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Introduction

A Banach space is said to be weakly compactly generated (WCG) if
it has a weakly compact subset which generates the space, i.e. its linear
span is dense in the space. Perhaps the main unsolved problem in this
class of Banach spaces was the heredity problem: Is every subspace of a
WCG Banach space also WCG? (Throughout, ’subspace’ means ’closed
linear submanifold’.) In Section 1 we exhibit a probability measure Il on
a certain measurable space and a subspace XfA of L1(03BC) which is not
WCG thus solving the heredity problem in the negative. ({f~L1(03BC) :
|f|2d03BC ~ 1} is a generating weakly compact subset of L1(03BC)).
XR is obtained as the span of a certain family 5’ of independent random

variables which, using a classical criterion given in Lemma 1.4, is im-

mediately seen to have the property that -97 u {0} is not a-weakly
compact (i.e. a denumerable union of weakly compact sets). Each ele-
ment of 57 is of mean zero; hence as observed in [I7], ff is an uncon-
ditional basis for XR. A simple, elegant result due to W. Johnson (Pro-
position 1.3) asserts that if a Banach space is WCG and has an un-
conditional basis, then the basis, together with 0, must be U-weakly
compact. Johnson’s result also yields that X: is not isomorphic to the
dual of a WCG Banach space.

Proposition 1.3 and Lemma 1.4 thus yield a conceptual proof that
XR is not WCG; at the same time, they lead to a satisfactory characteri-

* The research and preparation of this paper was partially supported by NSF
Grant GP-30798X1
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zation of those families of independent random variables which have
WCG closed lineai spans (Theorem 1.5).

In Section 2 we present deeper properties of WCG subspaces of L1(03BC)-
spaces. This section has three main results; the first is that there is a non-

separable space Y spanned by a family of independent random variables
so that every weakly compact subset of Y has density character less than
that of Y (Theorem 2.1 ).

It happens that X91 contains Y as a complemented subspace; in an
earlier version of our results, we used this method to show that XR is not
WCG. In addition to using the tools of Section 1, we require a result con-
cerning lower orders of magnitude of families of (not-strictly) increasing
unbounded functions defined on the set of all positive integers (the family
of all such functions is denoted by -4 for ’monotone’). Defining f  g

if g = o(f ) for all f, g E vit, we prove in Lemma 2.3 that there is a sub-
family of -4f which is well-ordered by , has no upper bound in vit,
and has order-type a cardinal number.
The second main result of Section 2, Theorem 2.7, yields that every non-

separable subspace of L1(03BC) for some probability measure Il, contains a
sequence of elements of norm one tending weakly to zero, while it

i s consistent with set theory that there exists a non-separable L1(03BC)-space
such that all of its subspaces are WCG. Moreover it is consistent that
every non-separable subspace of an L1 (03BC)-space contains a non-separable
weakly compact subset. On the other hand, it is also consistent that this
is false; indeed assuming the Continuum Hypothesis, the non-separable
space Y of Theorem 2.1 is such that all of its weakly compact sets are
separable. To prove Theorem 2.7 we require a striking result of J. Silver
(Lemma 2.5) which shows that a) every uncountable subset of-4X contains
an infinite subset with an upper bound in vit and b) it is consistent with
set theory that N1  2"1 and that every subset of vit of cardinality less
than the continuum has an upper bound in vit. Our proof of Lemma 2.3
also shows that it is consistent with set theory that the assertion of b)
is false. (We present only the proof of a); we are grateful to J. Silver for
the communication of this result.)
The third main result of Section 2, Theorem 2.9, shows that the unit

ball of X£ in its weak* topology, is homeomorphic to a weakly compact
subset of a Banach space. The proof of this result involves a careful use
of the modulus of absolute continuity, and is the most delicate argument
in the paper.
Theorem 2.9 led to the topological characterization of weakly compact

sets in Banach spaces, Theorem 3.1, which is the main result of Section 3:
A compact Hausdorff space is homeomorphic to a weakly compact subset
of some Banach space if and only if it has a point-separating u-point-finite
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family of open Fa’s. (For the definitions of these terms, see Section 3.)
The proof of 3.1 is a surprisingly simple consequence of known results,
including the Grothendieck characterization of weakly compact subsets
of C(K) spaces [7 ] and the work of Amir and Lindenstrauss [1 ]. For the
sake of completeness and clarification, we present (possibly new) proofs
of all of these except the consequence of the work of [1 ] due to Linden-
strauss (stated as Lemma 3.5). The reader familiar with these results may
wish to skip over them to the proof of 3.1 following Lemma 3.5.
At the beginning of Section 3 we note the known fact that a compact

Hausdorff space is metrizeable if and only if it has a strongly-point-sepa-
rating 03C3-point-finite family of open Fa’s. Thus the word ’strongly’ consti-
tutes the dividing line between metrizeable and non-metrizeable Eberlein
compacts (i.e. homeomorphs of weakly compact subsets of Banach
spaces) such as the one-point compactification of an uncountable set.
Section 3 concludes with a number of topological questions and remarks.
We feel that the main question concerning Eberlein compacts is whether
they are closed under continuous Hausdorff images (stated as problem
5 of [12]). Phrased another way, is every closed subalgebra of a WCG
C(K) space also WCG? (We work only with real scalars; a C(K)-space
refers to the space of real continuous functions on a compact Hausdorff

space K under the sup-norm.) A question related to this: is every compact
Hausdorff space with a point-separating point-countable family of open
Fa’s, an Eberlein compact? We are grateful to M.E. Rudin for the com-
munication of an example (unpublished as of this writing) which shows
that it is consistent with the axioms of set theory, that the answer to the
last-stated question is negative. (See Remark 3 Section 3.)

It would certainly be desirable to determine those Banach spaces
which are hereditarily WCG. Is it possible that this class of Banach
spaces coincides with those which are Lindelôf in their weak topology?
It is a result of Cor son’s (see [2]) that Co(r) is Lindelof in its weak topolo-
gy for any set F, although its still unknown if L1(03BC)-spaces have this
property, for finite-measures ,u. (co(r) is the space of continuous functions
on the discrete space F, vanishing at infinity). John and Zizler [9] and,
independently, D. Friedland [6], have proved that c0(0393) is hereditarily
WCG for any set F. (co(r) and L’(,y) spaces are actually related by the
following fact: for any set F, there exists a probability measure y on some
measurable space such that c0(0393) is isometric to a quotient space of L1 (03BC).
More generally, using recent results of S. Troyanski [20], they have prov-
ed that the property of having a shrinking Markusevic basis is hereditary,
thus showing that such spaces are hereditarily WCG. They have also
proved that X has a shrinking M-basis iff X is WCG and has an equivalent
Frechet differentiable norm iff (by the results of [20]) X is WCG and has
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an equivalent norm which induces on X* a locally uniformly rotund norm.

(See [9] and [6] for the definitions and proofs.) D. Friedland obtains the
additional information that if X is WCG and Y c X is such that Y has an

equivalent Frechet differentiable norm, then Y is WCG.
We refer the reader to the Lindenstrauss survey-paper [12] and

the recent paper [13] for many properties of WCG Banach spaces. Our
negative solution to the heredity problem answers Problems 1 and 2 of
[12] in the negative, while Theorem 2.9 answers Problem 5 in the negative.
We of course lean on the standard facts in functional analysis (e.g.

as given in [4].) Our notation and definitions are standard for the most
part. We use the notation [S] to denote the closed linear span of a subset
S of a Banach space; if S = {xn : n = 1, 2, ···} for some sequence

(xn), we also denote [S] by [xn]. ’Isomorphic’ means ’linearly homeo-
morphic’ ; ’operator’ means ’bounded linear operator’. The results of
Section 3 are independent of those of Sections 1 and 2, except for the proof
of Lemma 2.8 which leans on (the simple) Proposition 3.3.

1 would like to express my appreciation to Marnie McElhiney and
Angela Shelton for their fine typing jobs of the original and revised ver-
sions of this paper.

1. A counter-example to the heredity problem

Let R denote the class of all integrable functions f defined on [0, 1 ] with

Let p denote the product-Lebesgue measure on [0, 1]R. As we noted
above, L1(03BC) is WCG. For each r E PIt, let r be the function in L1(03BC)
defined by: F(x) = r(x(r)) for all x ~ [0, 1 le. The main result of this
section is

THEOREM 1.1: Let V4 denote the closed linear span in L1(03BC) of the set
of ’s, where r ranges over arbitrary elements of -q. Then Xq is not n-eakly
compactly generated.
Our proof of Theorem 1.1 yields that, in the language of probability

theory, if Y is the closed linear span in L1-norm, of a family of inde-
pendent random variables each of L l-norm one and mean zero, maximal
with respect to no two distinct variables having the same distribution,
then Y is not WCG.

The following simple observations will prove very useful (throughout,
the letters ’X’, ’Y’, ’Z’, ’B’, shall stand for given Banach spaces, unless
otherwise specified):
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PROPOSITION 1.2 : If B has a u-relatively weakly compact subset with
dense linear span, then B is WCG. If B is WCG, then there is a Banach
space Y and a weakly compact operator T from Y to B with range dense
in B.

PROOF : Let S be a a-relatively weakly compact subset of B with dense
linear span. By definition there exist Si, S2, - - - with

and the weak closure Si of Si is weakly compact for all i. Let

for all n. Then

is easily seen to be a weakly compact generating subset of B. Now sup-
pose K is a weakly compact subset of B, generating B. Since the closed
convex symmetric hull of K is also weakly compact, we may assume that
K is itself convex and symmetric. Now let Y be the linear space generated
by K and norm Y by ~y~ = inf{03BB &#x3E; 0 : y ~ 03BBK}. Then standard re-
sults yield that Y is a Banach space under this norm and the identity
injection is the desired T. (For further properties of such a Y, see Remark
6 of Section 3; the argument above has the virtue that K equals the image
of the unit ball of Y and T is one-one). Alternatively, define T : l1(K) ~ B
by T(f) = Lf(k)k for all f ~ l1(K) (where by definition, l1(K) =
{f : K ~ R with ~f~ = LkeKlf(k)1 I  ~}.
REMARK: It has recently been proved that Y may be chosen to be re-

flexive (see [4]).
We next need some properties of unconditional bases in WCG Banach

spaces. A set F in a Banach space B is called an unconditional basis for
B if the linear span of F is dense in B, and there exists a constant 03BB so
that for all n, 03B31, ···, yn in F, scalars c1, ···, cn, and numbers 03B51, ···, e.
with e, = ±1 for all i, ~03A303B5ici03B3i~ ~ Âll E ciyill. The best (i.e. least)
possible constant 03BB for which the above holds, is called the unconditional
constant of T.

If T is a normalized unconditional basis for B, then for each y E F there
is a functional y* E B* uniquely determined by the conditions:
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One has that ~03B3*~ ~ 03BB and for all

where y*(x) equals zero for all but countably many y’s and the series
converges unconditionally to x. The main property of use to us is that
for all 039B~0393, there exists a projection P039B : X ~ [A ] with ~P039B~ ~ 03BB
uniquely determined by the conditions: For al] x e X and y e F;

We are grateful to W. Johnson for the communication of the next
result, which provides considerable simplification of an earlier proof of
Theorem 1.1 and certain complements to it.

PROPOSITION 1.3: (W. Johnson) Let B have an unconditional basis F.
Then the following are equivalent:
(1) {0} ~ F is a-weakly compact.
(2) B is WCG.
(3) There is a WCG X with B* isomorphic to X*.
(4) There is a one-one weakly compact operator defined on B* with

range in some Banach space.

(5) There is a one-one operator defined on B* with range in some Banach
space containing no isomorph of 100.

PROOF: (1) =&#x3E; (2) follows from 1.2 and (2) =&#x3E; (3) is trivial. (3) ~ (4):
If X is as in (3), there is a Y and a weakly compact operator T : Y - X
with dense range. Thus T* : X* ~ Y* is one-one and also weakly compact
by standard results. The conclusion of (4) now follows immediately. The
’target’ Banach space of (4) may obviously be chosen to be WCG.
But 100 does not imbed in a WCG Banach space. Indeed, if F is a set of
cardinality 2N0, then l1(0393) imbeds in 100 but l1(0393) does not imbed in a
WCG space (c.f. page 214 of [14]). To complete the proof, it suffices to
prove (5) ~ (1). However for ease in readability, we prove (4) ~ (1)
and (5) ~ (1) simultaneously. Let F* be the functionals biorthogonal to
F and let Y and T : B* ~ Y be chosen so that T is a one-one operator.
Let Fj = {03B3 ~ 0393 : ~T03B3*~ ~ 1/j}. Since T is one-one, F = ~~j=1 0393j.
Fix j and let 03B31, Y2, ... be a sequence of distinct elements of Fj (if such
exists). It suffices to prove that b*(03B3n) ~ 0 as n - oo for all b* E B*. If
not, by passing to a subsequence of the y,,’s if necessary, we can assume
there is a b* E B* and a 03B4 &#x3E; 0 with |b*(03B3n)| ~ 03B4 for all n. Now since F is
unconditional, (03B3n)~n=1 is equivalent to the usual basis for 11. Hence again
using unconditionality of the basis, (03B3*n)~n=1 is equivalent to the usual
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basis for co. Now if T is weakly compact, then T|[03B3*n] is compact and
hence ~T(03B3*n)~ ~ 0, a contradiction. We also have that if Z denotes the
weak* closure of [03B3*n], then Z is isomorphic to l~. Thus if Y contains no
isomorph of 100, TIZ is weakly compact by Corollary 1.4 of [16]. So
again TI [03B3*n] is compact and we have a contradiction. Q.E.D.

REMARKS: By the remark following 1.2 and results of ,Amir and Linden-
strauss [1 ], other équivalences to (1)-(5) are that B* admit a one-one
operator into some reflexive space or into co(A) for some set A.

Let v denote a probability measure on some measurable space. As
final preparation for the proof of our main result, we need the following
classical characterization of relatively weakly compact subsets of L1(03BD)
(c.f. page 294 of [5]):
A bounded subset S of L1(v) is relatively weakly compact if and only if

S is uniformly absolutely continuous; i.e. E|f|d03BD ~ 0 as 03BD(E) ~ 0,
uniformly in ,S. It is useful to introduce a quantitative version of this
result. For any f ~ L1(03BD), we define the modulus of absolute continuity
of f, 03C9(f, 03B4), by 03C9(f, 03B4) = sup E|f|d03BD, the supremum being taken over
al measurable sets E with 03BD(E) ~ (j. The function 03B4 ~ 03C9(f, 03B4) shall be
denoted by 03C9(f, ·). We have that fixing f, 03C9(f, ·) is a monotonically
increasing function with 03C9(f, 03B4) ~ 0 as 03B4 ~ 0. The above result may now
be reformulated as

LEMMA 1.4: Let S be a non-empty bounded subset of L1(03BD). Then S is
relatively weakly compact if and only if

S is u-relatively-weakly-compact if and only if there is an increasing func-
tion g with limx-.og(x) = 0 so that co(f, .) = 0(g) for alliE S.

PROOF: The first statement follows immediately from the classical cri-
terion stated above. Suppose S = ~~n=1 S’n with each S’n relatively weakly
compact. Let

for all x &#x3E; 0 and n = 1, 2, .... Then

serves as the desired g. On the other hand, suppose 03C9(f, .) = 0(g) for all
f ~ S and g(x) ~ 0 as x - 0. Let Sn,m = {f ~ S : 03C9(f, x) ~ mg(x) for
all x ~ 1/n}. Then S = ~n,m Sn,m and Sn,m is relatively weakly compact
for all n and m. Q.E.D.
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Now it is easily seen that if à is as defined at the beginning of Section
1, there is no increasing g with g(x) ~ 0 as x - 0 and co(f, .) = 0(g)
for all f ~ R. Hence 1.1 is an immediate consequence of the next and final
result of this section.

THEOREM 1.5: Let T be a set and {g03B1 : 03B1 ~ 0393} an indexed fàmily of
elements of 9. Let v denote the product-Lebesgue measure on [0, 1 ]r,
for each a ~ 0393 let g,, EL1(v) be the function defined by 9,,,(x) = ga(x(a»
for all x e [0, 1]0393, and let X denote the closed linear span in L1(03BD) of
{03B1 : a E 0393}. Then X is WCG (if and) only if there is an increasing function
g with g(x) ~ 0 as x ~ 0 so that 03C9(g03B1, ·) = 0(g) for all a E F.

1.5 may be alternatively phrased: if 57 is a family of independent
random variables, each of norm one and mean zero, defined on some
probability space Q, then the subspace of L1(Q) generated by F is WCG
if and only if there is an increasing g with g(x) - 0 as x - 0 so that
03C9(f, .) = 0(g) for all f E 57.

PROOF: It is obvious that 03C9(g03B1, ·) = 03C9(03B1, ·) for all 03B1 ~ 0393. Thus the
’if’ part follows immediately from 1.2 and 1.4. By standard results in
probability theory, {03B1 : a e 0393} is an unconditional basis for X, with
unconditional constant less than or equal to 2 (see Lemma 2a, pg. 278
of [17]). Hence the ’only if’ part follows from 1.3 and 1.4. Q.E.D.

REMARKS:

1 ) By 1.3, X: is not isomorphic to the dual of a WCG Banach space; by
the last remark of Section 3, this implies that neither the unit ball of X:
nor in fact any convex body in X* is affinely equivalent to a weakly
compact subset of some Banach space. Nevertheless by the last result of
Section 2, the unit ball of X* is homeomorphic to a weakly compact sub-
set of some Banach space. Again by 1.3, X£ does not admit a one-one
operator into col) for any set A. On the other hand, if l~c(R) denotes
the Banach space of all bounded functions defined on R with countable

support; then X; does admit a one-one operator into 1: (gf), namely via
T defined by (Tf)(r) = f() for all r c- -q and f E X*R. Lindenstrauss has
recently proved that X: is strictly convexifiable.

2) X91 is isomorphic to a conjugate space; in fact if Z denotes the
norm-closed linear span of *, in X:, then X91 is isomorphic to Z*
(where  = { : r E R} and * denotes the functionals biorthogonal
to ). By the results of [6] and [9], Z is hereditarily WCG.

3) Let Y be a subspace of L1(03BC) for some probability measure J.l, and
suppose Y* is isomolphic to the dual of a WCG Banach space. Is Y
WCG? There are many counter-examples to this question if the hypo-
thesis that Y c L1(03BC) is omitted; for example, Y = C(col) where (01
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denotes all ordinals less than or equal to the first-uncountable ordinal in
the order-topology. The most striking counter-example is a recent one
of Lindenstrauss [13], where Y is not WCG; Y* is isomorphic to Z*,
yet Z* and Z are both WCG. The following result, which applies the re-
sults of [14], may be useful in this connection.

THEOREM: If A is a subspace of L1(,u) so that A* is isomorphic to the
dual of a WCG Banach space, then there is a sequence of measurable sets
E1, E2, ··· with 03BC(~~j=1 Ej) = 1 and Ej c Ej+1 for all j, so that for all
j, ~Ej A is WCG, where XEJA equals the norm- closure of {~Eja : a E A}.
We identify L~(03BC) with C(O) for a certain compact Hausdorff space

03A9; we also identify p with a certain finite regular positive Borel measure
Jl on 03A9; this measurey has the properties that for every non-empty open
subset U of Q, p(U) = 03BC(U) &#x3E; 0 and also U is open;moreover C(03A9) =
L~(03BC); i.e. every bounded Borel-measurable function f is equal y-almost
everywhere to a continuous function on 0. (See the proof of Theorem 3.1,
page 218 of [14] for further details.) It follows from our assumptions on
A that there exists a WCG subspace B of C(Q)* so that B~ = A1 (we
are here regarding A c C(Q)* also). By lemma 1.3 of [14], there is a
positive regular Borel measure vi on S2 with B c L1(03BD1); write 03BD1 =

03BB + 03C1 where p is absolutely continuous with respect to 03BC and is singular
with respect to y. As shown on page 218 of [14], it then followsthat there
exists a closed nowhere-dense subset F of 03A9 with p(F) = 03BB(~F) = 0.
Now choose Ul c U2 ~ ···, with U, a closed and open subset of -F
for all j and (U 1 Ui) = 1, and fix j. Evidently ~UjB is WCG since B is.
We claim that ~UjB = ~UjA. Since p is absolutely continuous with

respect to y, we may regard B c L1(03BB+03BC). Were the assertion false,
since XujB and ~UjA are both contained in L1(03BC), there would exist a
cP ~ L1(03BC)* so that for some b E B, ~(~Ujb) ~ 0 and ~(~Uja) = 0 all

a E A (assuming that ~UjB is not contained in ~UjA). Since (Z/(jM))* =
C(Q), there is a continuous 1/1 so that 03A8~Ujbd03BC ~ 0 yet 03A8~Ujad03BC = 0
for all a E A. But then 03C8~Uj ~ Bl while 03C8~Uj E A~. The proof assuming
~UjA is not contained in XujB, is exactly the same. Now simply identify
UJ with a measurable set Ej; the proof of the theorem is complete.

2. Complements

Our first main result of this section shows that if we assume the

Continuum Hypothesis, there exists a closed non-separable linear sub-
space Y of L1(03BC) for some probability measure ,u, so that every weakly
compact subset of Y is separable.

THEOREM 2.1: There exists an infinite cardinal b ~ 2Ho and a closed



92

linear subspace Y of L1(03BC) for some probability measure J.l, so that the

density character of Y is b yet every weakly compact subset of Y has
density character less than b.

Our proof will yield that Y may be chosen as a complemented subspace
of X9f; our original proof of 1.1 (prior to Johnson’s discovery of Pro-
position 1.3) proceeded via 2.1. We need three preliminary results.

LEMMA 2.2: Let B have an unconditional basis F and an infinite weakly
compact subset K of density character b. Then there is a subset A of r
with card A = b so that {0} u A is u-weakly compact.

PROOF: We indicate two demonstrations; the first is due to W. Johnson.
We may choose a Y and a weakly compact operator T : Y - B so that
K c T(Y). Let T * be the functionals biorthogonal to F. Since T * is

weakly compact, the proof of Proposition 1.3 yields that 039B = {03B3 ~ 0393 :

T*03B3* ~ 01 together with 0 forms a 03C3-weakly compact set. Now A* =
{03B1* : a E 039B} is total over K. Indeed suppose a*(k) = a*(k’) for some
k, k’ E K and all a* e A*. Choose y E Y with Ty = k-k’; then for all
03B3 ~ 0393, (T*03B3*)y = 03B3*(Ty) = 0, hence k - k’ - 0. Now we may assume
without loss of generality that ~y~ = 1 for all y ~ 0393. Then the operator
Q : B ~ c0(039B*) defined by Q(b)(À*) = À*(b), is one-one on K, hence
Q|K is a weak-homeomorphism. Thus the density character of K is less
than or equal to the cardinality of A. An alternate proof: Assume K is
convex symmetric. By Zorn’s lemma, we may choose a subset D of the
non-zero elements of K, maximal with respect to the following property:
if dl d2, dl, d2 in D, then Fdl n Td2 - 0, where for d E K, we put
rd = {03B3 ~ 0393 : 03B3*(d) ~ 0}. Let 039B = ~d~D0393d. Then the maximality of D
implies that 039B* is total over K and the use of Q as above impli es that card
039B ~ b. Now let {03B3d1, 03B3d2, ···} be an enumeration of rd for all d E D.
Let 039Bi,j = {03B3 ~ 039B : y = yd for some i and |(03B3di)*(d)| ~ 1/j}. Then letting
Pi,j be the natural projection onto [039Bi,j](i.e. that given by (1) for ’039B’ of
(1) equal to 039Bi,j), we obtain that 039Bi,j U {0} is weakly compact since

Pi,j(D) is relatively weakly compact. Q.E.D.

Our proof of 2.1 will involve the classical criterion given by Lemma 1.4.
Rather than working with families of functions decreasing to zero as the
independent variable decreases to zero, we prefer to take reciprocals and
work with increasing functions tending to infinity; also we prefer to re-
duce to the simpliest setting, namely functions defined only on N, the
set of positive integers.

DEFINITIONS: We let vit denote the set of all (not necessarily strictly)
increasing unbounded functions f : N - N. i.e. f E vit iff f(n) ~ f(n + 1)
for all n and limn~~f(n) = oo. For f, g E M, we write f = o(g), if
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Given a subset S of -4Y, we define the function inf S’ by

Evidently inf S is also an increasing function; inf S thus fails to belong
to -4Y iff it is stationary, i.e. for some j, inf S(n) = inf S( j) for all n ~ j.
We say a cardinal b is type I if b is infinite and given r = ~~n=1 0393n with
card r = b then card T" = b for some n.

LEMMA 2.3: There exists a type I cardinal b and a subfamily 9 of b
with card ie = b so that for every A r-- 9 with card A = b, inf A
is stationary.
Of course No  b ~ 2N0; naturally if we assume the Continuum

Hypothesis (CH), the statement as well as the proof of this result is

simplified. See the remarks immediately following this proof for further
comments. (Throughout this paper we denote the cardinal of the conti-
nuum by c and also 2"0, and the first uncountable cardinal by NI and
also col.)

PROOF: We identify cardinal numbers with initial ordinal numbers, for
whose standard properties we refer the reader to [19] without further
reference. The basic classical fact needed for the proof, is that

given a countable set f1, f2, ··· of elements
(2) in M, there exists a g E M with g = o(fi)

for all i.

Of course this is well-known: to see it, choose 1 = ni  n2  n3 ··· so

that fi(nj) ~ 2j-l for all 1 ~ i ~ j, j = 1, 2, ···; then define g by g(m)
= j for all m with nj ~ m  nj+1, j = 1, 2, ···.
Now let b be the smallest cardinal number such that there exists

a subset B of -4X with card -q = b so that there is no g e -4X with

g = o(b) for all b E B.

It is immediate from (2) that b is a type 1 cardinal; thus in particular,
N0  b ~ card JI = 2"0. Now choose e satisfying the above con-
dition with card B = b, and let {b03B1 : a  b} be a one-one enumeration
of e by the cardinal b. We now choose 9 as follows: let g0 = b0.
Let fi  b and suppose {g03B1 : a  03B2} has been chosen. We have by stan-
dard results in cardinal numbers that since card {03B1 : a  03B2}  b, card
({g03B1 : ce  03B2} ~ {bA : a  03B2})  b. Hence by the definition of -4Y, we
may choose a go E -4Y so that go = o(g«) and gp = o(b«) for all a  03B2.

This completes the definition of G = {g03B1 : a  b} by transfinite in-
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duction. Obviously card G = b and in fact for all 03B1, fi  b, a  03B2
iff 9p = o(ga). (Thus -el is well-ordered by the relation: f  g if and only
if g = o(f).) Now suppose A is a subset of u with card d = b.
Since b is a cardinal number, it then follows that there is a transfinite

increasing sequence of ordinals {~03B1}03B1b with A = {g~03B1 : a  b}. Now
in fact there is no f ~ -X with f = o(a) for all a E si. Indeed; such an f
would have the property that f = o(g) for all g E G. But given b E e,
there is a g e 9 with g = o(b); hence f = o(b) for all b E B, a contra-
diction. Q.E.D.

REMARKS: J. Silver has shown that Martin’s axiom yields that there
is no cardinal b  2No satisfying Lemma 2.3. Our proof of Lemma 2.3
and results of set theory then yield: It is consistent with set theory that
N1  2N0 and every subset B of JI with card &#x26;  2’l’ has an upper-
bound in M; i.e. there exists on f ~ M with f = o(b) for all b E e. On
the other hand, the b defined in our proof is easily seen to be a regular
cardinal (from the properties of G); hence it is also consistent with the
axioms of set theory that b can be chosen with b  2"’. (Given a set
T, card F is said to be regular if whenever F = ~03B1~039B039303B1 then either card
ll = card F or card 039303B1 = card F for some a; Martin’s axiom is equiva-
lent to the assertion that a compact Hausdorff space which has no un-
countable family of disjoint open sets, cannot be the union of a family F
of nowhere dense subsets with card ff  2N0.)
To complete the proof of Theorem 2.1, we need the final step of linking

up members of vit with appropriate functions in L1 [0, 1 ].

LEMMA 2.4: There is a one-one-correspondence between M and Lebesgue
integrable functions defined on [0, 1 ], M - fM’ so that for all M, j ) ’fMI dt =1
and f fM dt = 0, and such that for any non-empty subset si of M, if infw
is stationary, then

lim sup 03C9(fM, 03B4) ~ 0.
ô-o Me

PROOF: Fix M; we shall define f = fM . Put a,, = (M(n» -’. (an) is a
(not necessarily strictly) decreasing sequence of positive numbers tending
to zero. Now let f be the unique (non-strictly) decreasing function, non-
negative and right continuous on (0, 1 2), so that for each positive n, f
is constant on the interval

with
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with f(x) = -f(1-x) for aIl t  x  1. Thus J |f(t)|dt = 1 and

J !(t)dt = 0; moreover f is a symmetric measurable function; i.e. for

all t, m({x : f(x) &#x3E; t}) = m{x : -f(x) &#x3E; t} where m denotes Lebesgue
measure. We have that for all positive n

hence

Thus if A c JI is stationary, then

or

which by (4) implies the lemma. Also, (3) shows that the correspondence
is 1-1. Q.E.D.

Completion of the proof of Theorem 2.1: Let b be the type 1 cardinal
and G the subfamily of -4Y given by Lemma 2.3. Let B = {fM : M E G},
let y, R, and -6 for r c- 9 be as defined prior to Theorem 1.1, and let Y
be the closed linear span in L1(03BC) of (M : M E G}. As observed in the
proof of Theorem 1. l, (= { : b ~ B}) is an unconditional basis for Y
(in fact in this case the unconditional constant equals one). Then the
density character of Y equals card B = b; suppose K were a weakly
compact subset of Y of density character b. Taking note of the one-one
nature of the correspondence of 2.4 and the fact that vit is a type 1 cardinal
there would be a subset ô/ of 9 with card si = and b {M : M ~ A}
relatively weakly compact. Hence by Lemma 1.4,

but by Lemma 2.3, inf A is stationary, hence by Lemma 2.4,

a contradiction. Q.E.D.

The next main result of Section 2 yields that it is consistent with the
axioms of set theory that every subspace of L1([0, 1]03C91) is WCG. We
first require the following result due to J. Silver.

LEMMA 2.5: Let d be an uncountable subset of vit.
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a) There exists a countable infinite subset B of A with inf B e M.
b) Assuming Martin’s axiom, if card A  c, then there is an m E vii

with m = o(a) for all a ~ A.
We note that it is consistent with the axioms of set theory, that the

hypotheses of 2.5 b) are not vacuous.

PROOF: We give only Silver’s proof for a). We first observe that for
any uncountable subset B of d and integer k, there exists an m and an
uncoun1able subset D of A with d(m) ~ k for all d ~ D. Indeed,
B = ~~m=1{b ~ B : b(m) ~ k}. Now let A1 = A, let Il ~ A, and
let nl - 1. Suppose k ~ 1, n1  n2 ’ ’ ’  nk, f1, ···, fk, and dk have
been chosen so that Ak is an uncountable subset of A, so that for all
1 ~ i ~ k, f(ni) ~ i for all f ~ Ak and also fj(ni) ~ i for all 1 ~ j ~ k.
Now choose 1 &#x3E; nk with fj(l) ~ k+1 for all i ~ j ~ k. Then by our initial
observation, we may choose Ak+1 an uncountable subset of Ak and m,
so that f(m) ~ k+1 for all f ~ Ak+1. Finally, let nk+1 = max {m, l}
and choose fk+1 ~ Ak+1 with fk+1 ~ fj for all 1 ~ j ~ k.
We have thus constructed a sequence f1, f2, ··· of distinct elements of
A and a sequence of positive integers ni  n2  ··· so that fj(ni) ~ i
for all j and i. Hence

It is useful to have a sort of inverse for the correspondence of Lemma
2.4. This isn’t completely possible, since for any f E L1 [0, 1 ] with ~f~1 = 1

(5) 03C9(f, x) ~ x for all 0 ~ x ~ 1.

(To see this assume that f is a decreasing positive function; then were

but

hence f(x) &#x3E; 1, but then

a contradiction.) However, by restricting one’s self to the members
M of M with M(n) = 0(n) as n - oo, one can verify that the corres-
pondence defined below is inverse in the sense that for such M, putting
f = fM, then Mf and M have the same order of magnitude at infinity.
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PROPOSITION 2.6: Given Jl a probability measure and

for all n E N (where [x] denotes the greatest integer less than or equal to x).
Now let :F be a family of non-zero functions in L1(03BC) of norm at most one.
Then F is relatively weakly compact if and only if inf {Mf : f E F} E M,
while ff is a-relatively weakly compact if and only if there is a g E vit with
g = 0(Mf) for all f ~ F.
The proof is an easy consequence of Lemma 1.4 and shall be omitted.

We are now prepared for the second main result of this section.

THEOREM 2.7: Let Il be a probability measure on some measurable
space, and let Y be a closed non-separable linear subspace of L1(03BC).

a) There exists a sequence (yn) of elements of Y with ~yn~ = 1 for all
n and yn ~ 0 weakly.

b) Assuming Martin’s axiom together with the hypothesis that (01  c,

there exists a non-separable weakly compact set contained in Y. Moreover
if the density character of Y is less than c, then Y is WCG.

REMARK: Theorem 2.7. b) together with Theorem 2.1 shows that the
following question is undecideable: Given a closed non-separable linear
subspace Y of L1(03BC) for some probability measure ,u, does Y contain a
non-separable weakly compact subset?

PROOF OF 2.7: We may choose by Zorn’s Lemma a maximal subset S of
Y of elements of norm 1, so that if y :0 y’, y, y’ in S, then 11 y - y’ I 1 ~ -1
By standard reasoning, it follows that S must be uncountable; in fact
[S] = Y, for else there would exist a y* E Y* with y*(s) = 0 for all s E S
Assuming ~y*~ = 1, simply choose y E Y with ~y~ = 1 and y*(y) ~ 2 3;
then ~y-s~ ~ (y*(y-s)) ~ 3 for all s E S, thus S u {y} contradicts
the maximality of S. Now suppose first that A = {Ms : s ~ S} is un-

countable (where Ms is defined in Proposition 2.6). Then by Lemma 2.5
a), there exists an infinite sequence si, s2, ··· of elements of S with
inf {Msi : i = 1, 2, ···} E M. Hence by Proposition 2.6, s1, s2 ··· is a
relatively weakly compact subset of Y. Let {snj}~j=1 be a weakly conver-
gent subsequence. Since 2 3 ~ ~snj+1 - snj~ ~ 2 for all j, letting

we have that Yi - 0 weakly. Now assume the hypotheses of 2.7 b), and
let D be a subset of S with card {Md : d E D} = 0)1. By 2.5 b) there exists
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a subset E of D with card {Me : e E El = col and inf {Me : e E El e e4.
Hence by Proposition 2.6, E is a relatively-weakly-compact subset of Y.
But E is non-separable in the norm-topology, so also the weak-closure of
E is non-separable in the weak-topology.
Now if the density character of Y is less than the continuum, then also

card d  c, hence by 2.5 (6) and Propositions 1.2 and 2.6, since S is (1-
weakly-relatively-compact, Y is WCG. Finally, suppose A is countable.
Then since S is uncountable, there exists an uncountable subset D of S and
a function f so that Md = f for all d E D. Thus the weak-closure of D is a
non-separable weakly compact subset of Y. Also choosing sl , s2, ···
distinct elements of D, we have that inf {Msi : i = 1, 2 ···} = f ~ e4,
so as before, Y contains a sequence of elements of norm one, tending to
zero weakly. Q.E.D.

REMARKS: 

1) Theorem 2.7 naturally leads to the following questions: Let Y
be a non-separable closed linear subspace of a WCG Banach space. Does
Y contain a sequence tending to zero weakly but not in norm? Is it con-
sistent with the axioms of set theory, that every such Y contains a non-
separable weakly compact set? Of course the answer to both questions is
trivially yes, if Y is itself WCG.

2) Theorem 2.7 a may be phrased as follows: Let Y be a subspace of
L1(03BC) for some probability measure /1, and suppose that every sequence in
Y which tends to zero weakly, also tends to zero in norm. Then Y is isomor-
phic (in fact isometric) to a subspace of L1 [0, 1 ]. However there exists a
Y which satisfies these hypotheses, yet Y is not isomorphic to a subspace of
11. Indeed, for each n let Yn be the Banach space consisting of all sequen-
ces (ej) in 11 under the norm

and let Y = (03A3Yn)l1. Since l’ is isometric to a subspace of L1([0, 1 ]),
so is Y. On the other hand, if a space Z is isomorphic to a subspace of
11, there is a constant K so that given any sequence (bj) in Z equivalent to
the usual l’-basis, there is a subsequence (bji) so that [bji]mi=1 is K-iso-

morphic to lm for all m. (X and Y are K-isomorphic if there is a linear
bijection T between them with ~T~ ~T-1~ ~ K.) But for each n, if (bj)
is the natural basis for Yn, then (bj) is isometrically equivalent to all of
its subsequences and [bj]nj=1 is (1 + 1/~n)-isomorphic to 1;.
The final main result of this section, combined with Theorem 1.1,

shows that there exists a non-WCG Banach space with the unit ball of

its dual an Eberlein compact in the weak* topology. This answers a
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question of Lindenstrauss in the negative [12]. We recall that a compact
Hausdorff space is called an Eberlein compact if it is homeo morphic
to a weakly compact subset of some Banach space. We first require a cri-
terion for a compact Hausdorff space to be an Eberlein compact. The

proof of the criterion makes use of a simple result from the next section.

LEMMA 2.8: Let K be a compact Hausdorff space and let {f03B1}03B1~0393 be a
family of continuous functions on K, separating the points of K, with
~f03B1~ ~ 1 for all a. Suppose for each a there corresponds a decreasing
sequence (03B403B1j)~j=1 of positive numbers, tending to zero, so that for each
k ~ K and j, there are at most finitely many a’s in r with |f03B1(k)| ~ 03B403B1j.
Then K is an Eberlein compact.

PROOF: For each a, j, and j’ &#x3E; j, let ~03B1j,j’ : [-1, 1 ] ~ [-1, 1 ] be a
continuous function supported on {t : |t| ~ 03B403B1j’} with ~03B1j,j’(t) = t for
all t with |t| ~ 03B403B1j if 03B403B1j’  03B403B1j ~ 1; otherwise let ~03B1j,j’ = 0. Now for each
j and j’ &#x3E; j, let Lj,j’ = {~03B1j,j’  f03B1 : 03B1 ~ 0393}; then let L = ~j,j’ Lj,j’.
We have that L separates the points of K. Indeed let x ~ y in K; then
choose oc with f03B1(x) ~ fa(Y). Suppose f03B1(x) ~ 0; then we may choose a j
so that |f03B1(x)| ~ 03B403B1j so that also |f03B1(y)| ~ 03B403B1j if f03B1(y) ~ 0; with l5j  1.

Then choose j’ &#x3E; j with 03B403B1j’  l5j; we obtain that ~03B1j,j’(f03B1(x)) = f03B1(x)
and ~03B1j,j’(f03B1(y)) = f03B1(y).
Now fix j, j’ &#x3E; j, and k E K. We claim that there are at most finitely

many members l of Lj,j, with l(k) ~ 0. If not, we could choose 03B11, 03B12, ···
distinct with ~03B1ij,j’  f03B1i(k) ~ 0 for all i. By our definition of thé ~03B1j,j’’s
it follows that |f03B1i(k)| ~ 03B403B1ij’ for all i, contradicting the hypotheses of 2.8.
We thus have that Lj,j’ is a relatively weakly compact subset of C(K)

for all j, j’; hence L is a or-relatively weakly compact subset of C(K),
separating the points of K. It now follows from the proof of Proposition
1.2 that there is a weakly compact subset of C(K) separating the points of
K ; thus by (the simple) Proposition 3.3 of the next section, C(K) is
WCG; hence by a result of Amir and Lindenstrauss (proved in Corol-
lary 3.4 of the next section), K is an Eberlein compact. Q.E.D.

THEOREM 2.9: Let F, {g03B1 : a ~ 0393}, v, gafor a E T, and X be as defined
in Theorem 1.5. Then the unit ball of X*, in its weak* topology, is an Eber-
lein compact.

PROOF: We first observe that we may assume without less of generality
that each g03B1 is a symmetric measurable function (as defined directly pre-
ceding equation (3)). Indeed, for each a, let ha be defined on [0, 1 ] x
[0, 1] by h03B1(x, y) = ga(x)- ga(y); then its easily seen that the closed linear
span of {03B1 : a E 0393} in L1(03C1) is isomorphic to X, where p equals the pro-
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duct-Lebesgue measure on ([0, 1 ] x [0, 1])0393 (c.f. the proof of Corollary
4.3, page 166 of [14]). But then by standard results, we may choose fa
defined on [o, 1 ] so that ’or all real r, m{x : f«(x) &#x3E; r} = m  m {(x, y):
h03B1(x, y) &#x3E; r}, i.e. so that f03B1 and ha have the same distribution; then in fact
the closed linear span of the 03B1’s is isometric to the closed linear span of the
h«’s whence [03B1]03B1~0393 is isomorphic to X. Thus the unit ball of X* is weak*-
homeomorphic to a subset of a multiple of the unit ball of the dual of
[03B1]03B1~0393 ; hence once the latter is proved to be an Eberlein compact, so
is the unit ball of X*.

To complete the proof that S, the unit ball of X* in its weak*-topology,
is an Eberlein compact, it suffices to prove

for each positive integer j and ç e S, there are
(6) at most finitely many a’s in T with

|~(03B1)| ~ 2 03C9(g03B1, 1 /j ). (the modulus of absolute continuity,
(O(g aj .), is defined preceding Lemma 1.4).

Indeed, for each a E r, let f03B1(~) = ~(03B1) for all ç E S, and let £5j =
2 03C9(g03B1, 1 /j ) for all j = 1, 2, ···. Then the f«’s and 03B403B1j’s satisfy the hypoth-
eses of Lemma 2.8, hence (6) implies that S is an Eberlein compact.
Now fix j and ç E S, and suppose to the contrary that

for an infinite sequence a 1, 03B12, ··· of members of 0393.

Let

Now if 03BB = 0, then by Lemma 1.4 and the fact that the gan’s are an un-
conditional basic sequence, 03B1n ~ 0 weakly. But then ~(03B1n) ~ 0, yet
by (5) and (7), |~(03B1n)| ~ 2(O(gan’ 1/j) ~ 2/j for all n, a contradiction.
Now suppose 03BB &#x3E; 0. Then we may choose an infinite subsequence (ga-n)
of the gan’s and a sequence (En) of measurable subsets of [0, 1 ] with m(En)
~ 0, so that

and so that for each n, letting u. = g03B1’n ~En, un is a symmetric measurable
function (this last statement is possible by the fact that the ga’s are symme-
tric.) Now putting g03B1’n = un + vn for all n, we have by the definition ouf À
that
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hence {vn}~n=1 is relatively weakly compact by Lemma 1.4 and also

for all n. Hence letting û.(x) = u.(x(ot’» and vn(x) = vn(x(an)) for all n,
we have that 03B1’n = un + vn for all n and n ~ 0 weakly; moreover by (8),
limn~~~n~ = 03BB. Hence

But by (7) and the fact that m(En) ~ 0, we have that for all n suffi-
ciently large, |~(03B1’n)| ~ 2 03C9(g03B1’n, 1/j) ~ 2 03C9(g’03B1n, m(En)) and by (8),
limn~~ 203C9(g03B1’n, m(En)) = 2À, contradicting (9).

REMARK: The use of the modulus of absolute continuity in isomorphism
problems concerning subspaces of L1, may be found in the work of
Kadec and Pelczynski (see [10]).

3. A topological characterization of weakly compact subsets
of Banach spaces

We recall our terminology; a topological space is called an Eberlein
compact if it is homeomorphic to a weakly compact subset of some Ba-
nach space. We regard the following question as the main unsolved pro-
blem in the theory of Eberlein compacts: Is every Hausdorff continuous
image of an Eberlein compact, also an Eberlein compact? (This question
has been raised before as problem 5 of [12].) We feel that our main
result of this section should be useful in answering this question; further
remarks are given at the end of Section 3.
The main theorem of this section is as follows:

THEOREM 3.1: A compact Hausdorff space K is an Eberlein compact if
and only if K admits a denumerable sequence ie,, cg2, ... of families of
open Fa’ s, so that for all k E K, if k’ E K and k’ :0 k, then there exists
an n and a G E !en with X,,(k) :0 XG(k’); and so that for all m, there
are at most finitely many G’s in cgm with k E G.

It is convenient to introduce some terminology, most of which is

standard. Let a set S and a family F of subsets of S be given. Say that
F separates the points of S if given s ~ s’ in S, then for some F e W,
~F(s) ~ XF(S’); i.e. SE F and s’ ft F or s’ E F and s ft F; (similarly, a family
G of real-valued functions on S separates the points of S if given s ~ s’
in S, then g(s) ~ g(s’) for some g in G); 57 strongly separates the points
of S if given s ~ s’ in S, then for some F E F , XF(S) = 1 and XF(S’) = 0;
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i.e. s E F and s’ ~ F; F is point-finite if each point of S belongs to at most
finitely many members of F ; F is u-point-finite if there exists a denumer-
able sequence F1, F2, ··· with F = ~~n=1Fn and /Fn point-finite for
all n; F is point-countable if each point of S belongs to at most countably
many members of F. (It’s evident that a u-point-finite family is point-
countable.) Finally, we recall that an Fa -set in a topological space, is one
which equals a denumerable union of closed sets.

Theorem 3.1 may thus be rephrased: a compact Hausdorff space K
is an Eberlein compact if and only if K admits a point-separating o- point-
finite family of open Fa’s. We note before proceeding that the insertion
of the word ’strongly’ before ’point-separating’ constitutes the precise
dividing line between compact metric spaces and the general class of
Eberlein compacts. That is, a compact Hausdorff space K is metrizable
if and only if K admits a strongly-point-separating 03C3-point-finite family
of open Fa’s. Indeed, if .K is metrizable then K has a countable base con-
sisting of open F03C3’s; from which K immediately has the above properties.
Now suppose 9 is a strongly-point-separating o’-piitt-inite family of
open subsets of K. Then there is a point-countable famely F of open
subsets of K with the property that given x, y in K with x ~ y, there is
an F in F with x e F and y ~ F (for each G in G, choose Gi open with
Gi c Gi for all i and G = ~~i=1 Gi; then let àF = {Gn : G E G, n
= 1, 2, ...}). Now F*, the class of all finite intersections of elements
of F , is also point-countable. A standard compactness argument yields
that F* is a base for the topology of K. But it is known that a com-
pact Hausdorff space with a point-countable base, is metrizable. (See
Corollary 2.3 of [3]; we are grateful to E. Michael for this reference.)
We shall discuss further variations of the hypotheses of 3.1 later. We

now proceed to its proof, which is actually a fairly simple consequence
of known results. For the sake of completeness, we wish to sketch the
proofs of all but the most difficult of these known results; it will then be
evident that the complete proof of the ’only if’ part of 3.1 lies deeper
the proof of the ’if’ part. (The knowledgeable reader may wish to read
Proposition 3.3 and then pass to the proof of 3.1 given after Lem-
ma 3.5.).
We introduce one last notation: Throughout this section, ‘K’ shall

stand for a compact Hausdorff space.

LEMMA 3.2. (Grothendieck [7 ]) : A bounded subset L of C(K) is weakly
compact if and only if L is compact in the topology of point-wise convergen-
ce on K.

Suppose first that L is weakly compact. Since the weak-topology on
C(K) is stronger than the topology of point wise convergence, it follows
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immediately that L is compact in the topology of point-wise convergence.
Now suppose that L is compact in the topology of point-wise con-

vergence, and let (fn) be a sequence of elements in L. We then claim that
there is a denumerable subset D of K so that if g and g’ are elements of
C(K), each in the point-wise closure of {fn : n = 1, 2, ···} with g(d) =
g’(d) for all d in D, then g = g’. To see this, define an equivalence re-
lation on K by k - k’ if and only if fn(k) = f (k’) for all n. Let S be the
set of equivalence classes and ~ : K - S the natural quotient map; then
topologize S by: U is open in S if and only if ~-1(U) is open. It then
follows that S is compact metrizable and moreover if g E C(K) is such
that g(k) = g(k’) whenever k - k’, then the function g defined on S by
(~(k)) = g(k), is in C(S). Thus s is separable, so we may choose a de-
numerable subset D of K with 9 (D) dense in C(S). Now suppose g and g’
are each in the point-wise closure of {fn : n = 1, 2, ···}. It then follows
that if k - k’, then g(k) = g(k’) and g’(k) = g’(k’). But then if g and
g’ are in C(K) and agree on D, g agrees with g’ on a dense subset of S,
hence g = 0’ on all of S, which implies that g = g’.
By a standard diagonal procedure, we may choose a subsequence (f’j)

of ( fn) so that ( fi) converges point-wise on the set D. Let g E L be a clus-
ter-point of the sequence ( fi) in the topology of point-wise convergence,
and let g’ also be a cluster-point. Then g’(d) = g(d ) for all d E D, hence
g’ = g. But a sequence in a compact Hausdorff space with exactly one
cluster point, converges to it. Hencefil converges point-wise to g. Since L
is assumed to be bounded, we have that

for all signed regular Borel measures Il on K, by the bounded convergence
theorem; hence f’j ~ g weakly by the Riesz representation theorem.

Q.E.D.

Although our next proposition may be new, its proof is a very simple
consequence of classical results.

PROPOSITION 3.3: C(.K) is WCG if (and only if ) there is a weakly com-
pact subset L of C(K), separating the points of K.

PROOF: The ’only if’ assertion is trivial, since any subset of C(K) with
linear span dense in C(K), must separate the points of K. Now given U
and Y subsets of C(K), let U · V = {u · v : u E U and v E V}. If U and V
are weakly-compact, so is U. V. Indeed, given (un · vn) a sequence of
elements in U · V with un in U and vn in V, we may choose a subsequence
ni  n2 ··· of the positive integers and u and v in U and V respectively, with
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Uni - u and vni - v point-wise. Then Uni. Vni - uv point-wise; since

U. V is obviously bounded, Uni. vni - uv weakly by the bounded-con-
vergence and Riesz-representation theorems. (A ’quicker’ argument,
using 3.2, is simply that U. Tl is bounded and compact in the topology
of point-wise convergence.)
We now suppose that L has the desired properties. We may assume

without loss of generality that ~l~ ~ 1 for all l E L, and also that 1,
the ’identically-one’ function, belongs to L. Define L" inductively by
Li = L and Ln+1 = Ln . L. Then we have that Ln is weakly compact for
all n; hence so is the set

But the linear span of W is a subalgebra of C(K), separating the points
of K and containing the constant functions. Hence W generates C(K) by
the Stone-Weierstrauss theorem. Q.E.D.

We only need the a) part of the following assertion; the b) part is given
for the sake of completeness.

COROLLARY 3.4:

a) (Lindenstrauss and Amir [1 ]) : K is an Eberlein compact if and only
if C(K) is WCG.

b) (Lindenstrauss [12]): a Banach space X is WCG if and only if the
unit ball S* of X* in its weak*-topology is affinely homeomorphic to a
weakly compact subset of some Banach space.

PROOF: Suppose first that L is a weakly compact subset of the Banach
space X, and consider the map T : X* ~ C(L) defined by (Tx*)(l) =
x*(l) for all l E L . Then T(S*) is a bounded subset of C(L ), compact in
the topology of point-wise convergence. Indeed, suppose that f is a func-
tion on L, in the point-wise closure of T(S*). Let {s*03B1}03B1~D be a net in
S* with T(s*03B1) ~ f pointwise on L, and let s* be a weak* cluster point of
this net. Then we obtain easily that Ts* = f. Hence by the Grothendieck
Lemma 3.2, T(S*) is weakly compact. If L generates X, then T is 1-1;
moreover T|S* is continuous from the weak*-topology of S* to T(S*)
endowed with its weak-topology. (Indeed, the topology of point-wise
convergence on T(S*) coincides with the weak topology.) Hence then
S* is affinely homeomorphic to T(S*).

In any case, T(S*) separates the points of L by the Hahn-Banach
theorem, so C(L) is WCG by Proposition 3.3. We have thus proved
that if K is an Eberlein compact, then C(K) is WCG. But if C(K) is WCG,
we also obtain that S*, the unit ball of C(K)* in its weak* topology, is an
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Eberlein compact; hence K being homeomorphic to a subset of S* is also
an Eberlein compact.

For the ’if’ assertion of b), we observe that the hypotheses imply that
there is a Banach space Y, a weakly compact subset L of Y generating Y,
and a one-one linear map T : X* - Y so that T(S*) = L and T is con-
tinuous from the ao-topology on S* to the weak topology on Y. It follows
that T is a weakly compact map, hence so is T* : Y* ~ X** ; we also
obtain that if S denotes the unit ball of Y*, then T*(S) is a weakly com-
pact subset of X**; the fact that T is one-one implies that T*(S) is total
with respect to X*. We also have that for each y* E Y*, if {x*03B1}03B1~D
is a uniformly bounded net in X* with x§t - 0, 03C9*, then Tx*03B1 ~ 0 weakly,
and hence for y* E Y*; y*(Tx*03B1) = (T*y*)(xt) - 0. Thus by the Krein-
Smulian theorem T*(S) c X(where we regard X as canonically im-
bedded in X**). Thus T*(S) is a weakly compact subset of X, generating
X by the Hahn-Banach theorem and the fact that T*(S) is total with
respect to X*. Q,E.D.

REMARK: The last result of the preceding section shows that there
is a non-WCG Banach space X so that the unit ball of the dual of X* is an

Eberlein compact; thus the word ’affinely’ cannot be deleted in the ’if’
part of 3.4 b).

LEMMA 3.5 (Lindenstrauss, pages 249-260 of [12]): A WCG Banach
space is generated by a subset which is homeomorphic, in its weak topology,
to the one-point compactification of a discrete set.

This result strikes me as being the most diflicult of everything stated
so far in this section; the proof given in [12] uses all the machinery given
in [1]. It is not difficult to see that it is equivalent to the assertion that
every weakly compact convex set in a Banach space is affinely homeo-
morphic to a weakly compact subset of c0(0393) for some discrete set F. By
the recent factorization theorem for weakly compact operators (see [4]),
every weakly compact convex set in a Banach space is aflinely homeo-
morphic to a weakly compact subset of a reflexive Banach space; the
fact that every such may be imbedded in an appropriate c0(0393)-space may
then be deduced from the earlier work of Lindenstrauss given in [11],
which is somewhat simpler than the arguments of [1 ].

PROOF OF THEOREM 3.1: Suppose first that 91, G2, ··· are families of
open F03C3’s satisfying the conditions at the end of the statement of 3.1. Fix
n and for each a E Gn, let fn03B1 be a continuous function on K with 0 ~ fi
~ 1 and a = {x : fn03B1(x) ~ 01. Now let L n = {0} ~ {fn03B1 : a E Gn}. Then Ln
is weakly-compact; in fact L n is homeomorphic in the weak topology, to
the one-point compactification of a discrete set. Indeed, let al , 03B12, ··· be an



106

infinite sequence of distinct elements of Cff n (if such exists, of course).
Then for each k ~ K, k belongs to at most finitely many aj’s, hence
limj~~fn03B1j(k) = 0; thus fn03B1j ~ 0 weakly as j ~ oo. Now let

Then L is also a weakly compact set (in fact again weakly homeomorphic
to the one-point compactification of a discrete set) and L separates the
points of K. For given k ~ k’, there is an n and an a E tgn with ~03B1(k) ~
X,,,(k’). Thus e.g. if ~03B1(k) = 1, f:(k) i= 0 but fn(k’) = 0, so fn(k) e
fn(k’), hence also

Thus by Proposition 3.3, C(K) is WCG, so by Corollary 3.4, K is an Eber-
lein compact.
Now suppose that K is an Eberlein compact, hence C(K) is WCG by

Corollary 3.4. By Lemma 3.5, there exists a family {f03B1}03B1~0393 of continuous
functions on K, with linear span dense in C(K), so that {f03B1}03B1~0393 ~ {0} is
weakly homeomorphic to the one-point compactification of the discrete
set F, with 0 the compactification point. (It follows from the proof on
page 250 of [ 12 that the set generating X in the statement of 3.5, may be
chosen with 0 as its compactification point; a simple translation argument
also allows this deduction directly from the statement of 3.5.) We may
and shall assume that 0  ~f03B1~~ ~ 1 for all a; the properties of the fa’s
of interest are that they separate the points of K, and for any infinite se-
quence 03B11, 03B12, ··· of distinct 03B1’s, f03B1i ~ 0 pointwise on K.
Now fix n and let Gn be the family of all sets

where 3 ~ j ~ n+1 or -n+1 ~ j ~ -1 and 03B1 ~ 0393. Then we have

Since each Un03B1,j is an open Fa, it suffices to prove that each family Gn is
point finite, and ~~n=1 Gn séparâtes the points of K. First fix n and suppose
to the contrary that for some k E K, k belonged to infinitely many mem-
bers of cg n. Since for each a, there are only finitely many sets of the form
Un03B1,j, we must have that for some j and for an infinite sequence of
distinct a’s, Ctl,a2,..., k ~ ~i Un03B1i,j. Thus by (10), |f03B1i(k)| &#x3E; 1/n for all
i, contradicting the fact that f03B1i ~ 0 point-wise.
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Finally, suppose x ~ y, x, y in K. Then there is an a with f03B1(x) ~ fa(y).
We may assume without loss of generality that fa(x)  ,fa(y). Now sup-
pose fa(y) &#x3E; 0. Then we may choose a positive integer n so thatfa(Y) &#x3E;

Ilnandfa(y)-fa(x) &#x3E; 21n. Then for some j with 3 ~ j ~ n+1, y ~ U,,,",j
and x ~ Un03B1,j; the case fa(x)  0 is handled in an entirely analogous fashion.
Thus 9. separates the points of K, and the proof of Theorem 3.1
is complete. Q.E.D.

We close with several remarks and questions.
1) Suppose that G1, G2, ··· satisfy the properties of the last part of

the statement of 3.1. For each a E gj, choose al’ 03B12, ··· so that for

all i, ai is an open F. with oei c oei+ i and a = ~~i=1 ai; (if K is totally dis-
connected, we can also choose ai to be closed and open for all i). It is
then easily seen that H = {03B1i : a e tgj for some j and i = 1, 2, ···} is
also a o-point finite family of sets. We have the further property that
given x ~ y in K, then for some H E:Ye, XE H and y E ~ H or y E H
and x E N H. It follows that H ~ {~H : H ~ H} is a subbase for the
topology of K. We have also arrived at the following result : If K is totally
disconnected, then K is an Eberlein compact if and only if there exists a
point-separating family of closed and open subsets of K, which is a-point-
finite. If K is totally disconnected, we thus have a characterization of
whether or not K is an Eberlein-compact, in purely algebraic terms of the
Boolean algebra of closed and open subsets of K.

2) There are a number of properties of Eberlein compacts for

which the only proofs presently available, are analytic. It would be

desirable to have purely topological proofs of these properties, based on
the properties given in Theorem 3.1. For example, it is known that if K
is an Eberlein compact, then the closure of any subset of K equals its
sequential closure, and also any separable subset of K has metrizeable
closure. (Incidentally, both of these properties are obviously preserved
under continuous images.) It is also known (see [12]) that K has a dense
subset of G,-points; (a G.-subset of a topological space is by definition a
denumerable intersection of open sets).

3) There are a number of possible ways of weakening the topological
conditions of Theorem 3.1. We pose a number of questions concerning
these. Throughout this remark, F denotes a point-separating family
of open subsets of K.

Is K an Eberlein compact if any of the following are true?
A) 57 is point-countable and consists of Fa’s.
B) e7 is a-point-finite.
C) F is a-point-finite and F ~ {~F : F ~ F} is strongly point-

separating.
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Theorem 3.1 and the preceding remark show that an Eberlein compact
admits a family F satisfying both conditions A and C. It has recently been
proved by M. E. Rudin that it is consistent with set theory that the answer
to A is negative. Precisely, she has proved (unpublished as of this writing)
that it is consistent that there exists a non-metrizeable K with a family
F satisfying A, such that has no uncountable family of disjoint open
sets. However, any non-metrizeable Eberlein compact has an uncountable
family of disjoint open sets, by Corollary 4.6, page 230 of [14].
We wish also to point out that if K is a continuous image of an Eber-

lein compact and C(K) admits an isometrically norming Markusevic
basis, then admits a family satisfying A. Indeed, X = C(K) isometri-
cally imbeds as a closed linear subspace of a WCG Banach space Y.
Let {x03B1, f03B1) : ce E FI be an isometrically norming M-basis for X; that is,
for all 03B1, 03B2 ~ 0393, fa E x*, xa E x, fa(xp) = 03B403B1,03B2, the linear span of the

x,,,’s is dense in X, and Z, the linear-span of the fa’s, is isometrically
norming over X; i.e. for all x G X, ~x~ = sup |g(x)|, the supremum taken
over all g in Z of norm one. It follows that if S denotes the unit ball of
X* in its cv* topology then S n Z is dense in S, by the Hahn-Banach
theorem. Thus since S is a continuous image of an Eberlein compact,
namely the unit ball of Y* in its weak* topology, S n Z is sequentially
dense in S. Now for each g in Z, g(xa) =1= 0 for at most finitely many
a’s; it then follows that for each s in S, s(xa) =1= 0 for at most countably
many a’s. If we now define ha on S by ha(s) = s(xa) for all 2, we have,
since the linear span of the xa’s is dense in X, that {h03B1 : a ~ 0393} is a point-
separating family of continuous functions on S so that for each s in S,
s belongs to the non-zero points of at most countably many ha’s. An ar-
gument somewhat simpler than the one for the proof of Lemma 2.8
yields a point-countable point-separating family F of open F03C3-subsets
for S. It then follows that any closed subset of S also admits such a fa-

mily, and K is homeomorphic to a subset of S. It is apparently unknown
if every WCG space or every subspace there-of, admits a norming M-
basis ; the work of John and Zizler [8 ] seems relevant to this question.

4) There are further variations possible on the topological conditi-
tions. The following example is instructive in this connection. Let K

denote the space of all ordinals less than or equal to col, in the order
topology. Then is not an Eberlein compact, since K - {03C91} is se-

quentially closed but not closed. Now {[03B1, 03C91) : a  03C91} is a point-
countable point-separating family of open subsets of K.
One can also consider strengthening the conditions. As mentioned

at the beginning of this section, demanding that the family be strongly
point-separating is equivalent to K being metrizeable.
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QUESTION: What are the compact Hausdorff spaces K so that K admits
a point-separating family F of open Fa-subsets, such that F is point-
finite ?
We note that if K admits such a family F, then K must be dispersed,

i.e. K has no non-empty perfect subsets.
Indeed, since admitting such a family is a hereditary property, we

may suppose to the contrary that K has such a family and is itself per-
fect (non-empty of course). Now for each non-empty F E F , choose a
sequence Fl , F2, ··· of compact subsets of F with F = ~~j=1 Fj and FFj
non-empty for all j, where FFj denotes the interior of the set Fj. Let
j1 = 1 and F1 be a non-empty member of F . Suppose F1, ···, Fk distinct
members of F and j1, ···, jk have been chosen with U = ~ki=1 f(Fi)ji
non-empty. Since K is perfect, we may choose x and y in U with x ~ y.
We may choose F" 1 with ~Fk+1(x) ~ ~Fk+1(y). Then Fk+1 ~ Fi for any
1 ~ i ~ k, since XFi(x) = 1 = XFi(y) for all such i. Now suppose that

x ~ Fk+1; then choose À+ 1 so that x ~ (Fk+1)j+1. We then have that
~k+1i=1 W(Fi)ji is non-empty. Finally, since then ~ki=1(Fi)ji is non-empty
for all k, so is ~~i=1(Fi)ji; this contradicts the point-finiteness of the
family. We note also that the one-point compactification of any discrete
set does admit such a family.

5) We wish to mention a purely topological question concerning Eber-
lein compacts themselves. If K is an Eberlein compact and every compact
metrizeable subset of K is a G., is K itself metrizeable ? There are examples
given in [12] of non-metrizeable Eberlein compacts in which every point
is a G.-point. These examples seem to admit non-Ga separable closed sub-
sets. In this connection, we wish to point out that if K is a non-metrizeable
Eberlein compact and every element of K is a G.-point, then K has an
infinite perfect subset. To see this, by Corollary 4.6 of [14] we may choose
an uncountable family {U03B1 : oc  03C91} of non-empty disjoint open sub-
sets of K (which, without loss of generality, we have indexed by the first
uncountable ordinal (01). Choose la E Ua, let L = {l03B1 : a E 03C91}, and let
D = ~03B203C91 {l03B1 : 03B2 ~ 03B1}. D is non-empty by compactness; we shall refer
to its elements as co-countable cluster points. Now if U is an open set
containing D, then for some 03B2  col, U c {l03B1 : 03B2 ~ 03B1}. Since no la E D,
it follows that D cannot be a G,6-set. Now if x is an isolated point of D,
we can choose an open neighborhood U of x with D - {x} n U = 0. It
still must be the case that for all fi  col, there is a fi  a  (01 with la E U.
Hence ~03B203C91 {l03B1 : la E U and fi ~ 03B1} is also non-empty; but then this
set equals {x}, hence {x} is itself the set of co-countable cluster points of
U n {l03B1 : 03B1~03C91}, so {x} cannot be a G,-set.

6) A Banach space B is isometric (resp. isomorphic) to the dual of a
WCG Banach space if and only if the unit ball of B (resp. some convex
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body in B) is affinely equivalent to a weakly subset o.f’some Banach space.
(By a convex body, we mean a closed convex bounded set with non-void
interior; subsets K and L of two real linear spaces are called affznely
equivalent if there is a bijection T : K - L so that for all x, y in K and
0 ~ 03BB ~ 1, T(03BBx+(1-03BB)y) = 03BBTx+(1-03BB)Ty.) We thus obtain for the
space XR that although the unit ball of X: is homeomorphic to an Eber-
lein compact, neither it nor any convex body in X§§ is affinely equivalent
to a weakly compact subset of a Banach space. To see the assertion men-
tioned at the beginning of this remark, it suffices to consider only the
isometric case, to which the isomorphic one easily reduces. The ’only if’
part follows from 3.4 b). If B satisfies the hypotheses of the ’if’ part,
then there is a Banach space Y, a weakly compact subset K of Y, and an
operator T : B ~ Y so that K equals T(S), where S denotes the unit ball
of B. Now it follows by standard reasoning (e.g. that of the proof of the
’Goldstine theorem’, p. 424 of [5 ]) that B is isometric to the dual of T* Y’a
via the canonical map 7r : B ~ (T*Y*)* defined by (7rb)(T*y*) = y* (Tb)
for all b E B and y* E Y*. But then T|S is an affine homeomorphism be-
tween S and K where S is endowed with the ’weak* topology’ induced by
T* Y*. Hence the ’if part’ also follows from 3.4 b). (This also yields that
if K is a weakly compact symmetric subset of some Banach space and
Y is the Banach space with K as its unit ball, then Y is isometric to the
dual of a WCG Banach space).
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