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1. Introduction

In the subsequent paper we continue the investigation of transcen-
dence measures of certain transcendental numbers 03C3, i.e. positive lower
bounds for IP(u)1 in terms of the degree N and height H of P, where P
is an arbitrary polynomial with integral coefficient. For more informa-
tion about transcendence measures and the type of transcendence mea-
sures we will look for, see the earlier paper [4]; see also the authors thesis
[3], which includes the results of the present paper.
Let 03B11, ···, an be non-zero algebraic numbers such that, for any (fixed)

values of the logarithms, log 03B11, ···, log 03B1n are linearly independent over
Q. In this paper, transcendence measures are derived for numbers which
can be written in one of the following ways:

(i ) fi 1 log a 1 + ··· + 03B2n log an with n ~ 2, where 03B21, ···, /3n are alge-
braic numbers, not all zero

(ii) e03B2o03B103B211 ··· 03B103B2nn with n ~ 1 and

where 03B20, 03B21, ···, Pn are algebraic numbers such that at least one of
Pl’ ..., Pn is irrational. We prove the transcendence measure

for numbers of the form (1), and the transcendence measure

for numbers of the form (2). Here S = N+ log H, a is an arbitrary posi.
tive number and Ci and C2 are effectively computable numbers, depend-
ing on 8, n, the a’s and their logarithms and the j8’s.
We remark, that these transcendence measures are the first explicit

ones to be published for these numbers in which both the dependence
on H and N is expressed. If one is interested merery in the height H,
better results can be given. For numbers of the form (i), N. I. FEL’DMAN
[6 proved the transcendence measure exp { - CS}, where C is a positive
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number, depending on N, the a’s and their logarithms and the 03B2’s. For
numbers of the form (ii), a recent result of A. BAKER [2] implies the
transcendence measure exp { - C log H log log H} for H ? 4, where C
again is a positive number depending on N, the a’s and their logarithms
and the 03B2’s. An earlier result for the special case of numbers of the form
e03B2003B103B211 can be found in [7].
The method of proof of our transcendence measures is A. BAKER’S one

with some improvements introduced by N. I. FEL’DMAN. In the proof
we firstly derive a measure for the approximability of numbers of the
types (i) and (ii); after that, the transcendence measures are given.
The transcendence of numbers of the form (i) follows immediately

from e.g. Theorem 1 of A. BAKER’S paper [1]. The transcendence of
numbers of the form (ii) was proved by A. BAKER, distinguishing the
cases flo = 0 and 03B20 ~ 0; see the same paper.

2. Lemmas

We shall use the same notations (especially for the degree; height and
size) as in [4]. For shortness, we use without reformulation the lemmas
3, 6, 7, 8 and 9 of [4]. Further, we need the following lemmas:

LEMMA 1 : Let 03B11, ···, an be non-zero algebraic numbers such that, for
any fixed values of the logarithms, log 03B11, ···, log an are linearly indepen-
dent over Q. Let a be positive and let d be a positive integer. Then there
exists an effectively computable positive number

such that

for all algebraic numbers Po, 03B21, ···, 03B2n, not all zero, of degrees at most
d and of heights at most h.

PROOF: See Theorem 1 of [5].

LEMMA 2: Let 03B1 and P be algebraic numbers, 03B2 ~ 0. Then

PROOF: From Lemma 3 of [5] it follows that

Using d(03B1)+1  ed(03B1) and d(P) + 1  ed(P) we get

from which (2) follows.
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LEMMA 3: Let fi be an algebraic number, and let k and ~ be integers. Then

PROOF: If an zn + ··· + al z + ao is the minimal polynomial of 03B2, then

is a constant multiple of the minimal polynomial of k + ~03B2. Thus, the
coefficient of zi (i = 0, 1, ···, n) of this minimal polynomial is in absolute
value at most

From the obvious inequality (m i) ~ 2m -1 for all positive integers m, it
follows that

by which the proof is completed.

3. The case fil log ai + ... + 03B2n log an

First we give a measure for the approximability for numbers of the
form (i), in the special case in which fi. = - 1.

THEOREM 1: Let, for n ~ 2, 03B11, ···, 03B1n and 03B31, ···, Yn-1 be non-

zero algebraic numbers such that, for any fixed values of the loga-
rithms, log 03B11, ···, log an are linearly independent over Q. Let a be a
positive number. Then there exists an effectively computable number
S1 = 81(8, log 03B11, ···, logrtn, 03B31, ···, 1’n-l)such that

for all algebraic numbers 11 of degree N and size S ~ Sl.

PROOF: Put ô = (2n3 + 4n2 + 3n + 7)-103B5. For abbreviation, put

and

It is sufficient to prove that
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if S ~ Sl . In this proof we may restrict ourselves to the case in which
03B4 is rather small. By cl , c2, ··· we denote positive numbers which

depend only on n, log 03B11, ···, log 03B1n, yi , ..., 03B3n-1.
Suppose that

for some algebraic number 11 of degree N and size S. We prove that this
leads to a contradiction if S is sufficiently large.
Choose the following integers:

Put

where the numbers Ck, ... knmv are integers of absolute values at most C;
they will be specified later.
Fort = 0, 1, 2, ··· it is easily seen that

where
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Put

We estimate the difference

as follows: by |ez -1| ~ |z|e|z|, one has for k. = 0, 1, ···, K-1 and

the inequality

Hence,

Let

the appropriate way, such that

We apply Lemma 6 of [4] to these polynomials in the specified points.
If r, s and B have the same meaning as in this lemma we have

Hence, s ~ 4rd where d = [Q(03B11, ···, an , 03B31, ···, 03B3n-1) : Q]. Further,
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Hence, the right hand side of the second condition in Lemma 6 of [4] is
at most

It follows that the numbers Ck1... knmv can be chosen as integers, not all
zero, of absolute values at most C, such that 03A603C403C41 ... tn-1 (p) = 0 for
ï, Ti, * ’ *1 ’r.-i = 0, 1, w, T-1 and p = 0, 1, w, P-1. Doing so, we
certainly have 03A603C403C41 ...03C4n-1(p) = 0 for 0 ~ 03C4 + 03C41 + ... + 03C4n - 1 ~ T- 1
and 0 ~ p ~ P-1. From (8) we now get

for 0 ~ 03C4+03C41+ ··· + 03C4n-1 ~ T-1 and 0 ~p~P-1.
Define Tr and Pr for r = 0, 1, ..., R by

and

Remark that

LEMMA: For r = 0, 1, ···, R the inequality

holds for all non-negative integers i, 03C41, ···, 03C4n - 1 and p with

PROOF: We proceed by induction on r. For r = 0 the statement is

proved in (9). Let r be an integer with 0 ~ r ~ R -1 for which

for 0  03C4+03C41 + ··· + 03C4n-1 ~ Tr -1 and 0 ~ p ~ Pr -1. Since

we have for t = 0, 1, 2, ···
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Together with (12) we obtain

for

From (7) we know that

for 03C4+03C41+ ··· + 03C4n -1 ~ Tr+1-1. We apply Lemma 7 of [4] to F03C403C41...03C4n-1
with R = Pr + 1, A = 6, T = Tr + 1 and P = Pr. From (13), (14) and the
inequality

we then obtain

In particular,

From (8) and (10) it follows that

for 0 ~ 03C4 + 03C41 + ··· + 03C4n-1 ~ Tr+1-1 and 0 ~ p ~ Pr + 1-1. But for
these values of i, 03C41, ···, 03C4n-1 and p, we can consider 03A603C403C41 ... 03C4n-1(p) as a
polynomial in il, 03B11, ···, 03B1n , 03B31, ···, 1’n-l, of degree less than Tr + 1 + N
in il, KPr + 1 in 03B11, ···, an and Tr+1 in 03B31, ···, 03B3n -1. If B denotes the
sum of the absolute values of the coefficient, then we have

According to Lemma 3 of [4] we thus have either 03A603C403C41...03C4n-1(p) = 0 or

for 0 ~ 03C4+03C41+ ··· +tn-1 ~ Tr+1-1 and 0 ~p~Pr+1-1. Hence,
03A603C403C41 ...03C4n-1(p) = o for these 1", 03C41, ···, zn-1 and p. Again from (8) and
(10) we obtain
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for 0 ~ 03C4 + 03C41 + ... + 03C4n-1 ~ Tr + 1-1 and 0 ~ p ~ Pr+l -1. The lem-
ma has been proved.

From (11) with r = R we get

for 0 ~ 03C4 + 03C41 + ··· +03C4n-1 ~ TR -1 and 0 ~ p ~ PR-1. From their
definitions we have TR = T’. Since

we see that

Hence,

for 0 ~ 03C4 + 03C41 + ··· + tn-1 ~ T’ -1 and 0 ~ p ~ P’ -1. From (6)
it now follows that

fort = 0, 1, ..., T’ - 1 and p = 0, 1, ···, P’ -1.
We apply Lemma 8 of [4] to F with K replaced by K". Let 03A9 and co

have the same meaning as in this lemma. Since the exponents of F have
the form

we see that

With this, the condition

is easily checked. Further, we know from Lemma 1, applied with 8 = 03B4,
that

for all integers k1, ···, kn , not all zero, with |k1| ~ K- 1, ···, |kn| ~
K-1. From (21) and (5) it follows that
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From (20) we have

From lemma 8 of [4], with (19), (22) and (23) we obtain

for k1, ···, kn = 0, 1, ···, K-1 and m = 0, 1, ···, M-1.
But according to Lemma 3 of [4] we have either

or

for the same values of k1, ..., kn and m. Hence,

and m = 0, 1, ’ ’ ’, M -1. Since 11 has the degree N, it follows that all
integers Ckl... knmv are zero, in contradiction to their choice. This con-
tradiction proves Theorem 1.
We have the following

COROLLARY: Under the conditions of Theorem 1, there exists an effec-
tively computable, number C3 = C3 (8, log 03B11, ···, log 03B1n, 03B31, ···, 03B3n - 1) &#x3E; 0

such that

for all algebraic numbers 11 of degree at most N and size at most S.

PROOF: There are only finitely many algebraic numbers 11 of size

s(~)  S1. Choose C3 ~ 1 such that (26) holds for these finitely many
numbers.

THEOREM 2: Let, for n &#x3E; 2, 03B11, ···, an and Pl’ ..., Pn be non-zero
algebraic numbers such that, for any fixed values of the logarithms,
log 03B11, ···, log an are linearly independent over Q. Let 8 be a positive
number. Then there exists an effectively computable positive number
C4 = C4 (8, log 03B11, ···, log an, 03B21, ···, fin) such that
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for all algebraic numbers 03BE of degree N and size S.

We have d(~) ~ c7N with C7 = d(03B2n) and, by Lemma 2, s(~) ~ c8S
with c8 = 3d(03B2n)+s(03B2n). From (26) we now obtain

for some effectively computable positive number C4.

THEOREM 3: Under the conditions of Theorem 2, there exists an effec-
tively computable number Cl = el (8, log 03B11, ···, log an, 03B21, ···,03B2n) &#x3E; 0,
such that

is a transcendence measure of 03B21 log al + ... + 03B2n log an .

PROOF: Apply Lemma 9 of [4] to the result of Theorem 2 and put
Cl = 6C4(1 +log 2)n+l+£.

4. The case e03B2003B103B211 ··· oc On

THEOREM 4: Let n be a positive integer. Let 03B20 be algebraic and let al, ...,
an be non-zero algebraic numbers such that, for any fixed values of the
logarithms, log 03B11, ···, log an are linearly independent over Q. Let

03B21, ···, 03B2n be algebraic numbers, not all rational. Put

Let a be a positive number. Then there exists an effectively computable
number S2 = S2(s, log 03B11, ···, log an, 03B20, 03B21, ···, 03B2n) &#x3E; 0 such that

for all algebraic 03BE of degree N and size S ~ S2 .

PROOF : Put 03B4 = (2n3 + 8n2 + 10n +4)-1 03B5. For the sake of brevity, put
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and

It is sufficient to prove that

if S ~ S2; in this proof we may assume that bis rather small. By cl , c2, ···
we shall denote positive numbers which depend on n, log 03B11, ···, log an,
03B20, 03B21, ···, fi. only.

Suppose that

for some algebraic number 03BE of degree N and size S. We prove that this is
impossible if S’ is sufficiently large.
Choose the following integers:

Put

where the numbers Ckl... knlmv are integers of absolute values at most
C; they will be specified later.

where
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Define 03A603C403C41 ... 03C4n by

For ~ = 0, 1, ···, L-1 and

one has

Hence,

We apply Lemma 6 of [4] to the polynomials

chosen in the appropriate way such that

If r, s and B denote the same numbers as in Lemma 6 of [4], we have

and

From these inequalities it is easy to check the conditions of this lemma.
Hence, we can fix the numbers Ckl ... knlmv as integers, not all zero, of
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absolute values at most C, such that 03A603C403C41 ... 03C4np = 0 for r, Tl, ’ ’ ’, in
= 0, 1, ···, T-1 and p = 0, 1, ···, P-1. With (32) this implies

for 0 ~ 03C4+03C41+ ··· + 03C4n ~ T -1 and 0 ~ p ~P-1.
Define Tr and Pr for r = 0, 1, ···, R by

and

Observe that

LEMMA: For r = 0, 1, ···, R the inequality

holds for all non-negative integers i, 03C41, ···, in and p with

PROOF: We use induction on r. For r = 0 the inequality has already
been proved in (33). Let r be an integer with 0 ~ r ~ R-1 for which

for 0 ~ 03C4 + 03C41 + ··· + 03C4n ~ Tr -1 and 0 ~ p ~ Pr-1. Since

it follows that for t = 0, 1, 2, ...

Hence, (36) implies

For the same values of i, 03C41, ···, T, we obtain from (31 )
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We apply Lemma 7 of [4] to F03C403C41 ... 03C4n with R = Pr + 1, A - 6, T = Tr + 1
and P = Pr . From (37), (38) and (34) we then obtain

Consequently,

for 0 ~ 03C4 + 03C41 + ··· + 03C4n ~ Tr + 1-1 and 0 ~ p ~ Pr + 1-1. From (32)
and (34), it follows that

for 0 ~ 03C4 + 03C41 + ··· + 03C4n ~ Tr+1-1 and 0 ~ p ~ Pr+1-1.
However, for these values of i, 03C41, ···, 03C4n and p, we can consider

03A603C403C41 ... 1:n(p) as a polynomial in 03BE, 03B11, ···, 03B1n, /30’ 03B21, ···, 03B2n, of degree less

than LPr + 1 + N in 03BE, KPr + 1 in 03B11, ···, an and Tr + 1 in 03B20, 03B21, ···, /3n.
The sum of the absolute values of its coefficients is at most

According to Lemma 3 of [4] we have either 03A603C403C41 ... 03C4n(p) = 0 or

Hence,

From (32) and (34) we see

for 0 ~ 03C4 + 03C41 + ··· +03C4n ~ Tr+1 -1 and 0 ~ p ~ Pr + 1 -1, which

proves the lemma.

From (35) with r = R we get
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Thus,

for 0 ~ 03C4 + 03C41 + ··· + 03C4n ~ T’ -1 and 0 ~ p ~ P’ -1. From (30) we
now obtain

fort= 0, 1, ..., T’ -1 and p =0,1, ... P’-1.
The exponents of F have the foi m

Let 03A9 and co have the same meaning as in Lemma 8 of [4]. Then

from which the condition

follows by direct computation.
The difference of two exponents of F is of the form

with integral ki , ..., kn, l, not all zero, and |ki| ~ K-1 for i = 1, ···, n
and 1 fl ~ L -1. Moreover, at least one of the numbers ki+tfli
(i = 1,···, n) is non-zero, since 03B21, ···, 03B2n are not all rational. The

degrees of 1 po, k1 + ~03B21, ···, kn + ~03B2n are constants. We estimate their
heights by means of Lemma 3; we then see that these heights do not
exceed

in which c. and C6 are upper bounds for the heights and degrees resp. of
03B20, 03B21, ···, 03B2n. From Lemma 1 with e = ô it follows that

Hence, the exponents of F are distinct and

From Lemma 8 of [4], using (41), (42) and (43) we obtain the inequality
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According to Lemma 3 of [4] we have either

for the same values of k1, ···, kn, ~ and m. It follows that

for all of these values. Since 03BE has the degree N, this implies that all in-
tegers Ck, ... knlmv are zero, in contradiction to their choice. The theorem
has been proved.

Using the fact, that there are only finitely many algebraic numbers 03BE of
size S  S2, and using Lemma 9 of [4], one immedeately obtains the
following theorem:

THEOREM 5: Under the conditions of Theorem 4, there exists an effectively
computable, number C2 = C2 (8, log CX1, ..., log oc,,, 03B20, 03B21, ···, fi,,) &#x3E; 0

such that

is a transcendence measure of e03B2003B103B211 ··· 03B103B2nn.
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