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1. Introduction

Let 6 be a transcendental number. A positive function f of two integer
variables N and H is called a transcendence measure of u if

for all non-constant polynomials P of degree at most N and with integral
coefficients of absolute values at most H.

The purpose of the present paper, which covers a part of the authors
thesis [2], is to give transcendence measures for the numbers e" (a al-
gebraic, 03B1 ~ 0) and log a (a algebraic, 03B1 ~ 0, 1, for any fixed value of
the logarithm). These transcendence measures will be of the form

where S = N+ log H, for an effectively computable constant C &#x3E; 0

and for given constants a, b, c and d. We try to obtain a small total degree
in the exponent in N and S together, and to get a minimal contribution
of S within this total degree. Such measures are important for certain
applications; see e.g. [1] and [14]. On the other hand, we do not try to
determine the constant C in the exponent as small as possible. In fact, C
will be chosen very large to keep the proof uncomplicated.
As far as we know, no transcendence measure for e’ which contains

explicitly both the dependence on N and H was ever published. Earlier
transcendence measures of similar types for the special case of the number
e and for log a are given by N. I. FEL’DMAN, namely

for e, see [5 ],

for log a, see [3 ], and

for log a, see [4].
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Transcendence measures of other types are published by several au-
thors. Generally speaking, in their results the height plays a more impor-
tant rôle while the dependence on the degree is not explicitly given.
However, in a recent paper, [7], A. I. GALOÉKIN proved a measure for e’
of the form

For more references and information, see [2], [8] and [11]. Finally, we
remark that the transcendence of the considered numbers e03B1 and log oc

was proved by F. LINDEMANN in [9].

2. Formulation of results

We shall prove the following theorems, where again S = N+ log H:

THEOREM 1: Let a be a non-zero algebraic number. Then there exists an
effectively computable number C4 = C4(03B1) &#x3E; 0 such that exp ( - C4N2S}
is a transcendence measure of e03B1.

THEOREM 2: Let oc be algebraic, a 0 0, 1. Let log ce be any fixed value
of the logarithm of a. Then there exists an effectively computable number
Cs = C5 (a) &#x3E; 0 such that exp ( - Cs N2S(1 + log N)2} is a transcendence
measure of log oc.

The method of the proofs will be A. O. GEL’FOND’S method; this meth-
od was used too by N. 1. FEL’DMAN in the quoted papers. From the na-
ture of these proofs it is clear that the constants C4 and C. are effec-
tively computable, so we will make no further reference to this aspect.

3. Notations and lemmas

For any polynomial P with complex coefficient

we call n the degree and

the height of P. If a is an algebraic number, then we use the degree d(a)
and the height h(a) as the degree and height of its minimal defining poly-
nomial. We call s(a) = d(a) + log h(a) the size of a. Q will denote the
field of the rational numbers. If a is a real number, then [a] is the greatest
integer smaller than or equal to a.
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LEMMA 1: Let ex be algebraic of height h(03B1). Then

If moreover ex 1= 0, then we have

PROOF: For the first part, see [11 ], Hilfssatz 1. For the second part,
take into consideration that if

is the minimal polynomial of a, then

is the minimal polynomial of 03B1-1, apart from a factor + 1.

LEMMA 2: Let ai be algebraic of degree di and height hi (i = 1, ···, n).
Denote by d the degree of Q(03B11, ···, an) over Q. Let

be a polynomial with integral coefficients Pi1 ... j., such that the sum of the
absolute values of the coefficients is at most B. Then P(03B11, ···, an) = 0 or

PROOF: See [6], Lemma 2.
For convenience we formulate the following consequence of Lemma 2,

in which occurring empty sums should be omitted:

LEMMA 3: Let 03BE be algebraic of degree N and size S. Let n ~ 0 be an
integer and let 03B1i be algebraic of degree di and size si (i = 1, ..., n). Put
d = [Q(03B11, ···, an) : Q] if n ~ 1 and d = 1 if n = 0. Let

be a polynomial with integral coefficients whose sum of absolute values
is at most B. Then P(03BE, 03B11, ···, an) = 0 or

PROOF : Apply Lemma 2 with n replaced by n + 1 and 03B11, ···, 03B1n replaced
by 03BE, 03B11, ···, 03B1n. Use the inequalities
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and

LEMMA 4: Let r and s be positive integers such that s &#x3E; 2r. Then any set

of r linear forms in s variables

with complex coefficients apa such that lapaI ~ A (p = 1, ···, r;
u = 1,···, s) has the following property: For every positive even integer C
there exist integers C1, ···, C,,, not all zero, with |C03C3| ~ C (03C3 = 1, ···, s)
and

PROOF: See [11 ], Hilfssatz 28.

LEMMA 5: Let

(p = 1, ···, r; u = 1, ···, s) be polynomials with integral coefficients
p pait ... j., such that the sum of the absolute values of the coefficients of
each polynomial is at most B. Let oci be algebraic of degree di and height
hit (i = 1, ..., n) and put d = [Q(03B11, ···, an) : Q]. Let C be a positive
even integer. If

and

then there exist integers C1, ···, cs, not all zero, with |C03C3| ~ C for
03C3 = 1,...,s,such that

PROOF: From Lemma 1 we know that |03B1i|  hi+1.

Hence,
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Define Yp for 03C1 = 1, ..., r by

From Lemma 4 we conclude that there exist integers C1, ··· Cs, not
all zero, with |C03C3| ~ C for u = 1, ···, s and

for p = 1, ···, r. From (7) and (9) it now follows that

for p = 1, ..., r. However, Yp is a polynomial in al’ ..., an, of degree
at most Ni in ai and with sum of absolute values of its coefficients at
most BsC. Therefore, according to Lemma 2, the inequality (10) implies
that Y03C1 = 0 for p = 1, ···, r.

LEMMA 6: Let Ppu(zo, z1, ···, Zn) for p = 1, rand 03C3 = 1, ···, s be
polynomials with integral coefficients, such that the sum of the absolute
values of the coefficients of each polynomial is at most B, and such that
the degree in zi of each polynomial is at most Ni (i = 0, 1, ..., n). Let 03BE be
algebraic of degree N and size S. Let ai be algebraic of degree di and size
si, i = 1,..., n. Put d = [Q(03B11, ···, an) : Q] if n ~ 1 and d = 1 if n = 0,
and let C be a positive even integer. If

and

then there exist integers Cav (u = 1, ..., s; v = 0, 1, ···, N - 1), not all
zero, such that |C03C303BD| ~ C for u = 1, ···, s and v = 0, 1, ..., N-l and
such that

PROOF: Define Ppa,, for v = 0, 1, ···, N- 1 by

Then Ppa,, is of degree at most No + N-1 in zo and at most Ni in zi for
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i = 1, ..., n. The sum of the absolute values of the coefficients of each

Ppav is at most B. The equations (13) now reduce to

for p = 1, ···, r.
We apply Lemma 5 to the polynomials P,,,; to this end we re-

place zi , ..., zn by zo, zl, ... , zn, where the degree in zo is at most
No + N-1; 03B11, ···, an by 03BE, (Xi, ’ ’ ’, an; s by Ns and d by a number that
is at most Nd. For all positive integers N we have

Hence,

where H denotes the height of 03BE. Let hi be the height of ai . We have

From this it follows for i = 1, ···, n that

The inequalities (11), (12), (15) and (16) imply that conditions (6) and (7)
with the appropriate substitutions are satisfied. Hence, it follows from
Lemma 5 that the integers Cav can be chosen in the required way.

LEMMA 7: Let F be an entire function and let P and T be integers and R
and A be real numbers such that R ~ 2P and A &#x3E; 2. Put

and

Then

PROOF: By the maximum modulus principle we can choose a complex
number z with Izl = R and IF(z)l = MR. From the residue theorem of
Cauchy we have the following well-known consequence:
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Let p be one of the numbers 0, 1, ’ ’ ’, P -1 and let 03BE be a complex number
with |03B6 - p| = 1 2. Let qo, q1, ..., qP-1 be the numbers 0, 1, ..., P-1, re-
arranged in such a way that

Then

Hence,

The inequality (P-1 )! &#x3E; (P/3)P is easily checked for P = 1, ···, 10. For
higher values of P it can be proved by induction, using the inequality

It follows that

From (18) we now obtain the estimate

LEMMA 8: Let

be an exponential polynomial with complex numbers Ckm and (Ok, such that
03C9k ~ 03C9l if k ~ l. Put
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and

Let T’and P’ be positive integers and put

If

then

for k = 0, 1, ···, K-1 and m = 0, 1, ···, M-1.
Moreover, if in particular cok = k03B8 (k = 0, 1, ···, K-1) for some com-

plex number 0, then we may replace (20) by

PROOF: See [13], Theorem 2.

LEMMA 9: Let ~(n, s) be a positive, f’unction defined for all positive integers
n and all s ~ 1 with the following properties:

If, for some transcendental number 0’,

for all algebraic numbers ç, where N and S denote the degree and the size
of ç, then

for all non-constant polynomials P with integral coefficients, where N and
H are the degree and height of P and S = N+ log H.

PROOF: (compare [3 ], Proof of Theorem 2) If P is irreducible, it follows
by [3 ], Lemma 5 and by (i) that
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In the general case, write P = aP1 ··· Pm where Pi is a non-constant irre-
ducible polynomial and a &#x3E; 0 an integer. Denote degree and height of Pl
by Ni and Hi and put Si = Ni + log Hi(i = 1, ···, m). Then clearly

By e.g. GEL’FOND’S well-known inequality on the height of a product of
polynomials (see [8] p. 135, Lemma II; see also [12], Lemma 3 and [10])
we have Hi ~ eNH and thus,

Using (ii) and (iii) it follows that

for i = 1, ···, m. By multiplying these inequalities we obtain the required
expression (23), since Ni + ··· +Nm = N and a ~ 1.

4. Proof of Theorem 1

First we prove

THEOREM 3: Let 03B1 ~ 0 be an algebraic number of size s(a). Then there
exists an effectively computable number 81 = S1(03B1) such that

for all algebraic numbers 03BE of degree N and size S’ ~ 81.
PROOF: All estimates occurring in this proof hold for S sufficiently large.

Sl can be chosen as the maximum of the finitely many bounds thus ob-
tained. Suppose that

for some algebraic number 03BE of degree N and size S. It will be shown that
this assumption leads to a contradiction if S ~ Sl . Observe that (25) im-
plies that |03BE|  |e03B1| +1.
Choose the following positive integers:
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We use the auxiliary exponential polynomial

where the Ckmy are integers of absolute values at most C. Later we shall
specify them further.

For t = 0, 1, 2, ... and p = 0, 1, 2, ... we have

Define tPtP for the same t and p by

Then 03A6tp is an algebraic number, approximating F(t)(p) very closely. In
fact,

for k = 0, 1, ···, K-1 and p = 0, 1, ···, P-1. Hence,

for t = 0, 1, ···, T’ -1 and p = 0, 1, ···, P -1.
We are going to choose the integers Ck., such that 03A6tp = 0 for

t = 0, 1, ···, T -1 and p = 0, 1, ···, P -1. To this end we apply
Lemma 6 with n = 1, (Xl = a, r = TP and s = KM to the polynomials

(t=0, 1, ···, T-1; p-0, 1,···, P-1; k=0, 1, --, K-1;
m = 0, 1, - - -, M-1). Using the notations of Lemma 6, we have

and

By means of these inequalities one easily verifies conditions (11) and (12)
of Lemma 6. According to this lemma, we now choose the integers Ckmv,
not all zero, with |Ckm03BD| ~ C such that
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for t = 0, 1, ···, T-1 and p = 0, 1, ···, P-1. In this way, our function
F is completely fixed.
From (26) we obtain with (27)

for t = 0, 1, ···, T -1 and p = 0, 1, ···, P -1. From (1) it follows that
|03B1| ~ es(03B1). Using this inequality we see from the definition of F that

We apply Lemma 7 with R = 2P and A = S. We obtain by (28) and (29)

Hence, for t = 0,1,..., T’-l and p = 0, 1, ···, P-1 we have

and for the same values of t and p, using (26),

But 03A6tp is a polynomial with integral coefficients in 03BE and a, of degree
at most (K-1)(P-1)+N-1 ~ KP in 03BE and less than T’ in a. The sum
of the absolute values of its coefficients is not greater than

From Lemma 3 it follows that Otp = 0 or

fort = 0, 1, ..., T’ -1 and p = 0, 1, ···, P-1. Since (32) and (33) are
incompatible, it follows that çp tp = 0 for t = 0, 1, ···, T’-1 and

p = 0, 1, ···, P-1. From (26) we now obtain that

fort= 0, 1, ···, T’ - 1 and p = 0, 1, ···, P- 1.
Subsequently we apply Lemma 8 to our exponential polynomial F,

with
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and P’ = P. Using the notations of Lemma 8 we have, by |03B1| ~ es(03B1), the
inequality

Thus,

so that condition (19) is satisfied. Further, by Lemma 1 we have |03B1| ~ es(a)
and 1 oc | ~ e-s(03B1). Hence

Thus, it follows from (21) and (34) that

for k = 0, 1, ···, K+1 and m = 0, 1, ’",M-1.
But

is a polynomial in 03BE of degree less than N and with sum of the absolute
values of its coefficients at most NC. It follows from Lemma 3 that

or

for k = 0, 1, ···, K-1 and m = 0, 1, ···, M-1. Hence,

for all these k and m. Since 03BE is algebraic of degree N, the numbers
1, 03BE, ···, 03BEN-1 are linearly independent over Q. Thus, C’kmy = 0 for
k = 0, 1, ···, K-1, m = 0, 1, ···, M-1 and v = 0, 1, ···, N-1. This
contradicts the choice of the integers Ckm03BD and by this contradiction
Theorem 3 is proved.
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We now complete the proof of Theorem 1 in the following way:
There are only finitely many algebraic numbers 03BE of size S  Sl. Since

e03B1 - 03BE ~ 0 and since N2S &#x3E; 0 for all of these numbers, there exists a
number C6 &#x3E; 0 such that

for all algebraic numbers 03BE of degree N and size S  S1. Then
C7 = max (C6, 5.108 e6s(03B1)) will have the property

for all algebraic 03BE of degree N and size S. From Lemma 9 we obtain that

for all polynomials P with integral coefficient, of degree N and height
H, with S = N+ log H and C4 = 6C7. By reasons of monotony, the same
inequality holds for polynomials of degree at most N and height at most
H. Hence, exp {- C4 N2S} is a transcendence measure for e" and Theorem
1 has been proved.

5. Proof of Theorem 2

Let log a be an arbitrary but fixed value of the logarithm of the al-
gebraic number a. N. I. FEL’DMAN proved the following assertion: (see
Theorem 1 of [4], with m = 1)

There exists an effectively computable positive number C8 = C8(log oc),
such that

for all algebraic numbers 03BE of degree N and height H, provided that
N  (log H)1 4.
From this, it easily follows that

for all algebraic numbers 03BE of degree N and with size S, provided that
N  (tS)*.
For the complementary case N ~ (1 2 S)* we prove the following theorem:

THEOREM 4: Let a :0 0, 1 be an algebraic number of size s(03B1) and let log
a be an arbitrary, but fixed, value of the logarithm of oc. Then there exists
an effectively computable number S2 = S2(log a), such that
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for all algebraic numbers 03BE of degree N and size S ~ S2, provided that
N ~ (1 2S)1 4.
PROOF: Since the structure of the proof is the same as that of Theorem

3, only a shorted proof is given. Suppose that

for some algebraic number ç of degree N and size S, such that N ~ (1 2S)1 4.
We shall derive a contradiction in the case of large S.
Choose the integers

Put

where the numbers Ckmy are integers of absolute values at most C; they
will be specified later. We have for t, p = 0, 1, 2, ···

Put

For t = 0, 1, ···, T’ -1 and p = 0, 1, ···, P -1 it easily follows from the
inequality 1 etl ~ es(03B1) that

Let Ptpkm for t = 0, 1, ..., T- 1, p = 0, 1, ..., P-1, k = 0, 1, ..., K-1
and m = 0, 1, ···, M-1 be the polynomials (taken in the obvious way)
such that

We now choose the numbers Ckm03BD according to Lemma 6, applied to the
polynomials Ptpkm, as integers, not all zero, of absolute values at most
C, such that Otp = 0 for t = 0, 1, ···, T -1 and p = 0, 1, ···, P-1. It
follows from (41) that
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Since

and since N ~ (1 2S)1 4 we see from Lemma 7 applied with R = 2P and
A = Sl/5 that

Hence,

and

for t = 0, 1, w, T’ -1 and p = 0, 1, w, P -1.
From Lemma 3 we obtain 03A6tp = 0 or

for the same values of t and p. Thus, CP tp = 0 and, from (41),

for t = 0, 1, ···, T’-1 and p = 0, 1, ···, P-1.

Condition (19) with P’ = P and 03A9 ~ 103(s(03B1))2| log 03B1|N is satisfied.
Further,

Using this inequality and (46) we obtain from (21)

for k = 0, 1, ···, K-1 and m = 0, 1, ···, M-1.
From Lemma 3 it now follows that

for all k and m. This implies that all integers Ckm,, are zero. By the con-
tradiction to the choice of these integers, Theorem 4 has been proved.
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We proceed to prove Theorem 2. From (39) it follows that there

exists an effectively computable number C9 = C9(log oc) &#x3E; 0 such that

for all algebraic numbers 03BE of degree N and size S with N ~ (1 2 S)1 4, since
there are only finitely many algebraic numbers of size smaller than 82.
Taking C10 = max (2Cg, C9) we see from (38) and (48) that

for all algebraic numbers 03BE of degree N and size S. As before, the appli-
cation of Lemma 9 completes the proof.
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