq$ $n-1$.

Complete covering dimension is denoted by complete dim. Complete $\operatorname{dim} X \leqq n$ means if G is an open cover of X, then there exists an open cover R of X such that R refines G and ord $R \leqq n+1$.

Complete boundary covering dimension is denoted by complete bcd. For $n \geqq 1$, complete bcd $X \leqq n$ means if H is a closed set, W is an open set, $H \subset W$, and G is an open cover of X, then there exist an open set V and discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $H \subset V \subset$ $W, \bigcup_{j=1}^{n} G_{j}$ refines G, and $B(V)=\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$.

[^0]Remark: What is meant by bcd $X \leqq 0$? Let us note that the definition for bcd can be written another way. bcd $X \leqq n$ means if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and a collection T of at most n elements such that $H \subset V \subset W$, each element of T is a discrete collection of closed sets, $\bigcup T$ refines G, and $B(V)=\bigcup(\bigcup T)$. So when $n=0, T=\phi$ and $B(V)=\phi$. Thus, bcd $X \leqq 0$ means Ind $X \leqq 0$. In our proofs we will not be considering the case where $n=0$ since it will be evident what the proof would be for $n=0$.

Lemma 1: If X is a topological space, bcd $X \leqq n$, and M is a closed subset of X, then $\operatorname{bcd} M \leqq n$. (The proof is straight-forward and will not be given.)

Lemma 2: If X is a topological space and $\operatorname{bcd} X \leqq n$, then if H is a closed set, W is an open set, $H \subset W$, and G is a finite open cover of X, then there are an open set V and finite discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $H \subset V \subset W, \bigcup_{i=1}^{n} G_{i}$ refines G, and $B(V)=\bigcup\left(\bigcup_{i=1}^{n} G_{i}\right)$.
(The proof is straight-forward and will not be given.)
Lemma 3: If each of $G_{1}, G_{2}, \cdots, G_{n}$ is a finite open cover of the topological space X, then there is a finite open cover G of X such that for every $i \in\{1, \cdots, n\}, G$ refines G_{i}.

Proof: For every $p \in X$, let $T(p)=\left\{g \mid \exists i \in\{1, \cdots, n\}\right.$ such that $g \in G_{i}$ and $p \in g\}$. Let $G=\{\bigcap T(p) \mid p \in X\}$. G is a finite open cover of X such that for every $i \in\{1, \cdots, n\}$. G refines G_{i}.

Lemma 4: If X is a paracompact T_{2}-space, $M \subset X, M$ is closed, n is a positive integer, G is a collection of open sets of X covering M, and no point of M belongs to $n+1$ elements of G, then there exist discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $\bigcup_{j=1}^{n} G_{j}$ refines G and $\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$ $=M$.

Proof: Since every paracompact T_{2}-space is collectionwise normal, Theorem 2 of [1] can be applied to prove the Lemma.

Lemma 5: If X is a normal topological space, $M \subset X, M$ is closed, n is a positive integer, G is a finite collection of open sets of X covering M, and no point of M belongs to $n+1$ elements of , then there exist discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $\bigcup_{j=1}^{n} G_{j}$ refines G and $\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)=M$.

Proof: The proof is similar to the proofs of Theorem 1 and Theorem 2 of [1]. Only normality is needed instead of collectionwise normality since the open cover G is finite.

Theorem 1: If X is a normal topological space, then $\operatorname{bcd} X=\operatorname{dim} X$.
Proof:
Part I: Show $\operatorname{dim} X \leqq \operatorname{bcd} X$. Assume n is a positive integer and $\operatorname{bcd} X \leqq n$. Assume G is a finite open cover of X. Let $G=\left\{g_{1}, \cdots, g_{m}\right\}$. Let $H_{1}=g_{1}-\left(\bigcup_{j=2}^{m} g_{j}\right)=X-\bigcup_{j=2}^{m} g_{j}$. Now g_{1} is an open set containing the closed set H_{1}. Since bcd $X \leqq n$, by Lemma 2, there exist an open set V_{1}, and finite discrete collections $L_{1}, L_{2}, \cdots, L_{n}$ of closed sets such that $H_{1} \subset V_{1} \subset g_{1}, \bigcup_{j=1}^{n} L_{j}$ refines G, and $B\left(V_{1}\right)=\bigcup\left(\bigcup_{j=1}^{n} L_{j}\right)$. For every $j \in\{1, \cdots, n\}$, let $S(1, j)=L_{j}$. Let $X_{1}=X$.

Assume k is a positive integer such that $1 \leqq k \leqq m$ and for every $i \in\{1, \cdots, k\}$,
(a) $X_{i}=X-\bigcup_{j=1}^{i-1} V_{j}=X_{i-1}-V_{i-1}$
(b) $H_{i}=X_{i}-\bigcup_{j=i+1}^{m} g_{j}$
(c) $H_{i} \subset V_{i} \subset g_{i}, V_{i} \subset X_{i}, V_{i}$ open in X_{i} (Hence X_{i} and H_{i} are closed in X)
(d) $\forall j \in\{1, \cdots, n\}, S(i, j)$ is a finite discrete collection of closed sets and $S(i, j)$ refines G, and
(e) $\bigcup\left(\bigcup_{j=1}^{n} S(i, j)\right)=\bigcup_{j=1}^{i} B\left(X_{j}, V_{j}\right)$.

Now let $X_{k+1}=X-\bigcup_{j=1}^{k} V_{k}=X_{k}-V_{k}$ and let $H_{k+1}=X_{k+1}-\bigcup_{j=k+2}^{m} g_{j}$
Now $H_{k+1} \subset g_{k+1}$. For every $j \in\{1, \cdots, n\}$, let $E_{j}=\{e(j, w) \mid w \in S(k, j)\}$ and $F_{j}=\{f(j, w) \mid w \in S(k, j)\}$ be finite discrete collections of open sets such that F_{j} refines $G, \forall w \in S(k, j) w \subset e(j, w) \subset e(j, w) \subset f(j, w)$ and $f(j, w)$ intersects only one element of $S(k, j)$, and let $T_{j}=\left\{f(j, w) \cap X_{k+1} \mid\right.$ $w \in S(k, j)\} \cup\left\{\left[g-\left(\bigcup E_{j}\right)\right] \cap X_{k+1} \mid g \in G\right\}$. By Lemma 3, there is a finite cover T of X_{k+1} such that each element of T is open in X_{k+1}, and for every $j \in\{1, \cdots, n\}, T$ refines T_{j}. By Lemma 1, bcd $X_{k+1} \leqq n$ so by Lemma 2 there exist a set V_{k+1}, open in X_{k+1}, and finite discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $H_{k+1} \subset V_{k+1} \subset g_{k+1}, \bigcup_{j=1}^{n} G_{j}$ refines T, and $B\left(X_{k+1}, V_{k+1}\right)=\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$. $\forall j \in\{1, \cdots, n\}, \forall w \in S(k, j)$, let $b(j, w)=\{w\} \cup\left\{h \mid h \in G_{j}\right.$ and $\left.h \subset f(j, w)\right\} . \forall j \in\{1, \cdots, n\}$, let $M_{j}=$ $\left\{h \mid h \in G_{j}\right.$ and $\left.\forall w \in S(k, j), h \notin b(j, w)\right\}$ and let $S(k+1, j)=\{\bigcup b(j, w) \mid$ $w \in S(k, j)\} \cup M_{j} . \forall j \in\{1, \cdots, n\}, S(k+1, j)$ is a finite collection of closed sets and $S(k+1, j)$ refines G.

Assume $\mathrm{j} \in\{1, \cdots, \mathrm{n}\}$. It will now be shown that $S(k+1, j)$ is discrete. Since $S(k+1, j)$ is finite, we need only to show that no two elements of $S(k+1, j)$ intersect. It should be clear that no two elements of M_{j} intersect and no two elements of $\{\bigcup b(j, w) \mid w \in S(k, j)\}$ intersect. Assume $\exists w_{0} \in S(k, j)$ and $h_{0} \in M_{j}$ such that $\bigcup b\left(j, w_{0}\right)$ intersects h_{0}.

Case 1: $\exists h_{1} \in G_{j}$ such that $h_{1} \subset f\left(j, w_{0}\right)$ and h_{1} intersects h_{0}. Since no two elements of G_{j} intersect, $h_{0}=h_{1} . \forall w \in S(k, j), h_{0} \notin b(j, w)$ since
$h_{0} \in M_{j}$. But h_{0}, which is h_{1}, is an element of $b\left(j, w_{0}\right)$. Contradiction.
Case 2: h_{0} intersects w_{0}. Since G_{j} refines T which refines T_{j}, there is an element g_{0} of T_{j} such that $h_{0} \subset g_{0}$. Thus g_{0} intersects w_{0}, and $w_{0} \subset \bigcup E_{j}$. No element of $\left\{\left[g-\left(\widehat{E_{j}}\right)\right] \cap X_{k+1} \mid g \in G\right\}$ intersects $\triangle E_{j}$ so $g_{0} \in$ $\left\{f(j, w) \cap X_{k+1} \mid w \in S(k, j)\right\}$. Thus $\exists w_{1} \in S(k, j)$ such that $g_{0}=f\left(j, w_{1}\right) \cap$ X_{k+1}. This means $h_{0} \subset f\left(j, w_{1}\right)$. So $h_{0} \in b\left(j, w_{1}\right)$. Since $h_{0} \in M_{j}$, we know that $\forall w \in S(k, j), h_{0} \notin b(j, w)$. This means $h_{0} \notin b\left(j, w_{1}\right)$, but $h_{0} \in b\left(j, w_{1}\right)$. Contradiction. Therefore, no two elements of $S(k+1, j)$ intersect.

It follows that $\bigcup\left(\bigcup_{j=1}^{n} S(k+1, j)\right)=\bigcup_{j=1}^{k+1} B\left(X_{j}, V_{j}\right)$. We have now completed our inductive definition. Thus each of $S(m, 1), S(m, 2), \cdots$, $S(m, n)$ is a finite discrete collection of closed sets that refines G. $\forall j \in$ $\{1, \cdots, n\}$, let Z_{j} be a finite discrete collection of open sets such that $S(m, j)$ refines Z_{j} and Z_{j} refines G. $\forall i \in\{1, \cdots, m\}$, let $V_{i}^{\prime}=V_{i}-\left[\bigcup\left(\bigcup_{j=1}^{n} Z_{j}\right)\right]$. Now $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{m}^{\prime}\right\}$ is a finite collection of mutually exclusive closed sets such that $\forall i \in\{1, \cdots, m\}, V_{i}^{\prime} \subset g_{i}$. Let $Z_{n+1}=\left\{a_{1}, \cdots, a_{m}\right\}$ be a finite discrete collection of open sets such that $\forall i \in\{1, \cdots, m\}, V_{i}^{\prime} \subset a_{i} \subset g_{i}$. Let $Z=\bigcup_{j=1}^{n+1} Z_{j} . Z$ is an open cover of X such that Z refines G and ord $Z \leqq n+1$. Thus $\operatorname{dim} X \leqq n$.

Part II: Show bcd $X \leqq \operatorname{dim} X$. Assume n is a positive integer and $\operatorname{dim} X \leqq n$. Assume H is a closed set, W is an open set $H \subset W$, and G is a finite open cover of X. Let F be a finite open cover of X such that F refines G and every element of F that intersects H is a subset of W. Let $T=\left\{t_{i} \mid i=1, \cdots, k\right\}$ be a finite open cover of X such that T refines F, ord $T \leqq n+1$, and if $i \neq j$, then $t_{i} \neq t_{j}$. Let $R=\left\{r_{i} \mid i=1, \cdots, k\right\}$ be an open cover of X such that $\forall i \in\{1, \cdots, k\}, \bar{r}_{i} \subset t_{i}$. Let $V=\bigcup\left\{r_{i} \mid i \in\{1, \cdots, k\}\right.$ and r_{i} intersects $\left.H\right\}$. Assume $p \in B(V)$ and $n+1$ elements of R contain p. There exist positive integers $j_{1}<j_{2}<\cdots<j_{n+1} \leqq k$ such that $\forall i \in$ $\{1, \cdots, n+1\}, p \in r_{j_{i}}$. Since R is finite, $\exists j_{n+2} \in\{1, \cdots, k\}$ such that $p \in B\left(r_{j_{n+2}}\right) . \forall i \in\{1, \cdots, n+2\}, p \in t_{j_{i}}$ since $\overline{r_{j_{i}}} \subset t_{j_{i}}$. Thus, $n+2$ elements of T contain p, which is a contradiction. Therefore no point of $B(V)$ is contained by $n+1$ elements of R. By Lemma 5, there exist discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $\bigcup_{j=1}^{n} G_{j}$ refines G and $B(V)=\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$. So bcd $X \leqq n$.

Theorem 2: If X is a paracompact T_{2}-space, then $\operatorname{bcd} X=\operatorname{dim} X=$ complete bcd $X=$ complete $\operatorname{dim} X$.

Proof: Assume X is a paracompact T_{2}-space. Theorem II. 6 page 22 of [2] makes it clear $\operatorname{dim} X=$ complete $\operatorname{dim} X$, Theorem 1 gives us bcd $X=\operatorname{dim} X$. It is trivial that bcd $X \leqq \operatorname{complete}$ bcd X. It will now be shown that complete bcd $X \leqq \operatorname{bcd} X$. Assume n is positive integer and bcd $X \leqq n$. Thus $\operatorname{dim} X \leqq n$, and hence complete $\operatorname{dim} X \leqq n$.

Assume H is a closed set, W is an open set, $H \subset W$, and G is an open cover of X. Let F be an open cover of X such that F refines G and every element of F that intersects H is a subset of W. Let $T=\left\{t_{b} \mid b \in B\right\}$ be a locally finite open cover of X such that T refines F, ord $T \leqq n+1$, and if $b_{1}, b_{2} \in B$ and $b_{1} \neq b_{2}$ then $t_{b_{1}} \neq t_{b_{2}}$ (Theorem 3 of [1] assures the existence of such a T). Let $R=\left\{r_{b} \mid b \in B\right\}$ be an open cover of X such that $\forall b \in B, \overline{r_{b}} \subset t_{b}$. Let $V=\bigcup\left\{r_{b} \mid b \in B\right.$ and r_{b} intersects $\left.H\right\}$. Assume $p \in B(V)$ and $n+1$ elements of R contain p. There exist $n+1$ elements $b_{1}, b_{2}, \cdots, b_{n+1}$ of B such that $\forall i \in\{1, \cdots, n+1\}, p \in r_{b_{i}}$. Since R is locally finite, there exists $b_{n+2} \in B$ such that $p \in B\left(r_{b_{n+2}}\right)$. $\forall i \in\{1, \cdots, n+2\}, p \in t_{b_{i}}$, since $\overline{r_{b_{i}}} \subset t_{b_{i}}$. Thus $n+2$ elements of R contain p, which is a contradiction. Therefore, no point of $B(V)$ is contained by $n+1$ elements of R. By Lemma 4, there exist discrete collections $G_{1}, G_{2}, \cdots, G_{n}$ of closed sets such that $\bigcup_{j=1}^{n} G_{j}$ refines G and $B(V)=\bigcup\left(\bigcup_{j=1}^{n} G_{j}\right)$. Thus complete bcd $X \leqq n$. Therefore $\operatorname{bcd} X=\operatorname{dim} X=\operatorname{complete} \operatorname{bcd} X=$ complete $\operatorname{dim} X$.

Corollary: Assume X is a normal topological space. Then $\operatorname{dim} X \leqq n$ if and only if for all mutually exclusive closed sets H and K, for every finite (the word 'finite' can be deleted for X a paracompact T_{2}-space) open cover G of X, there exist mutually exclusive open sets D_{H} and D_{K} and a collection T of at most n elements such that $H \subset D_{H}, K \subset D_{K}$, every element of T is a discrete collection of closed sets, $\bigcup T$ refines G, and $X-\left(D_{H} \cup D_{K}\right)=$ $\bigcup(\bigcup T)$.

Proof: The proof follows from Theorem 1 (If X is T_{2}-paracompact and the open cover G is not necessarily finite, then the proof follows from Theorem 2).

Remark: Note the similarity between the above Corollary and the following familiar theorem on large inductive dimension (denoted Ind): For X normal, Ind $X \leqq n$ if and only if for all mutually exclusive open sets H and K, there exist mutually exclusive open sets D_{H} and D_{K} and a closed set T such that $H \subset D_{H}, K \subset D_{K}$, Ind $T \leqq n-1$, and $X-\left(D_{H} \cup D_{K}\right)$ $=T$. The similarity of the Corollary and this theorem on Ind enable one to pattern some dim proofs after some Ind proofs.

REFERENCES

[1] James Austin French: A characterization of covering dimension for collectionwise normal spaces. Proceedings of the American Mathematical Society, Vol. 25, 3, (1970) 646-649.
[2] J. Nagata: Modern dimension theory. Bibliotheca Math., vol. 6, Interscience, New York, 1965, MR 34 \#8380.

[^0]: ${ }^{1}$ The work for that paper was done while the author was on a Cottrell College Science Grant for Research Corporation.

