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Introduction

By an algebraic variety we shall mean an irreducible reduced proper
algebraic C scheme. By a fibre space f : V ~ W of an algebraic variety
V over an algebraic variety W, we mean that the morphism f is surjective
and every fibre of the morphism f is connected. A fibre Vw = f-1(w),
w E W is called a general fibre if there exists a union S of at most countably
many nowhere dense algebraic subsets of W such that w E W - S. The
nowhere dense subsets of W depend on a situation that we consider.
Note that if V and W are both smooth, there exists an algebraic subset
T of W such that a fibre Yw = f-1(w) is smooth for any w E W - T.

In his paper [13], litaka introduced the notion of Kodaira dimension
03BA(V) of an algebraic variety V. (See also Definition 1.4 below.) He studied
the pluri-canonical maps of a smooth algebraic variety V and showed
that if the Kodaira dimension 03BA(V) of V is positive, then a certain bira-
tionally equivalent model V* of V has a structure of a fibre space (unique
up to birational equivalence) over an algebraic variety W such that dim
W = K(W) and general fibres of the fibre space have the Kodaira di-

1 This was presented as a doctorial thesis to the Faculty of Science, University of
Tokyo.

2 Partially supported by the Sakkokai Foundation. During the final phases of the
preparation of the paper, the author was supported by the Sonderforschungsbereich
Theoretische Mathematik, Mathematisches Institut der Universitât Bonn.
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mensions zero. (See also Theorem 1.14 below.) Hence the study of the
birational classification of algebraic varieties is reduced to

(1) studies of algebraic varieties V such that 03BA(V) = dim V, K(V) = 0
or 03BA(V) = -~;

(2) studies of fibre spaces whose general fibres are of Kodaira dimen-
sion zero.

In this paper we are mainly interested in algebraic varieties of Kodaira
dimension zero. For such a variety V we cannot introduce a structure of
a fibre space by the pluri-canonical maps. But if the irregularity q(V) =
dimc H°(V, 03A91v) is positive, we can introduce a structure of a fibre space
associated to the Albanese map a : V ~ Alb (V). (See Remark 2.12.)
One of the main purposes of the present paper is to study this fibre space.

Let us recall a conjecture and problems raised by Iitaka in [14].
Conjecture In . Let V be an n-dimensional algebraic variety. If K(V) = 0,

then we have q(V) ~ n.
Problem. If 03BA(V) = 0 and q(V) = dim V, is the Albanese map of V

birational?
Problem. If 03BA(V) = 0 and q(V) = dim V-1, does there exist a finite

unramified covering V of V such that q(V) = dim V?
These conjecture and problems are true for algebraic surfaces and for

all known examples.
Here we will propose a much stronger but more geometrical conjecture.
Conjecture Kn . Let V be an n-dimensional smooth algebraic variety. If

K(V) = 0, then the Albanese map a : V ~ Alb(V) is surjective and all
fibres of a are connected. Moreover the fibre space a : V - Alb (V) is
birationally equivalent to an analytic fibre bundel over Alb (V) whose
fibre is an algebraic variety of Kodaira dimension zero.

If K. is true, the above Conjecture In and problems are true. By the
classification of algebraic surfaces, K2 is true. (See Example 1.12 (4)
below. For the structure of hyperelliptic surfaces see Suwa [33].) More-
over Matsushima [24] showed that if V is a smooth projective variety
and there exists an integer m such that the m times tensor product of the
canonical bundle K~mV is analytically trivial (more generally the first

Chern class c1(V) of V vanishes), the Albanese map a : V ~ Alb (V)
has the above mentioned structure of a fibre bundle. (See also Calabi [2].)
Hence there arises the problem that whether an algebraic variety V of

Kodaira dimension zero has a smooth projective model V* such that
K~mV* is trivial for an integer m. When V is a surface this is true as a cor-
ollary of the classification theory. But in higher dimensional case this
is not true in general. (See Corollary 8.4 and Corollary 8.6 below. In both
cases varieties are simply connected. Products of these varieties and abe-
lian varieties give examples of positive irregularities.) On the other hand
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in Section 7 we shall show that even if the canonical bundle and any mul-

tiple of the canonical bundle are not trivial, for Kummer manifolds (see
Definition 7.1) Kn is true.

Because of this new phenomenon about the canonical bundles of
higher dimensional varieties, it is important to analyze the Albanese
maps. In Section 3 we shall show the following.

’For any smooth algebraic variety V, the Albanese map a : V ~ Alb (V)
is surjective if and only if

Otherwise we have 03BA(03B1(V)) &#x3E; 0. Moreover if 03BA(V) ~ 0, the Kodaira

dimension of any irreducible component of general fzbres of the morphism
a is non-negative.’
Thus we arrive at the new conjecture, which is also due to Iitaka [14].

(He raised the conjecture in the quite different context.)
Conjecture Cn . Let f : V - W be a fibre space of an n-dimensional

algebraic variety V. Then we have

where Yw = f-1(w), w E W is a general fzbre off
It is easily shown that Conjecture Cn implies Conjecture In . Moreover

if 03BA(V) = 0, Cn implies that the Albanese map a : V - Alb (V) of Y is
surjective. C2 is true in view of the classification theory of algebraic sur-
faces. (See Appendix to Section 1.)

It is one of the most important problems of the classification of al-
gebraic varieties to prove Cn or to give good sufficient conditions that Cn
holds. We already have the affirmative answer to Cn in the case that a
fibre space f : V - W has a structure of an analytic fibre bundle. (Naka-
mura-Ueno [26].) In the present paper we shall show that C3 is true for
a certain kind of elliptic threefolds. (See Corollary 6.3.) More general
elliptic threefolds will be treated in the forthcoming paper [36].
To solve Conjecture Cn more detailed studies of fibre spaces whose

general fibres have non-negative Kodaira dimensions are needed. We are
studying such fibre spaces in the case that general fibres are principally
polarized abelian surfaces and show that C3 is true in this case. [34], [36].
On the other hand when general fibres have positive Kodaira dimen-

sions, even if Y is a surface, such a fibre space was not studied for a long
time. Recently Namikawa and Ueno began the studies of fibre spaces
of curves of genus two. [28], [29].
We will give one more remark about Conjecture Cn . Using again the

Albanese maps, it is easily shown that if K(V) = - oo, Cn implies that
any irreducible component of general fibres of the Albanese map a : V
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~ Alb (V) has the Kodaira dimension - oo. In Section 7 we shall show
that if V is a generalized Kummer manifold, 03BA(V) = -~ and q(V) =
dim V-1, then any general fibre of the Albanese map of V is P1. (See
Theorem 7.17.) Hence this supports Conjecture Cn .
Now we shall give the outline of the present paper.
In Section 1 we shall give the definition of Kodaira dimensions and

certain birational invariants of algebraic varieties. Then we shall give some
basic properties of these birational invariants.

In Section 2 we shall collect basic facts about Albanese maps which we
shall use later.

In Section 3 we shall study a subvariety of an abelian variety, using
the birational invariant introduced in Section 1. The study of subvarieties
gives certain informations about Albanese maps, which we already men-
tioned above. Moreover we shall show that under a finite unramified

covering, every subvariety becomes a product of an abelian subvariety
and a variety W such that 03BA(W) = dim W. (See Theorem 3.10.)

Section 4 and Section 5 are devoted to construct certain elliptic three-
folds, which play the important roles in the theory of elliptic threefolds.
Using the explicit construction, in Section 6 we shall prove the canonical
bundle formula for such elliptic threefolds. This formula implies that C3 is
valid in this case. The formula is a generalization of the formula for ellip-
tic surfaces due to Kodaira [19]. The present proof is quite different from
Kodaira’s proof. We need a lot of computations but one merit of our
proof is that we can generalize the arguments not only for higher di-
mensional elliptic fibre spaces but also for fibre spaces of polarized abe-
lian varieties, which will be treated in the forthcoming paper [36]. The
arguments in Section 4-Section 6 are also used to prove the above men-
tioned Theorem 7.1. Moreover contrary to the case of elliptic surfaces,
pluri-canonical systems of elliptic threefolds may have fixed components.

In Section 7 we shall study generalized Kummer manifolds. We shall
show that Conjecture Kn is true for such varieties. Also we shall give a
structure of a generalized Kummer manifold V such that 03BA(V) = -~
and q(V) = dim v-1.

In Section 8 we shall give a few examples of Kummer manifolds of
Kodaira dimension zero. We remark here that the algebraic variety N(3) &#x3E;

in Example 8.10 has the following properties.
(a) The canonical bundle is trivial.

(b) H1(N(3), e) = 0.
(c) N(3) is simply connected.
This shows another new phenomenon in higher dimensional case. In

the case of surfaces if the canonical bundle of a surface is trivial, such a
surface has a lot of deformations.
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Notations

a(M) = tr. degc C(M); the algebraic dimension of a compact
complex manifold M.

a : V - Alb ( ); the Albanese map of a smooth algebraic
variety V. (Section 2)

p : B - W; a basic elliptic threefold. (Section 4)
fi. :  ~ W ; a non-singular model of a basic

elliptic threefold p : B - W. (Section 5)
03BC~ : B~ ~ W; the elliptic threefold associated to an

element ~ ~ H1adm(W0, O(B#0)). (Section
5, 5.10)

C(M); the field consisting of all meromorphic
functions on a compact complex man-
ifold M.

[D]; the line bundle associated to a Cartier
divisor D.

em = exp (2nilm)
gk(V) dimc HO(V, 03A9kV)
gmk(V) = dimc HO(V, Sm(03A9kV))
KV = K(V) ; the canonical line bundle (a canonical

divisor) of V.
mKv means Klm if KV is the canonical line bundle of V.
Pg(V) = dime HO(V, O(KV)).; the geometric genus.
Pm(V) = dimc H0(V, O(mKV)); the m-genus, m ~ 1.

q(V) = dimc H0(V, 03A91V); the irregularity.
Sm(F); the m-th symmetric tensor product of

a locally free sheaf Y7.
K(V); the Kodaira dimension of an algebraic

variety (a compact complex space) V.

(Definition 1.4 and Definition 1.7.)
03A9kV; the sheaf of germs of holomorphic k

forms on V.

e; the sheaf of germs of holomorphic
vector fields on a complex manifold.

1. Kodaira dimensions and certain birational invariants

In what follows by an algebraic variety we shall mean an irreducible
reduced proper algebraic C scheme. In view of GAGA we shall consider
an algebraic variety to be a compact complex space. Moreover in what
follows any complex space is always assumed to be reduced and irreduc-
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ible. By a fibre space f : V - W, we shall mean that V and W are alge-
braic varieties (or compact complex spaces) and f is surjective and has
connected fibres.

In this section we shall define the Kodaira dimension K(V), the irreg-
ularity q(V) and certain birational (or bimeromorphic) invariants

gk (V) of an algebraic variety (or a compact complex space) V. Then
we shall study fundamental properties of these birational (bimeromor-
phic) invariants.
Let V be a smooth algebraic variety (a compact complex manifold)

of complex dimension n and let Kv and 03A9kV be the canonical line bundle
of V and the sheaf of germs of holomorphic k forms on V, respectively.
For any positive integer m, we set

where Sm(03A9kV) is the m-th symmetric product of the locally free sheaf
03A9kV. When k = dim V = n, we use the notation Pm(V) instead of gmn(V) and
call it the m-genus of V. Moreover we use the notation Pg(V) instead of
P1(V) and call it the geometric genus of V. Hence we write

We use the notation q(V) instead of g11(V) and call it the irregularity of
V. Moreover we use the notation gk(V) instead of gl(V).
Let ? be a coordinate neighborhood of a point x ~ V and let (zl ,

z2,···,zn) be local coordinates of B with center x. Let h , I2, ’ ’ ’, IS,
s = (nk) be all subsets of {1, 2, ’ ’ ’, nl, consisting of k elements. We set

where I = {i1, i2,···, ik}. Any element of the germ Sm(03A9kV)x at x is
written as a polynomial of dzI1, dzI2,···, dzIs of degree m with coeffi-
cient in (9v,x. Hence any element of H°(B, Sm(03A9kV)) is written in the form

where am1,...,ms(z) is a holomorphic function on B. We call this form an
m-tuple k forme

PROPOSITION 1.2 : Let f : U - V be a rational (meromorphic) map be-
tween smooth varieties (compact complex manifolds) U and V. Then for
any element qJ E H°(V, Sm(03A9kV)) we can define the pull back f*(~) of qJ
such that f*(~) E H’(U, Sm(03A9kU)). f* is linear. Moreover if f is generically
surjective, f* is injective.
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PROOF: Let S be the maximal analytic subset of U such that f is not
holomorphic at any point of S. The complex codimension of S is at least
two. Since sm(Dt) is locally free, in view of Hartogs’ theorem, any ele-
ment of H°(U- S, Sm(03A9kU)) can be uniquely extended to an element of
H°(U, Sm(03A9kU)).

Let U and B be an open neighborhood of a point x E U-S and an
open neighborhood of a point f(x) E V such that f(U) c B. Let (y1,
..., yl) and (z1, ..., zn) be local coordinates of U and B with respective
centers x and f(x). Then

is represented by a polynomial of dyl1,···, dyJt of degree m with coef-
ficient in H°(u, Ou), where J1,···,Jt are all subsets of {1, 2,···,l}
consisting of k elements. For

we define

Then , f*(~) is an m-tuple k form on U- S, hence an element of H°( U,
Sm(03A9kU)). By the definition, f * is linear. Moreover by the unique contin-
uation property of holomorphic functions, f * is injective, if f is gener-
ically surjective. q.e.d.

COROLLARY 1.3: If two smooth algebraic varieties (compact complex
manifolds) V1 and Tl2 are birationally (bimeromorphically) equivalent,
then we have

Now we define a subset N(V) of positive integers by

First we assume N(V) ~ 0. Then for any positive integer m e N(V),
we can define a rational (meromorphic) map 03A6mk:V~ PN of V into
the complex projective space PN by
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where {~0, ~1,···, ~N} is a basis of H°(V, O(mKV)). We call this map
the m-th canonical map.

DEFINITION 1.4: The Kodaira dimension K(V) of a smooth algebraic
variety (a compact complex manifold) Y is defined by

REMARK 1.5: This definition is different from Iitaka’s original definition
[13]. But both definitions are equivalent. (See Ueno [35]).
LEMMA 1.6 : If two smooth algebraic varieties (compact complex mani-

folds) VI and V2 are birationally (bimeromorphically) equivalent, then
we have

PROOF: This is an easy consequence of Proposition 1.2.

DEFINITION 1.7: Let V be a singular algebraic variety (a compact com-
plex space). We define

where V* is a non-singular model of V.
Note that these are well defined in view of (1.3), (1.6). These are bira-

tional (bimeromorphic) invariants of algebraic varieties (compact complex
spaces).
REMARK 1.8: The algebraic dimension a(V) of a compact complex

space V is, by definition, the transcendental degree of the field of all
meromorphic functions on V. Then by the definition we have

On the other hand it is known

PROPOSITION 1.9: Let f : V ~ W be a generically surjective rational
(meromorphic) map between two algebraic varieties (compact complex
spaces) of same dimensions. Then we have

PROOF: This is an easy consequence of Proposition 1.2.
The following fact due to Freitag will be used later.
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PROPOSITION 1.10: Let V be a compact complex manifold and let G be a
finite group of analytic automorphisms of V. Then for a quotient space
VjG, we have

PROOF: See Freitag [6], Satz 1. p 99.

REMARK 1.11: In general we have

If m ~ 2, the equality does not necessary hold.

EXAMPLES 1.12:

(1) An n-dimensional algebraic variety V is called rational (unirational),
if V is birationally equivalent to Pn (if there exists a generically surjective
rational map g : Pn ~ V of P" onto V). Then we have

PROOF: By (1.2) and (1.9), it is enough to consider the case V = P".
In this case this is clear by direct computations. Or we can use the fact
that the tangent bundle of P" is ample. See below (3).

(2) An n-dimensional algebraic variety V is called a ruled variety,
if Y is birationally equivalent to P’ x W, where W is an n-1 dimensional
algebraic variety. Then we have

(3) Assume that an algebraic variety V has an ample tangent bundle
Tv. (Hartshorne [9].) Then we have

PROOF: As Sm(KvTV) is ample for k = 1, 2,..., n, m = 1,2, ...,
the dual bundle Sm(k039B) Tv)* has no non-zero sections. If dim V ~ 2,
by the classification theory, V is P1 or P2. Kobayashi-Ochiai [17] show
that if dim V = 3, then
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Hence by Matsumura, V is birationally equivalent to Pl x W [23]. By
(2) we have

Hence the surface W is rational. For a quite different proof, see Iitaka
[15]. Recently Kobayashi-Ochiai show that if dim Y = 3, V is p3 under
the slightly stronger condition that V has positive holomorphic bisectional
curvatures [18].

(4) The following is the table of the classification of algebraic surfaces.
(Kodaira [20], Safarebic [29a].)

(5) Let f : V - W be a fibre bundle over a complex torus W whose
fibre is a complex torus T. Then we have

PROOF: As f*(O(mKV)) is a flat line bundle, we have

See also Nakamura-Ueno [26] Remark 4.

THEOREM 1.13: Let f : V ~ V be a finite unramified covering of an
algebraic variety (a compact complex space) v. Then we have

PROOF: In view of Proposition 1.9, we can assume that f : V ~ V is
a finite Galois covering with a Galois group G. When V is smooth, this
is proved by litaka [13]. If 9 is singular, by Hironaka [11 ], there exists
a non-singular model Î7 * of V such that G can be lifted to a group G*
of analytic automorphisms of V*. As G acts freely on V, G* acts freely
on 9*. Hence the quotient map V* ~ 9*/G* is a finite unramified
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covering. As V*/G* is bimeromorphically equivalent to V, we have

The following theorem due to Iitaka is fundamental for the classifi-
cation theory.

THEOREM 1.14: Let V be an algebraic variety (a compact complex space)
of positive Kodaira dimension. Then there exist a smooth projective variety
(a compact complex manifold) V*, a smooth projective variety W and a
surjective morphism f : V* ~ W, which has the following properties.

(1) V* is birationally (bimeromorphically) equivalent to V.
(2) dim W = K(V).
(3) There exists an open dense subset U (in the usual complex topology

of W) such that for any fibre Yw = f-1(w), w ~ U is irreducible and smooth.
(4) 03BA(Vw)=0, for w~U.
(5) If there exists a fibre space f# : V# ~ W#, which satisfies the above

conditions (1) - (4), then there exist birational (bimeromorphic) maps
g : V* ~ V#, h : W ~ W# such that h o f = f# o g.

That is, the fibre space f : V* ~ W is unique up to the birational (bi-
meromorphic) equivalence.

Moreover if v is smooth, there exists a positive integer mo such that
for any m ~ mo, m ~N(V) the m-th canonical map 0.., : V -+ Wm =

cb mKv (V) is birationally (bimeromorphically) equivalent to the morphism
f : V* ~ W.

PROOF: See Iitaka [13] and Ueno [35].

PROPOSITION 1.15: Let f : V ~ W be a fibre space of smooth algebraic
varieties (compact complex manifolds). If 03BA(V) ~ 0, then for any general
fibre Yw = f-1(w), we have 03BA(Vw) ~ 0.

PROOF: As V and W are smooth, there exists a nowhere dense algebraic
subset T of W such that f|v’ : V’ = W -f-1(T) ~ W’ = W - T is of
maximal rank at any point of V’. Hence for w E W’, Vw = f-1(w) is
irreducible and smooth.

In general if M is a submanifold of a complex manifold V, then we
have
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where NM is the normal bundle of M in V and d is the codimention of
M in V. In our case, as the normal bundle of V w in V is trivial, we have

Let qJ E H°(V, O(mKV)) be a non-zero section and let D = ¿’:’:1 niDi
be a divisor defined by (p = 0, where Di is irreducible. We can assume that
for i = 1,2,···, l, f(Di)  W and for i = 11, ..., m, f(Di) = W. We
set S = li=1 f(Di) n T. Then for any w E W - S, (p is not identically
zero on Vw and induces a non-zero elment of HO(Vw’ O(mK(Vw))). Hence
03BA(Vw) ~ o.

COROLLARY 1.16: Let f : V ~ W be a fibre space of smooth algebraic
varieties (compact complex manifolds). If 03BA(Yw) = - oo, for any general
fibre, we have K(V) = - 00.

THEOREM 1.17: Let f : V -+ W be a fibre space. Then we have

where V w = f-1(w) is a general fibre of f.
PROOF: See Iitaka [13].

Appendix. A proof of C2.
We can assume that both and W are smooth. Moreover by Cor.

1.16, we can assume that the genera of any general fibre and the curve W
are positive. Hence the surface V does not contain infinitely many rational
curves. Hence Y is neither rational nor ruled. That is 03BA(Y) ~ 0.

Case 1. K(V) = 0.
From Example 1.12 (4), we have

and V is birationally equivalent to an abelian surface or a hyperelliptic
surfaces and W is an elliptic curve. (Note that there is no surjective mor-
phism of an abelian variety to a curve of genus g ~ 2. And a minimal
hyperelliptic surface has a finite unramified covering surface which is a
product of two elliptic curves [33].) Hence there exists a finite unramified
covering surface P of V such that V is obtained by successive blowing ups
of a product of two elliptic curves. Then any general fibre Yw of f over
w E W is an elliptic curve. Hence C2 holds in this case.

Case 2. K(V) = 1.

The surface V is an elliptic surface. If general fibres of f are elliptic
curves, then C2 is true by canonical bundle formuras for elliptic surfaces.
(Kodaira [20] 1, p 772).
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Assume that a general fibre of f is a curve of genus g ~ 2. As V is an
elliptic surface, there exists a fibre space g : V - C over a curve C such
that general fibres are elliptic curves. Let Ya = g-1(a), a E C be a gener-
al fibre of g. Then f(Va) = W, otherwise Ya is contained in a fibre of f,
but it is impossible. Hence by our assumption W is an elliptic curve. Hence
C2 holds.

Case 3. K(V) = 2.
In this case C2 is trivially true.

REMARK: C2 is also valid for any compact analytic surface. As there
exists a surjective morphism of V onto a curve W, we have a(V) ~ 1.

If a(V) = 2, then Y is algebraic and we have already done. If a(V) = 1,
then V is an elliptic surface. Hence there exists a surjective morphism
g : V ~ C of V onto a curve C such that general fibres are elliptic curves
and C(V) = C(C), where C(V), C(C) are the field of all meromorphic
functions on V and C, respectively. Hence we have C(C) =) C(W). As
fibres of f are connected we have C(C) = C(W). Hence C = W and
g = f. Hence C2 holds. (Kodaira [20] 1, p 772).

2. Albanese maps

For readers’ convenience, in this section we shall collect elementary
facts about Albanese maps, which we shall use later.

LEMMA 2.1: Let V be an n-dimensional compact complex manifold.
Assume that there exists a surjective morphism f : U ~ V of an n-dimen-
sional compact Kâhler manifold U onto V. Then the Hodge spectral se-
quence

is degenerate and we have

Hence we have

where b1(V) is the first Betti number of v.

PROOF: If we know that by f, Hp(V, 03A9qV) is mapped injectively into
Hp(U, 03A9qV), we can use the argument of Deligne ([4] p 122). The injectivity
is proved as follows. We consider Hp(V, 03A9qV) as the Dolbeault cohomolo-
gy group. Assume that a type (p, q) form (J) ~ Hp(V, 03A9qV) is mapped to
zero. Then for any type (n -p, n-q) form 03C9’ e Hn-p(V, 03A9n-qV), we have
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Hence by the Serre duality we conclude that co = 0. q.e.d.

REMARK 2.3: If V is a smooth algebraic variety, we can always find
a surjective morphism f ’ : U ~ V of a smooth projective variety U to V.
If a(V) = dim V, such U also exists. (Moisezon [25] Chapter II.)
Now let us assume that a compact complex manifold V satisfies (2.2).

Let {03B31, 03B32,···, 72,1 be a basis of the free part of H1(V, Z) and let {03C91,
03C92,···, 03C9q} be a basis of H°(V, Q§). Let d be a lattice in Cq generated by
2q vectors

The complex torus C7/,d is called the Albanese variety of V and is written
as Alb (V). If V is algebraic (or more generally a(V) = dim V),
Alb (V) is an abelian variety.
Now we fix a point xo of V. Then we can define a morphism axo V

~ Alb (V) of V into the Alb (V) by

We call this morphism axo the Albanese map of V into Alb (V). If we
take another point x, of V and construct the Albanese map 03B1x1 : V ~
Alb ( ), then we have

where
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Hence the Albanese map is unique up to translations. In what follows
we use the notation a instead of axo, choosing suitably a point xo. The
Albanese map a has the following universal property.

(2.4) Let g : V ~ A be a morphism of V into a complex torus A. Then
there exists the uniquely determined group homomorphism h : Alb (V)
~ A such that

where b is a point of A uniquely determined by a and g.

REMARK 2.5: 

(1) When Y is algebraic, the property (2.4) holds for any rational map
g : V ~ A of V into an abelian variety A. (See Lemma 2.6 and Lang
[22] II Section 3.)

(2) For any compact complex manifold M, we can define the Albanese
variety Alb (M), which has the universal property (2.4). (Blanchard [1 ]).
In this case dim Alb (M) ~ q(M) and the equality does not necessarily
hold. ([1] p 163-164).
LEMMA 2.6: If two smooth algebraic varieties VI and V2 are birationally

equivalent, then a : V1 ~ Alb (V1) and a : V2 -+ Alb ( Y2) are birationally
equivalent. Hence Alb (V1) and Alb (V2) are isomorphic.
PROOF: Using the elemination of points of indeterminacy of rational

maps [10], it is enough to consider the case that there exists a birationa-
morphism f : Vi -+ Y2 . Then by a succession of monoidal transformal
tions of Y2 with non-singular centers, we obtain a birational morphism
g : V*2 ~ V2 such that h = f -1 o g : Y 2 ~ V, is a morphism [10]. By
the universal property (2.4), if 03B1 : V*2 ~ Alb (V*2) and a : V2 ~ Alb (V2)
are birationally equivalent, then a : Yl ~ Alb (Vi) and a : V2 ~
Alb (V2) are birationally equivalent. Hence we can assume that
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f : V1 ~ V2 is the inverse of a succession of monoidal transformations
with non-singular centers. But in this case the lemma is obvious. q.e.d.

DENIFITION 2.7: Let f : V ~ A be a morphism of an algebraic variety
(a compact complex manifold) into an abelian variety (a complex torus)
A. We say (V, f) generates A if there exists an integer n such that the
morphism

is surjective. We say that a subvariety B of A generates A if (B, i) gener-
ates A, where i : B ~ A is a natural injection.
The following Lemma is an easy consequence of the universal property

(2.4).
LEMMA 2.8: (V, a) generates Alb (V).
LEMMA 2.9: Let a : V -+ Alb (V) be the Albanese map of an algebraic

variety V. Then we have

PROOF: Let ï : W ~ a(V) be a resolution of the singularities of a(V).
Then by a succession of monoidal transformations of V with non-sin-
gular centers, we obtain a birational morphism 03C0 : V* ~ V such that
h = 03C4-1 o 03B1o03C0: V* ~ W is a morphism. Hence there exist group homo-
morphisms f : Alb (V*) ~ Alb (W) and g : Alb (W) ~ Alb (V) such
that the diagram (2.10) is commutative. By Lemma 2.8, f and g are
surjective.
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By Lemma 2.6, Alb (V) and Alb (V*) are isomorphic. Hence Alb (V)
and Alb (W) have the same dimensions. q.e.d.

LEMMA 2.11: Let V be a smooth algebraic variety. If dim a( V) = 1,
then the image a( V) of the Albanese map a : V ~ Alb (V) of V is a
smooth curve and any fibre of the morphism a is connected.

PROOF: See 0160afarebi [29a] Chapter IV, Theorem 3.

REMARK 2.12: If dim a (V) ~ 2, a fibre of the Albanese map of V is
not necessary connected. If a fibre is not connected, we use the Stein

factorization fi : V -+ W, y : W ~ a(V) of the morphism a : V ~ a(V),
so that we have a = y o 03B2, any fibre of 03B2 is connected and y : W ~ 03B1(V)
is a finite morphism [3 ]. We call the fibre space 03B2 : V ~ W the, fibre space
associated to the Albanese map. Note that in view of Prop. 1.9, we have

3. Subvarieties of abelian varieties

In this section we shall study structures of subvarieties of abelian va-
rieties (complex tori).

Let A be an abelian variety (a complex torus) of dimension n. By glob-
al coordinates of A, we shall mean global coordinates of the universal
covering C" of A such that in these coordinates, covering transformations
are represented by translations by elements of the lattice A, where A =

Cn/0394.

LEMMA 3.1: Let B be an 1-dimensional subvariety of an abelian variety
(a complex torus) A. Then we have

Hence a fortiori, we have

PROOF: Let i : B* ~ B be a desingularization of the variety B. There
exist a point p E B such that B is smooth at p and

induce local coordinates in B with a center p, where (zl, z2,···,zl,···,
zn) is a system of global coordinates of A and (z*1, z2, ’ ’ ’, z*n) is a point
of Cn lying over the point p. Let h , I2 , ’ ’ ’, Is, S = (lk), be all subsets
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of {1, 2,···,l} consisting of k elements. Then it is clear that

monomials of 03C4*(dzIi), I = 1, 2, ..., s, of degree m with coefficients in C
are elements of HO(B*, Sm(03A9kB*)) and are linearly independent. q.e.d.

REMARK 3.2: By Examples 1.12 (1), (2) and Lemma 3. 1, we infer readily
the well-known fact that an abelian variety (a complex torus) does not
contain ruled varieties and unirational varieties.

Now we shall characterize a subvariety of an abelian variety (a com -
plex torus) of Kodaira dimension zero.

THEOREM 3.3: Let B be an 1-dimensional subvariety of an abelian variety
(a complex torus) A. Then the following conditions are equivalent.

for a positive integer m and a positive integer k, 1 ~ k  1.

for a positive integer k, 1 ~ k ~ 1.

for a positive integer m.

(6) B is a translation of an abelian subvariety (a complex subtorus) Al
of A by an element a E A.

PROOF: It is clear that (6) implies (1), (2), (3), (4) and (5). (2), (3)
and (4) are special cases of (1). And (5) implies (4), by virtue of Lemma
3.1. Hence it is enough to prove that (1) implies (6).
We can assume that the subvariety B contains the origin o of A and

at the origin o, B is smooth. Moreover we can choose a system of global
coordinates (zl, z2,···, zn) of A such that (zl, z2,···, Z,) gives a system
of local coordinates in B with a center o. Hence in a neighborhood U
of the origin o in A, the variety B is defined by the equations
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where fk’s are holomorphic on U.
We shall show that all fk’s are linear functions of z1, z1,···,zl.
Let z : B* ~ B be a desingularization of B. By our assumptions, m-

tuple k form 03C4*((di1^dzi2^···^dzik)m) is written in the form

where am1,m2,..., ms is a constant and Il, 12, ..., Is are the same as those
in the proof of Lemma 3.1. Hence there exist constants ci,k such that

On the other hand, by (3.4), we have

on 03C4-1(u n B). This implies that of,Jozi is a constant for any i = 1,
2, w, l, k = l+1, l+2,···, n. Hence all fk, k = l+1, l+2,···, n,
are linear functions of zl , z2···,zl. Let L be a linear subspace of C" defi-
ned by the equations (3.4). Then one of the irreducible components B
of the inverse image of B in the universal covering C" of A coincides L
in a small neighborhood of the origin of Cn. As B and L are irreducible,
we have B = L. This implies that B is an abelian subvariety (a complex
subtorus) of A. q.e.d.

COROLLARY 3.5: If a proper subvariety B of an abelian variety (a complex
torus) A generates A, we have

PROOF: Assume contrary. Then B is a translation of an abelian sub-

variety (a complex subtorus). Hence it is impossible that B generates A.
q.e.d.

COROLLARY 3.6: Let V be a smooth algebraic variety (a compact com-
plex manifold which satisfies (2.2)) and let a : V -j Alb (V) be the Albanese
map. Then we have

Moreover 03BA(03B1(V)) = 0, if and only if the Albanese map is surjective.
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PROOF: By Lemma 2.8, a(V) generates A. Hence this is an easy con-
sequence of Corollary 3.5. q.e.d.
The following Corollary is an affirmative answer to one of the ques-

tions raised by Iitaka [14].

COROLLARY 3.7 : Let B be a subvariety of an abelian variety (a complex
torus) A. If q(B) &#x3E; dim B, then we have

COROLLARY 3.8: If Conjecture Cn is true, then Conjecture ln is true.

PROOF: Assume that q(V) &#x3E; dim V. Then the Albanese map is not

surjective. Hence K(a(V») &#x3E; 0. Let fl : V -+ W be the fibre space asso-
ciated to the Albanses map. By Proposition 1.9 03BA(W) ~ K(OC(V» &#x3E; 0.

Hence if Cn is true, we have 03BA(V) ~ K(W) &#x3E; 0, by virtue of Proposi-
tion 1.15. q.e.d.

LEMMA 3.9: Let B be a subvariety of a complex torus T. If a(B) = dim B,
then B is a subvariety of an abelian variety A, which is a complex subtorus
of T. Hence B is a projective variety.

PROOF: For any positive integer m, we consider a morphism

We set Am = gm(B x ... x B). As gm is a proper morphism, Am is a
subvariety of T. Moreover we have

Hence there exists a positive integer mo such that

By a theorem of Moisezon, a(A) = dim A. (Moisezon [25 ] Chap. I Th. 2).
On the other hand by our definition, we have o E A, x - y E A, for any
x, y E A. Hence A is a complex subtorus of T. In view of a(A) =
dim A, A is an abelian variety. (Weil [37], p 124 Théorèm 3). For a point
a E B, B x a x ... x a is mapped biholomorphically into A by gmo. q.e.d.

2mo-l

THEOREM 3.10: Let B be a subvariety of a complex torus A. Then there
exist a complex subtorus A, of A and a projective variety W, which,is a
subvariety of a complex torus, such that

(1) B is an analytic fibre bundle over W, whose fzbre is A1;
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Moreover if B is an algebraic variety, then there exist finite unramified
coverings B and W of B and W, respectively such that

PROOF: By Theorem 1.14 there exist a desingularization r : B* ~ B,
a smooth projective variety W * and a morphism f : B* ~ W*, which
satisfies the conditions (1) ~ (5) of (1.14). Then there exists an open dense
subset U* of W * such that BW = f-1(w) is smooth and x(Bw) = 0,
for all w E U*. We set Bw = i(Bw). Then there exists an open dense sub-
set U of U* such that Bw is birationally equivalent to Bw for any point
w E U. As we have K(Bw) = K(B*) = 0 for w E U, Bw is a translation of a
complex subtorus Aw of dimension 1 = dim B - K(B), by Theorem 3.3.
Since f-1(u) ~ U is a complex analytic family, all complex subtori
Aw, w E U, are isomorphic to a complex subtorus A1, because the complex
torus A contains only at most countably many complex subtori. We set
A2 = A/A1 and u : A ~ A2 is the canonical quotient map. We set

g = u o 03C4.

Let X be the image of B* in W * x A2 of the morphism ( f, g) : B* ~
W* x A2 and let h : B* ~ X be the canonical morphism. Let prl : X ~
W* and pr2 : W ~ A2 be the morphisms induced by the projections to
the first factor and the second factor of W * x A2, respectively. Since for
any point w E U, g(f-1(w)) is a point, pr-11(U) is isomorphic to u. Hence
dim X = dim W*. We set W = pr2(X). W is a subvariety of a complex
torus A2. We have dim W ~ dim W*. We set S = g(f-1(u)). As
h-1opr-12(S) = f-1(u) is open dense in B*, we have

Hence dim W = dim W*. Hence dim u-1(W) = dim B. As u-1(W) ~
B, we conclude that u-1(W) = B. Hence u : B ~ W is an analytic fibre
bundle over W, whose fibre is A 1.
Now we shall prove that 03BA(W) = dim W = K(B). If 03BA(W)  dim W,

from the above arguments, we infer readily that there exists a morphism
u’ : W ~ Y, which is an analytic fibre bundle over Y whose fibre is a
complex torus. Hence u’ o u : B ~ Y is a fibre bundle whose fibre i s a



298

torus bundle over a torus. In view of Example 1.12 (5) and Theorem 1.17,
we have

This contradicts the assumption dim Y = x(W)  dim W. Hence

Next assume that B is algebraic. Then by Lemma 3.9, we can assume
that the complex torus A is an abelian variety. Then there exists a finite
unramified covering 03C0 : A ~ A such that Â = Ai x A*, where A* is

an abelian variety. Let B be one of the connected component of 03C0-1(B)
and we set W = Pr2(B), where Pr2 : A ~ A* is the projection to the
second factor. Then by the above arguments, B and W are finite unramified
covering manifolds of B and W, respectively. And we have B = Pr-12(W)
Al x W. q.e.d

LEMMA 3.11: Let B be a smooth subvariety of an abelian variety (a com-
plex torus) A. Then for any positive integer m the sheaf P(mKB) is spanned
by its global sections. Hence if K(B) &#x3E; 0, the complete linear system
ImKBI is free from base points and fixed components, for any positive in-
teger m.

PROOF: We have an exact sequence

where TA, TB are tangent bundles of A and B, respectively and NB is
the normal bundle of B in A. As (9(TA) is spanned by its glabal sections,
0(NB) is spanned by its global sections. Hence O(KB) = O(l^NB),
1 = codim B, is spanned by its global sections. Hence a fortiori O(mKB)
is spanned by its global sections. q.e.d.

COROLLARY 3.12: If B is a smooth subvariety of an abelian variety, the
structure of the fzbre bundle in Theorem 3.10 is birationally equivalent to
the fibre space given by the m-th canonical map fPmK : B ~ W = fPmK(B)
for a sufficiently large m.

4. Basic elliptic threefolds

In this section we shall construct a certain elliptic threefolds, basic

elliptic threefolds, after Kodaira [19] and Kawai [16]. Since we shall
need later the explicit constraction of these threefolds, we shall give some
details. For the proof and more detailed arguments, see Kodaira [19]
and Kawai [16].
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DEFINITION 4.1 : A fibre space f : V ~ W is called an elliptic fibre space
of dimension n, if

(1) V is an n-dimensional compact complex space and W is an (n-1)-
dimensional compact complex space;

(2) general fibres of the morphism f are elliptic curves.
When n = 2 we call such a f : V ~ W an elliptic surface. When n = 3

we call it an elliptic threefold.
First we shall assume that V and W are non-singular. Then any regular

fibre1 of f : V ~ W is an elliptic curve. Let S be a proper analytic subset
of W such that f is of maximal rank at any point of v-f-1(S). We will
not assume that S is minimal in this property. We call S a singular locus
of the elliptic fibre space f : V ~ W. We set W’ = W-S and V’ =

f-1(W’).
For any point x E W’ there exists a neighborhood U of x in W’, a

holomorphic 1 form cv on f-1(u) and 3 cycles a, fi of H3(f-1(u),Z)
such that

(1) 03C9 induces a non-zero holomorphic 1 form co(y) on Tly = f-1(y);
(2) {03B1, 03B2} induces a symplectic basis {03B1(y), 03B2(y)} of Hl (Vy, Z), that is,

for any y ~ U. (See [26] § 2).
We set

Then T gives a morphism T : u ~ H of U into the upper half plane H.
Note that the morphism T does not depend on the choice of co, but de-
pends on the choice of {03B1, 03B2}. In this way we can construct a multivalued
holomorphic map T of W’ into the upper half plane H. Hence we have
a morphism T : W’ ~ H of the universal covering manifold W’ of W’
into H and a group homomorphism 0 : 03C01(W’) ~ SL (2, Z) such that

Hence for any elliptic fibre space f : V ~ W and a singular locus S in
W we can associate a pair (T, 4l), where T : W’ ~ H is a morphism of the
universal covering manifold W’ of W’ into the upper half plane H and

1 By a regular fibre Yw = f -1 (w), w E W, we mean that f is of maximal rank at any
point of Vw.
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03A6 : 03C01(W’) ~ SL(2, Z) is a group representation, which satisfy the re-
lation (4.2).

If two such pairs (T1, 01) and (T2, 03A62) are associated to f : V ~ W
and S, then there exists an elemenent M E SL (2, Z) such that

for any y E GY’ and any 03B3 ~ 03C01(W’). We call two pairs (T1, 03A61) and
(T2, 03A62) are equivalent if the above condition (4.3) is satisfied.
Hence for any elliptic fibre space and its singular locus we can associate

the equivalent class of a pair (T, 03A6)). We call it the characteristic pair. Note
that J(y) = j(7(J)) is a single valued meromorphic function on W, where
j is the elliptic modular function. J(y) is uniquely determined by the char-
acteristic pair.

After Kodaira and Kawai for any such characteristic pair (T, 03A6),
we shall associate the elliptic space J1: B ~ W, the basic elliptic fibre
space, which is birationally characterized by the fact that J1 : B ~ W has
a global holomorphic section.
For that purpose we apply on W a succession of monoidal transfor-

mations with non-singular centers and we obtain a new manifold : W*
~ W such that the total transform S* = n*(S) is a divisor with normally
crossings and the meromorphic function J has no points of indeterminacy.
As we have an isomorphism between W - S and W * - S* and we are
interested in the birational geometry, we can assume that the singular
locus S is a divisor with normally crossings and the meromorphic function
J has no points of indeterminacy.

In what follows we only consider the case dim W = 2. But the gener-
alization to higher dimensional case is not difficult. Only notations be-
come complicated.

For any element 03B2 ~ 03C01(W’) and integers n 1, n2, we let g(03B2; n1, n2)
be an analytic automorphism of W’ x C defined by

where

The group G = {g(03B2; nl , n2)|03B2 ~ 7rl(W’) , (nl , n2) E Z2} acts on W’ x C
properly discontinuously and freely. Let B’ be the quotient manifold
W’  C/G. Then the morphism
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gives a structure of a fibre space whose fibres are elliptic curves, where
03C0: W’ ~ W’ is the covering morphism.
We shall construct the basic elliptic threefold 03BC : B ~ W as an exten-

sion of the fibre space ,u’ : B’ ~ W’. Note that the fibre space 03BC’: B’ ~
W’ has a holomorphic section o’ : W’ ~ B’ defined by y H Ly, o ], where
y is a point of W’ lying over the point y.
We cover the singular locus by a finite number of sufhciently small

coordinates neighborhoods D, = {(t1, t2)| |t1|  81) , v = 1, 2,···, n, in
the manifold W such that S is defined in D, by the equation

We set

The universal covering U’v of D’v is given by

We denote yi a small circle in D*(i) rounding the origin once counterclock-
wise. There is a canonical group homomorphism lv : 03C01(D’v,) ~ 03C01(W’)
and a canonical morphism jv : U’v ~ W’. 03C01(D’) is generated by y 1
for v = 1, 2, ..., h and is generated by yl and 03B32 for v = h+ 1,
h + 2,···,n. We set
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where we omit the suffix v for simplicity.
Let Gv be a group of analytic automorphisms of U’v x C consisting of all
automorphisms

for v = h + 1, h + 2,···, n, and ki , k2, ni , n2 ~ Z.
Let B’v = Uv x C/Gv be the quotient manifold. We denote a point on

B’v, corresponding to a point (l1, t2 , 03B6) (or (11, l2, 0) by the symbol
«11, t2 , 0)(or ((l1 , l2, 0))’ By our construction the fibre space 03BC’v: B’
~ D’ defined by

is isomorphic to B’ID’. The fibre space has a holomorphic section o’ : D’
-+ B’v, defined by

which is the restriction of o’ on D’v .
We shall construct the fibre space 03BCv : Bv ~ D, which is an extension

of y’ : B’v ~ D’ and the fibre space has a holomorphic section ov : Dv
~ Bv which is the extension of the section o’v. The construction is done
in such a way that we can patch together all Bv, v = 1, 2,···, n and B§
so that we get the elliptic threefold 03BC : B ~ W which has a holomorphic
section o : W ~ B.

(4.5) Case a: v = 1, 2,···, h. M is of finite order, say m.
The matrix M is SL (2, Z)-conjugate to one of the matrices appeared

in Table 6.7 below. Let U#v = {S1~S1|  (03B51)1/m} x D (2) be an m fold
ramified covering of Uv defined by the morphism

We set

Then S is a single valued holomorphic map of Uv into H. For any pair of
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integers (nl , n2), we let g(nl. n2) be an analytic automorphism of
Ut x C defined by

Let Fv be the quotient manifold Uv x C/{g(n1, n2)} and for any point
(sl , t2, Ç) we denote the corresponding point of Fv by the symbol
[sl , t2,03B6]. Let G be a cyclic group of order m of analytic automorphisms
of Fv generated by

where

(see (4.4)) and em = exp (203C0i/m). The quotient space Bv = Fv/G has the
structure of a normal complex space. For any point [sl , t 2, ,] we denote
the corresponding point of Bv by the symbol [[s1, t2,03B6]]. The morphism

gives the structure of a fibre space which is an extension of li’ : B’v, ~ Dy.
y, : Bv ~ D,, has a holomorphic section

which is the extension of o’v : D’v ~ B’v.

(4.6) Case b: v = 1, 2, ..., h. M is of infinite order.
We can assume that T(l1, t2) has a form

and M has a form

where b is a positive integer.
First we shall consider the case

We have B;, = U’v x C/G, where 9 consists of all automorphisms
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of U’v  C.
Let N be a normal subgroup of 9 consisting of all g(k, 0, n2), k, n2 E Z.
There is an isomorphism

Hence the quotient group G/N = G operates on D’v x C*. G is generated
by the automorphism

of D’v x C*. Following Kodaira we can define the quotient manifold

(See Kodaira [19] II p 597-598.) Now we set

Then we have

The function x(tl , t2, z) and y(ti , t2 , z) satisfy the equation

where

Let p2 be a projective plane with non-homogenous coordinates (x, y)
and let Bv be the subvariety in D, x p2 defined by the above non-homog-
enous equation (4.7). Then the morphism Jlv : Bv ~ D, defined by

is proper. Moreover the morphism
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gives the isomorphism between Fv and an open dense subset in B,, . Hence
Jlv : Bv ~ Dv is an extension of p§ : B’v ~ D’v. The morphism

gives a holomorphic section which is the extension of the holomorphic
SeCtlon O00FF : D’v ~ B’v.
Next we shall consider the case

We have B’v, = U’v x Cle, where 9 is a group consisting of all analytic
automorphisms

of U§ x C. Let 2 be a subgroup of 9 consisting of all g(k, ni, n2), k = 0
(2), n1, n2 E Z. We set

Then the quotient manifold F’v, = U§ x C/2 is isomorphic to the quo-
tient manifold Ey x C*/G, where G is an infinite cyclic group of analytic
automorphisms of E’v x C* generated by the automorphism

Now we shall construct a fibre space v : Bv ~ E, which is an extension
of F’v, by the same method as above. Bv is defined in E x P2 by the non-
homogenous equation

The quotient group H = G/F is a cyclic group of order two of analytic
automorphisms of Ev generated by the automorphism

We set Bv = Bv/H. Then the morphism

gives a structure of a fibre space which is a desired extension of B’v. The
morphism
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defines the holomorphic section which is the extension of o’ v where
Fv = Ev x C*jG. (See Kodaira [ 19 ] II p 597 - 598.)

(4.8) Case c: v = h + 1, h+2,···,n. The orders mi i = 1, 2 of Mi
are finite.

We consider E, = {(s1, s2)~s2|  (03B51)1/m1, |S2|  (03B52)1/m2} as a rami-
fied covering of D,, by the morphism

We set

Then S is a single valued holomorphic map of Ev, into the upper half
plane.

Let 9 be a group of analytic automorphisms of Ev C consisting of all
automorphisms

We consider the automorphism gklk2 of the quotient space Bv = Ev x C/G
defined by

where

Then the quotient space Bv = B,,jG, G = {gk1k2}, is a normal complex
space and the morphism

gives an extension of the fibre space y’ : B’ ~ Dv. The fibre space

y, : Bv ~ D,, has the section

which is the extension of o’ : D’v, ~ B’v.

(4.9) Case d: v = h + 1, h + 2,···,n. M1 is of infinite order and M2
is of finite order.
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By a suitable choice of coordinates we can assume that

We consider Ev = ((S1, S2)~S1|  (03B51)1/03B4, |S2|  (03B52)1 2} as a ramified
covering of D, by the morphism

where

By the same way as in (4.6), we shall construct a subvariety Bv in Fy X p2
defined by the non-homogenous equation

Let -rl, z2 be analytic automorphisms of Bv, defined by

Let H be the group of analytic automorphisms of Bv generated by 03C41
and ’t" 2. Let Bv be the quotient space Bv/H. Then the morphism

gives a structure of a fibre space which is an extension of the fibre space
p§ : B’v ~ D’v. The morphism

defines the holomorphic section which is the extension of o’ where

F, = EyxC*jG. (See (4.5) and (4.6).

(4.10) Case e: v = h + 1, h + 2, ···, n. Ml and M2 are of infinite order.
We can assume that

We set



308

where

Let 9 be a group of analytic automorphisms of U§ x C consisting of all
automorphisms

We set

The group X is a normal subgroup of 2. The quotient manifold
U’v x Cll is isomorphic to E§ x C* by the morphism

We can consider the quotient group L = 2/% as a group of analytic
automorphisms of Fy x C* generated by the automorphism

Following Kodaira we can construct the quotient manifold F,, = E, x
C*/L such that

where

(See Kodaira [19] II p 597 - 598.)
The meromorphic functions

satisfy the equation
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where

Let Bv be a subvariety in E, x p2 defined by the non-homogenous equa-
tion (4.11). Then the group G = G/F can be considered as a group of
analytic automorphisms of Bv generated by two automorphisms

We set Bv = Bv/G. Then the morphism

gives a structure of a fibre space which is an extension of ti’ : B’v ~ D’v.
The morphism

gives a holomorphoc section which is the extension of o’..

(4.12): Finally we patch together li’ : B’ ~ W’ and 03BC03BD : B03BD ~ Dv,
v = 1, 2,···,n and we obtain an elliptic threefold 03BC:B ~ W, which is
an extension of y’ : B’ ~ W’. As all sections o03BD : D, ~ B," v = 1, 2, ...,n
and o’ : B’ ~ W’ are compatible, we have a holomorphic section o : W
~ B.

We call the elliptic fibre space 03BC : B ~ W thus obtained the basic
elliptic threefold associated to a characteristic pair (T, 03A6).
The following theorem is due to S. Kawai.

THEOREM 4.13: The morphism p : B -+ W of the elliptic threefold is a
projective morphism. Hence if W is algebraic (projective), B is algebraic
( projective).

PROOF: See Kawai [16] p. 129-134.
Kawai shows that a principal ideal sheaf defined by the section

o : W ~ B is ample with respect to the morphism Il.
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5. Non-singular models of basic elliptic threefolds

We use the same notations as those in the previous section. In this
section first we shall show how to resolve the singularities of a basic
elliptic threefold J1 : B ~ W. Using this desingularization we shall con-
struct the commutative group manifold Bt over W0 = W - {ph + 1,
ph+1,···,pn}, where ph+1, ph+2,···pn are all points on W at which the
singular locus S has ordinary double points. (That is, the origins of
D,, v = h + 1, h + 2,···, n.) Then we shall define a cohomology group
H1adm(W0, O(B#0)) and for any element ~ ~ HaJm(Wo, D(B#0)), we shall
construct a new elliptic threefold B’’.

(5.1) Case a: We set

where

(See (4.4), (4.5).) In the coordinates (sl, tz, w), the automorphism g
of F, ((4.5)) is written in the form

Moreover 03B1 is em or eml. (See (6.7) below.) Hence we can use the cano-
nical resolutions due to Hirzebruch ([12], [29] Section 6 (C)) and obtain
a non-singular model 03BD: 03BD ~ D of 03BCv : B03BD ~ Dy. Note that when the
matrix M is SL (2, Z)-conjugate to

exceptional varieties of the first kind appear. By Nakano [27] and Fu-
jiki-Nakano [7], we can blow down these exceptional varieties. But
because of the resolutions in the Case c (see (5.4) below) we do not
blow down these exceptional varieties. The holomorphic section ov: D,,
- Bv induces the holomorphic section ôv: Dv ~ Ev. For any a E C,
lai  03B52, we set

Then v(a) : v(a) ~ Dv(a) is a fibration of elliptic curves and has only
one singular fibre over the point (0, a), if M ~ I2 . The configuration of
the singular fibres are independent of a but depends only on M. We call
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the fibre of P, v ~ D, over S n D, regular or of type Kod (*), if M
is 12 or SL (2, Z)-conjugate to one of matrices in Table (6.7), which
corresponds to a singular fibre of type (*) of elliptic surfaces. (See (6.7).)

(5.3) Case b: The case

The singular locus of Bv lies over S n D, and is isomorphic to S n D,, .
By (b-1)-times successive blowing-ups along singular loci (which lie
always over S n D, and are isomorphic to S n D,,), we obtain a non-
singular model v:v ~ D,, . Then f1v(a) : v(a) ~ Dv(a) (see (5.2)) is a
fibration of elliptic curves and has only one singular fibre of type (Ib).
(See Kodaira [19] II p. 597-600). We call the singular fibre over S n Dv
of type Kod (Ib).
The case

First we resolve the singularities of Bv in the same way as above. Then the
automorphism h of Bv ((4.6)) can be lifted to this non-singular model
B* of Bv. We take the quotient B*v/H and resolve the singularities of this
space in the same way as in (5.1). Thus we obtain a non-singular model
Av : v~ Dv of yv : Bv ~ Dv. Then the singular fibre of v(a): v(a) ~
Dv(a) ((5.2)) is of type I*b. (See Kodaira [19] II p. 600-602.) We call the
singular fibre of flv : v ~ D,, over n D,, of type Kod (1:). In both cases
the holomorphic section Cy : Dv ~ Bv induces the holomorphic section
ôv : Dv ~ v.

(5.4) Case c: We set C1 = {gk1, 01, G2 = {g0, k2}. Then G = G, x G2.
First we resolve the singularity of the quotient space Bv/G1 in the same
way as in (5.1). Then the group G2 operates on this non-singular model
B(1)v. We resolve the singularities of the quotient space B(1)v/G1 in the
same way as in (5.1) and obtain a non-singular model M’v : Ev -+ Dy of
03BCv : Bv ~ Dv. The holomorphic section oy : Dv ~ Bv can be lifted to the
holomorphic section ô,, : D, Ev.

(5.5) For readers’ convenience we shall give the resolution in the sim-
plest case, Ml = M2 = -12.

In this case gklk2 has a form

We set gl - 91, 0, 92 = 90,1. Then gl has four fixed subvarieties
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We set

Then (si , s2 , wv1,v2) is a system of local coordinates of a neighborhood
of DV1’ V2 in By. In these coordinates gl is represented in the form

Hence the quotient space Bv/G1 has four singular loci Dv1,v2 correspond-
ing to DVl, V2. Let Uv1,v2 and Vv1,v2 be open set in C3 defined by the ine-
qualities :

(We should write U(v1,v2)1, U(v1,v2)2 etc. instead of Ul, U2, etc. but we hope
there is no confusion.) We patch together Uv1,v2 and vv1,v2 by the re-
lation

and we obtain a complex manifold Mv1,v2. The canonical resolution of
the singularity Dv1,v2 is given by meromorphic maps

(See also Appendix (8.16) below.) We patch together B(1)’v = Bv/G1
-~Dv1,v2 and all Mv1,v2’s and obtain a complex manifold B(1)v. Then
B(1)v is a fibre space of elliptic curves over E = {(t1, s2)~t1|  03B51, IS21
 (03B52)1 2} by the morphism

where [[S1, S2, 03B6]] is the point on B(1)’v which is the image of the point
[S1’ S2, 03B6] on Bv. The fibre space 03BC(1)v: B(1)v ~ E has the singular fibre
over any point (0, S2). The inverse image 03BC(1)-103BD{(0,S2)~S2|(  (03B52)1 2})
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consists of five surfaces R,,1, V2’ v 1 = 0, 1, 03BD2 = 0, 1, and R, defined by the
equations;

R"t, "2 is isomorphic to P1 x {(0, s2)lls21 |  (03B52)1 2} and R is a non-singular
model of -103BD({0,S2)~S2|(03B52)1 2}), which is also isomorphic to

P1 {(0,S2)~S2|I  (03B52)1 2}. Now the group G2 operates on B(1)v in the
following way.

Hence g2 has five fixed manifolds FV1,V2’ vi = 0, 1, v2 = 0, 1 and F,
defined by the equations

The quotient space B(1)v/G2 has five singular loci Fv1,v2 and F corre-
sponding to Fv1,v2 and Fv.

Let WV1, ,,2, XVI, V2 be open sets in C3 defined by the inequalities:

Patching together WVI, v2 and Xv1, v2 by the relations

we obtain a manifold Mv1,v2. Then the resolution of the singularity
is given by the meromorphic maps
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Next we shall resolve the singularity F. First we remark that on B(1)’v
the automorphisms

and

of B(1)’v are the same. Hence we use the second form. Then the resolution
of the singularity F is given by the meromorphic maps

where Y,,1, v2, Zv1, ,,2, A, B are open sets in C3 defined by similar inequali-
ties as above. Patching together Yv1, V2 Zv1, V2’ v1 = 0, 1, V2 = 0, 1, A
and B, we obtain a complex manifold M. Then B-, = (B(1)’v/G2-~v1,v2
Fv1,v2~F) U Vl, v2 Mv1, V2 U M is the desired non-singular model of
B,, . The structure of the fibre space of elliptic curves is given by the
morphism

flv : v ~ D, is of maximal rank at any point on -1v(Dv-Dv n S). The
inverse image -1v(Dv n S) consists of nine surfaces NI’ 1, V2’ Gv1, v2,
vl - 1, 2, V2 = 1, 2, ffi1, ffi2, 6 defined by the equations
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Note that Rv1,v2 and R1 are Pl bundle over 0 x D(2) and Gv1, v2 and 9Î2
are P 1 bundle over D(1) x 0. R1 and ffi2 are non-singular models of
-1v(0 x (2» and -1v(D(1) x 0), respectively. The surface 6 has a

structure of P1 bundle over P 1. Moreover over 0  D’(2) and D’(1) 0,
the singular fibres are of type Kod (I*0). Because of the existence of the
surface S the morphism Pv : v ~ Dv is not flat.

(5.6) Case d: First we shall resolve the singularities of Êv in the same
way as in (5.2). Then the automorphisms and T2 operate on this non-
singular model. Hence we can use the arguments in (5.5). The holomor-
phic section ov : Dv ~ Bv can be lifted to the holomorphic section ôv:
Dv ~ Êv.

(5.7) Case e: The singular loci of Êv are l1 = {x = 0, y = 0, s1 = 01
and l2 = {x = 0, y = 0, S2 = 01. By a finite succession of monoidal
transformations along the singularity L1 we obtain a threefold B(1)v
which is smooth outside l2. Next applying a finite number of monoidal
transformations along the singularity l2 we obtain a threefold B(2)v.
Then B(2)v is smooth except a point over the origin sl - 0, S2 = 0. Then
we resolve this singularity in such a way that the automorphisms il and
i2 operate on the non-singular model B(3)v thus obtained. Finally we
can use the arguments in (5.5) and obtain a non-singular model Êv of
Bv. The holomorphic map section ov : Dv ~ Bv can be lifted to the holo-
morphic section ôv : Dv ~ v.
Note that the fibre of v: v ~ Dy over the origin may contain sur-

faces. Hence the morphism Av may not be flat.

(5.8) From the above considerations we can patch together B’ and E",
v = 1, 2,···, n and obtain a non-singular elliptic threefold fi :  ~ W.
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Note that the fibres of fl :  ~ W over the points pi, i = h + 1, h + 2,···,
n may contain surfaces.

(5.9) Following Kodaira we can introduce a group manifold B#0 over
Wo = W-{ph+1,ph+2,···,pn}, where every fibre of B#0 is a commutative
complex Lie group and over W’, B#0|W’ is equal to B’. (See Kodaira
[19] II, p 603 - 609.) Moreover B#0 operates on B#0 = B|Wo. (See
Kodaira [19] II p 609 - 613.) Hence for any open set U of Wo, if we
have a holomorphic section ~ ~ H0(u, O(B#0)), then the isomorphism

defined by the multiplication by ç can be extended to the isomorphism

We call an open covering {u8}i~I of Wo an admissible covering, if

(Ui) is locally finite and for any pair (i, j), i ~ j, the closure Ui n uj
in W does not contain any pi, i = h + 1, h + 2,···, n.

Let H;dm(WO, O(B#0)) be a first Cech cohomology group defined by
all admissible covering of Wo. Then for any element {~ij} = 11 E
H1adm(W0, O(B0)), we can define a fibre space Mo : B~0 ~ Wo by identi-
fying |ui and |uj by the isomorphism L(~ij). (See Kodaira [19] II

p 613.) Since we only consider the admissible coverings, the fibre

space Mo : B8 ~ Wo can be naturally extended to the elliptic threefold
03BC~:B~~ W. That is, there exists an open neighborhood of pi, i = h+1,
h + 2,···, n in W such that the restriction

are isomorphic.

DEFINITION 5.10: B’’ is called the elliptic threefold associated to an
clement il E H;dm(Wo, O(B#0)).

6. The canonical bundle formula for elliptic threefolds

In this section we shall prove the following.

THEOREM 6.1: Let 03BC~ : B~ ~ W be the elliptic threefold associated to
an element 11 eHadm(WO, O(B#0)). Then 12K(B~) has the form

where F is an effective divisor on W, G is an effective divisor on B, whose
components are contained in the fibres 03BC-1~(Pv), v = h + 1, ..., n, and H
is an effective divisor on B’’ whose components are contained in singular
fibres of type Kod (III) and Kod (IV).
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Moreover F is written in the form

where S(*) = ¿Sj such that the singular, fibre over Sj is of type Kod (*)
COROLLARY 6.3: Conjecture C3 is true for the elliptic threefold Il,, : B "

~ w.

For the proof we use the cusp form A (z) of weight six with respect to the
group SL (2, Z). That is A (z) has the form

where i(n)’s are so called Ramanujan’s numbers. (Gunning [8]). 4(z)
is also written in the form

Li(z) has the following properties which we use later.

(6.4) d (z) is holomorphic on the upper half plane H and never vanishes
at any point on H.

Proof of Theorem 6.1: We use freely the notations in Section 4 and
Section 5.

(A) First we consider the case that W has a meromorphic 2 form Q
and B’’ = B. We consider a 12-tuple meromorphic 3 form

Since we have

we can consider 3’ as 12-tuple meromorphic 3 form on B’. Note that
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the divisor (E’) on B’ defined by E’ on B’ has the form M’*«Q», where
(a) is a 12-tuple canonical divisor on W’ defined by 03A9.
In the following we shall prove that 039E’ can be extended to 12-tuple

meromorphic 3 form B on B.

(6.6) Case a: We set

Then we have

(See (4.5)(5.1).) Hence co induces a holomorphic 3 form on B’v. Using
the canonical resolution (5.1 ) we can show that co induces a holomorphic
3 form on Bv. Moreover if the singular fibre is not of type Kod (III) or
Kod (IV) then co does not vanish at any point of Ê,. If the singular fibre
is of type Kod (III) or Kod (IV), then co = 0 defines the divisor whose
components are contained in the singular fibre.

These divisors appear because of the existence of an exceptional sur-
face of the first kind. (See (5.2).) On B’v, 039E’ is written in the form

where

Hence 039E’|Bv’ can be extended to 12-tuple 3 form Elî, on Ê, by (6.7) since
cv is holomorphic 3 form on By. The divisor which corresponds to BIBv
has the form

where

and H is the divisor whose components are contained in the singular
fibres of type Kod (III) and Kod (IV).
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(6.9) Case b: the case

By the explicit resolution of singularities it is easy to see that a holo-
morphic 3 form dtl A dt2 A dzlz on Fv can be naturally extended to the
holomorphic 3 form cv on Ev. cv does not vanish at any point on v.
Hence 039E’|Bv, can be extended to a meromorphic form by

where

As we have

the divisor (SI Bv) on Ev which corresponds to 039E|v has the form

The case

A holomorphic three form dsl 039B dt2 039B dzlz on Fv can be extended to a
nowhere vanishing holomorphic form ÕJ on Ev. Then s, - 03C9 induces a
nowhere vanishing holomorphic form 03C9 on v. Then 3’1 BVI can be ex-
tended to a meromorphic form by



320

where

Hence we have

(6.10) Case c: We set

where al - h 1, 0 (0, 0), a2 - ho, 1 (0, 0).
(See (4.8).) We set

where

Then in the same way as in (6.6) we can easily show that co can be extend-
ed to a holomorphic form 03C9 on v. Hence 039E,’|B’v can be extended to a
meromorphic form 039Ev on Ê, by

where

Hence we have

where G is an effective divisor on Bv whose components are contained
in the fibre over the origin and H is an effective divisor whose components
are contained in the singular fibres over S1 = 0  D(2), and S2 = D(1)
x 0. Note that if both singular fibres over S, and S2 are neither of type
Kod (III) nor Kod (IV), then H = 0.

(6.11) Case d: A holomorphic form dSlAds2Adz/z on ËB can be

extended to a nowhere vanishing holomorphic form on By. Then a holo-
morphic form (S1)03B4/2S2.  (for 03B4 see (4.9)) can be extended to a holomor-
phic form cv on B,,. Hence 039E’|B’v can be extended to a meromorphic
form B,, on Bv by

where
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As we have

we have

where G is an effective divisor whose components are contained in the
fibre over the origin and S, = 0 x D(2), S2 = D(1) x 0.

(6.12) Case e: By explicit calculations we can show that a holomorphic
form ds, A dS2 039B dz/z can be extended to a holomorphic form 15 on By.
Then a holomorphic form (S1)03B41/2(S2)03B42/2. W can be extended to a holo-
morphic form co on By. Hence 3’IBv’ can be extended to a meromorphic
form 039E|v on Ev by

where

As we have

we have

where

and G is an effective divisor on Bv whose components are contained in
the fibre over the origin.
By the above arguments we can extend E’ to a 12-tuple meromorphic

three forme on B. Hence 12Kj has the desired form.
(B) W has a meromorphic form Q and a general elliptic threefold

B~.
From our construction of E it is easy to show that

where il = {~ij}. (See (5.9)). Hence 3 can be considered as a 12-tuple
three form on B’’. Hence 12K(B") has the desired form.

(C) When W has no meromorphic forms. The above local argument
shows that in this case 12K(Bl) has the desired form. g.e.d.

REMARK 6.13: If we will only show that the above 03C9 on B’v can be holo-
morphically extended to co on B," there is a much easier proof which also
assures that conjecture C3 is valid for the elliptic threefold B". (See [36].)
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But for the detailed study of elliptic threefolds, the explicit formula of the
pluri-canonical bundle (6.1) is indispensable.

(2) The same argument as above gives another proof of the canon-
ical bundle formula for elliptic surfaces (Compare (6.2) and Kodaira
[19] III p. 14-15, especially (12.6) and (12.7)).
PROPOSITION 6.14: If an elliptic threefold f : V ~ W has a rational

section then f : V ~ W is birationally equivalent to the basic elliptic
threefold.

PROOF: We can assume V and W are smooth. Let S be an algebraic
subset of W such that the rational section is regular at any point W’
= W-S and Yw = f-1(w) is an elliptic curve for any point w E W’. We
can assume that S is a divisor and has normal crossings. We set V’ =
f-1(W’), f’ = f|v’. Then by the rational section, the fibre space

f’ : V’ ~ W’ has a structure of an abelian scheme over W’. On the
other hand the restriction 03BC’ : B’ ~ W’ of the basic elliptic threefold
p : B - W on W’ has a structure of an abelian scheme.
Moreover by the construction of the basic elliptic threefold we infer

readily that two fibre spaces f’ : V’ - W’ and p’ : B’ ~ W’ have the
isomorphic analytic family of polarized Hodge structures. Hence by
Deligne [5], Rappel (4.4.3), two abelian schemes are isomorphic. Hence
two elliptic threefolds are birationally equivalent. q.e.d.

REMARK 6.15: We can generalize the arguments in Kodaira [19] ] II

p 617-624, so that we can get the another proof of the above proposition.
It will be discussed in [36].

7. Generalized Kummer manifolds

In this section we shall study structures of generalized Kummer mani-
folds and shows that Conjecture Kn is true for Kummer manifolds.

DEFINITION 7.1: A smooth algebraic variety Y is called a generalized
Kummer manifold, if there exist an abelian variety A and a generically
surjective rational map g : A ~ V of A onto V. (We do not assume dim
A = dim V.)
A generalized Kummer manifold V is called a Kummer manifold

if V is a non-singular model of a quotient variety A/G of an abelian
variety A by a finite group G of analytic automorphisms of A.

THEOREM 7.2: The Kodaira dimension of a generalized Kummer mani-
fold V is 0 or -~.

PROOF: Let g : A - V be a generically surjective rational map of an
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abelian variety A onto V. We can assume that g is holomorphic at the
origin o of A. Then there exist global coordinates zl, Z2, ..., zn of A
such that zl, z2,···, zl give local coordinates of a small neighborhood
S of g(o) in V with center g(o).

Let ~ be an element of H° ( V, O(mKV)), represented as m-tuple 1 form.
That is, on B, ~ is written in the form

where IF is holomorphic on B. Let U be a small neighborhood of the origin
o in A such that g(U) c B. Then the pull back g*(~) is written in the
same form (7.3) on U. By Proposition 1.2, the pull back g*(~) is an ele-
ment of H°(A, sm(Q1)). Since the sheaf 0’ is free, g*(~) is written, on A
in the form

where C is a constant. Hence the holomorphic function 03A8(z1, z2,···, ZI)
is constant. This implies that any two elements of H0(V, O(mKV)) are
linearly dependent. q.e.d.

REMARK 7.5: Theorem 7.2 is also true for any compact complex mani-
fold M, which is an image of a generically surjective meromorphic map
g : T ~ M of a complex torus T onto M. The proof is the same as above.

COROLLARY 7.6: For any generalized Kummer manifold V, the Albanese
map a : V - Alb ( ) is surjective. Hence a fortiori

Hence Conjecture ln is true for generalized Kummer manifolds.

PROOF: A non-singular model of the image a(V) of the Albanese map
a is also a generalized Kummer manifold. Hence we have 03BA(03B1(V)) ~ 0.
The corollary follows from Corollary 3.6. q.e.d.

LEMMA 7.7: For any generalized Kummer manifold V, any fibre of the
Albanese map a : V - Alb (V) is connected. Moreover general fzbres are
generalized Kummer manifolds.

PROOF: There exists a generically surjective rational map g : A ~ V
of an abelian variety A onto V. We can assume h = a o g : A ~ Alb (V)
is a group homomorphism and g is holomorphic at the origin o of A.
Let A 1 be the connected component of h-1(o) which contains the origin
o. A1 is an abelian subvariety of A. There exists a finite unramified cover-
ing f : Ã ~ A such that À = A 1 x A2 , where A2 is an abelian variety.
Hence we can assume Â = A. As g is holomorphic at the origin, there
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exists a neighborhood U of the origin 02 of A2 in A2 such that for any
point x ~ U, the composition gx : A1 x A V is a well defined ra-

tional map. As gx(A 1 x) is a point of Alb ( ), general fibres of the
Albanese map are generalized Kummer manifold, if fibres are connected.
Let

be the Stein factorization of the Albanese map. It is enough to prove that
y : W ~ Alb (V) is a birational morphism. As we have

we have

Let r : W* ~ W be a desingularization of W. First we shall prove that
y* = y o T : W* ~ Alb (V) is isomorphic to the Albanese map of W*.
There exist a birational morphism 7r : V* -+ V such that 03B2* = fi on :
V* ~ W * is the morphism. By Lemma 2.6, Alb (V) and Alb (V*) are
isomorphic. By the universal property of the Albanese map, there exist a
group homomorphisms hl : Alb (V) ~ Alb (W) and h2 : Alb (W*) ~
Alb (V) such that the diagram (7.8) is commutative. This implies that
h 1 o h2 is an isomorphism. As dim Alb ( ) = dim (Alb ( W’ ), h 1 and h2
are isomorphisms. Hence the morphism y* : W* -+ Alb (V) is isomorphic
to the Albanese map of W*. Now, because of the following Proposition,
the lemma is proved.

PROPOSITION 7.9 : Let V be a generalized Kummer manifold. If q(V) =
dim V, then the Albanese map a : V ~ Alb (V) is a birational morphism.
PROOF: There is a generically surjective rational map g : A -+ V of an

abelian variety A onto V such that g is holomorphic at the origin o
of A. Let zl , Z2, ..., Zl be global coordinates of Alb (V). As the Albanese
map a : V ~ Alb (V) is surjective, cv = a*(dzl A dZ2 A... A dzl ) is a



325

non zero holomorphic 1 form on V and g*(co) is non zero holomorphic
1 form on A. We set h = a o g. Then h is a morphism and we can assume
that h is a group homomorphism. The connected component A 1 of h-1(o),
which contain the origin of A is an abelian subvariety of A. If necessary
we take a finite unramified covering of A and we can assume A = A 1 x

A2, where A2 is an abelian subvariety of A. Then the restriction g’ of g
on the abelian subvariety A2 is well-defined rational map of A2 to V. As
we have

g’ is generically surjective. Hence we can assume that A = A2. Let g# :
A# ~ V be an elimination of the points of indeterminacy of the rational
map g, where A# is obtained by succession of monoidal transformations
with non-singular centers. As g* (co) is a nowhere vanishing form, g# * (co)
vanishes only on the exceptional divisor D of A# appeared by monoidal
transformations. Hence the restriction a’ : V-g#(D) ~ Alb (V)-
a o g#(D) of a is a finite unramified covering. On the other hand, since
every irreducible component of D is a ruled variety, a o g# (D) consists of
algebraic subsets whose complex codimensions in Alb (V) are at least
two. (See Remark 3.2.) Hence the fundamental group 03C01(Alb (V» is
isomorphic to the fundamental group n 1 (Alb (V)-03B1 o g#(D)). This im-
plies that the unramified covering a’ : V-g#(D) ~ Alb (V) - 03B1 o g#(D)
can be extended to the finite unramified covering â : V ~ Alb (V).
As V is birationally equivalent to V and V is an abelian variety, a : V
-+ Alb (V) is a birational morphism. q.e.d.

THEOREM 7.10: Let V be a generalized Kummer manifold of dimension 1.
If K(V) = 0, then there exist an 1-dimensional abelian variety A and a
generically surjective rational map g : A ~ V.

PROOF : There exists a generically surjective rational map f : A ~ V
of an n-dimensional abelian variety A onto V. Let S be an algebraic sub-
set of A such that f is not holomorphic at any point of S and holomorphic
at any point of A-S. The codimension of S’ in A is at least two. We can
assume that the origin o E A - S. We set p = f(o). Let f# : A# ~ Y be
an elimination of points of indeterminacy of the rational map f, where
i : A# ~ A is the inverse of successive monoidal transformations with

non-singular centers and/* = f o i. Let S# be the exceptional divisor
in A# appeared by the monoidal transformations. We have 03C4(S#) = S.
We set A’ = A - S and V’ = V-f#(S#).
Let ç E H°(V, O(mKV)) be a non-zero m-tuple 1 form on V. We can

find global coordinates zi, z2,···, Zn of A such that the pull back f*(~)
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is represented in the form

where C is a non-zero constant. (See (7.4).) Hence we can find a locally
finite open covering {Bj}j~J of A’ such that

are local coordinates of llli and the morphism foi is written in these
coordinates as the projection

Now we consider the linear subspace L in C" defined by the equations

Let 03C0 : Cn ~ A be the morphism of the universal covering of A. Then
L’ - L - 03C0-1(S) is connected, since 03C0-1(S) is an analytic subset and
L 4I 03C0-1(A). Let {ui}i~I be an open covering of L consisting of countably
many open sets Ui such that x(Ui) c Bj for some j E J. Then 03C0(Ui) is
contained in an analytic subset in Vj defined by the equations

Hence f o x(Ui) is a point. Hence f o 03C0(L’) consists of at most countably
many points. As f o 03C0(L’) is connected, f o x(L’) is the point p = f(o).
Let A#1 be the irreducible component of f#-1(o), which contains

(f|A’)-1(p). We set A1 = 03C4(A#1). Then dim A#1 = dim A1 = n - l,
since on A’, Al is equal to (f|A’)-1(o). We shall show that A1 is an abelian
subvariety of A. As Al ~ 03C0(L’) and L’ is dense in L, we have Al :D 03C0(L).
On the other hand 03C0(L) is a complex Lie subgroup of A of complex
dimension n - l. As Ai :D 03C0(L) and dim Ai = n - l, 7r(L) is a closed
Lie subgroup. Hence 03C0(L) is an abelian subvariety of dim n -1 and A1
= 03C0(L).

If necessary, we take a finite unramified covering of A and we can as-
sume that A = Ai x A2 , where A2 is an abelian subvariety of A. Then
the restriction f2 : A2 ~ V of the rational map f to A2 is well defined
and gives a generically surjective rational map. As dim A2 - l, the theo-
rem is proved.

COROLLARY 7.11 : Let V be a generalized Kummer manifold of Kodaira
dimension zero. For any effective m-th canonical divisor D = If=l ni - Di
E ImKvl for some m, we have K(Di) = - oo, where Di is an irreducible
component of D.
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PROOF: There exists a generically surjective rational map g : A ~ V
of an abelian variety A onto V, where dim A = dim V. Let g# : A# ~ V
be an elimination of points of indeterminacy of the rational map g,
where i : A# ~ A is the inverse of a succession of monoidal transfor-
mations with non-singular centers and g = g # o 03C4-1. Let ç be an ele-
ment of H0(V, O(mKV)) such that qJ = 0 is the equation of the divisor
D. The pull back g * * ( ((J) has only zeros on the exceptional varieties of
A# appeared by the above monoidal transformations. Hence Di is the
image of an irreducible component of exceptional varieties, which is a
ruled variety. Hence we have 03BA(Di) = oo. q.e.d.

REMARK 7.12: Theorem 7.10 supports Conjecture Cn . Suppose we have
a fibre space g : A# ~ V such that A# is birationally equivalent to a
simple abelian variety and K(V) = 0. If dim A &#x3E; dim V, the Kodaira
dimensions of general fibres of g are positive by Theorem 3.3. Hence
Cn implies that dim A = dim V. And this is true because of Theorem
7.10.

THEOREM 7.13: Let V be a Kummer manifold. Then K(V) = 0, if and
only if there exists a smooth algebraic variety V* such that

(1) V* is birationally equivalent to V,
(2) the Albanese map a : V* ~ Alb (V*) gives the structure of an

analytic fibre bundle whose fibre is a Kummer manifold of Kodaira
dimension zero.

PROOF: If part is a consequence of Main theorem of Nakamura -
Ueno [26].
We shall prove only if part. By Definition 7.1, there exist an abelian

variety A of dimension 1 = dim V and a finite group G such that V is a
non-singular model of the quotient space A/G. Moreover we can assume
that A is a product of simple abelian varieties.

Let g : Ã ~ A be a finite unramified covering of A such that Ã is a
product of simple abelian varieties. Let S be a singular locus of AJG.
Then f-1(s) is of codimension at least two in A. Hence S = g-1(f-1(S))
is of codimension at least two in Â. We set À’ = Â - 9 and V’ = A/G - S.
By the proof of Theorem 7.2 we infer that f o g|Ã,:Ã’ ~ V’ is a finite
unramified covering. Hence the fundamental group xi (A’) is a subgroup
of the fundamental group 03C01(V’) of finite index. Then there exists a sub-
group H of 03C01(A’) such that H is a normal subgroup of nI (V’) of finite
index. As the algebraic set S is at least of codimension two, we have
03C01(Ã) = 03C01(Ã). Hence there exists a finite unramified covering u : j
- Â which corresponds to the subgroup H ~ 03C01(A). As Â is a product
of simple abelian varieties, Â is a product of simple abelian varieties.
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We set A’ = u-1(Ã’). Then f o g o u|A’: A’ ~ v’ is a finite Galois cover-
ing. Hence the field extension C(j)/C(V) induced by this morphism is
Galois. The Galois group G of this field extension is a group of birational
transformations of 1. As an abelian variety is an absolutely minimal
model, G is a group of analytic automorphisms of A. (Lang [22] ] II
Section 1. Theorem 2.) As we have C(Â)G = C( ), V is a non-singular
model of a quotient variety A/G.
Hence we can assume that A itself is already a product of simple abe-

lian varieties. Let f : A ~ V be a generically surjective rational map in-
duced by the canonical morphism A - A/G. By Proposition 1.10 we
have

Hence there exist global coordinates zl , Z 2, ..., Z, of A such that

dZl-q+1, dZl-q+2,···, dzl are invariant under the action of G. We can
write A = Ai  A2, where A, and A2 are abelian subvariety of A such
that A2 is a finite unramified covering of Alb (V) by the morphism ce o f.
(We can assume that a o f is a group homomorphism.) Then we can as-
sume that A, has global coordinates zl , z2 , ’ - ’, Z’-q and A2 has global
coordinates zl-q+1, Z’-q+2’ ..., Zl-
By these coordinate an analytic automorphism g E G is written in the

form

where

We set H = {g E Gla2(g) = 0}. Then H is a normal subgroup of G. We
set
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Since we have

we have

Let w1, w2,···, wl-q, Zl-q+1,···, zl be new global coordinates of A
defined by 

In view of (7.14), by these new coordinates, any automorphism h e H is
written in the form

where

Note that for any fixed (z), wl , w2,···, W’-q are global coordinates of
A1.

Let Hl be a group of analytic automorphisms of the abelian variety
A 1 consisting of all automorphisms

We set F = A,IH,. Then the natural morphism r : X = A/H ~ A2,
induced by the projection map A = A i x A2 -+ A2 gives a structure of a
fibre bundle whose fibre is the quotient space F = A1/H1, in view of
(7.15). As H is a normal subgroup of G, the quotient group G = G/H
operates on X. Any element 9 i= id of G gives a fibre preserving analytic
automorphism of the fibre space i : X ~ A2 and has no fixed points
since a2(g) ~ 0. Moreover g operates on A2 by
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where 9 E G is a representative of g. Hence the morphism i : X ~ A2
is G equivariant.
By Hironaka [11 ], there exists a non-singular model F* of F such that

Aut (F) can be lifted to a group of analytic automorphisms of F*. By
replacing the fibre F of the fibre bundle i : X -+ A2 by F*, we obtain the
associated fibre bundle i* : X* ~ A2. Then G operates on X* and the
morphism z* is G equivariant. Moreover any element :0 id operates
on X* without fixed points. Hence the quotient : V* = X*/G ~ A2/G
is a fibre bundle over A2/G whose fibre is F*. V* is birationally equivalent
to V. Because of our construction it is easy to show that

and the morphism x : V* ~ A2/G is the Albanese map. q.e.d.

REMARK 7.16: The above fibre bundle a : V* ~ Alb (V*) is not only
an analytic fibre bundle but also a fibre bundle in the etale topology. The
proof is as follows.
We use the same notations as above. By the above proof it is enough

to show that there exists a finite unramified covering à : Ã2 ~ A2 such
that the pull back f : X ~ A2 of :X~A2 is a trivial fibre bundle.

Let Q, and O2 be period matrices of abelian varieties Al and A2 with
respect to global coordinates (z1, z2,···, zl-q), (zl-q+1, Zl-q+2,···, ZI)e
respectively. Let Â2 be an abelian variety with a period matrix 8Q2 with
respect to global coordinates (zl-q+1, ZZ-q+2, ..., Z,), where e = IHI.
Then by the natural morphism

Â2 is a finite unramified covering of A2 . We set Ã = Ai x Â2 . Then
wl , w2 , ’ ’ ’, Wl-,q, zl-q+1,···, zl are global coordinates of A and with
respect to these coordinates a period matrix of A has a form
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As B(h), h E H gives a homomorphism of A2 into A1, by the very def-
inition of C, there exists an (l - q)  q integral matrix M such that

Hence A has a period matrix

with respect to the global coordinates wl, w2,···, wl-q, zl-1+1,···, zl
and these global coordinates give the splitting of Â into Ai x Ã2. The
group H operates on Â by the same form as (7.15). Then it is clear that
X = Ã/H ~ Ã2 is the pull back of X ~ A2 by ô and X = Fx Ã2. q.e.d.

THEOREM 7.17: Let V be a generalized Kummer manifold. Suppose
q(V) = dim V-1. Then (D K(V) = - oo if and only if general fibres of
the Albanese map a : V ~ Alb (V) are P1,  03BA(V) = 0 if and only if the
Albanese map is birationally equivalent to a fibre bundle over Alb (V)
whose fibre is an elliptic curve.

PROOF: If part is a consequence of Corollary 1.16 and Theorem 7.13.
We shall prove only if part. There exist an abelian variety A and a gener-
ically surjective rational map g : A ~ V of A onto V. We can assume
that g is holomorphic at the origin of the abelian variety A and h =

a o g : A ~ Alb (V) is a surjective group homomorphism. By Lemma 7.7
general fibres of the Albanese map 03B1 : V ~ Alb (Y) are elliptic curves
or P 1. Assume that general fibres are elliptic curves. Then the all elliptic
curves appeared in the general fibres are the same elliptic curve E, be-
cause for every such an elliptic curve is an image of a translation of an
abelian sunvariety of A by the rational map g and the abelian variety has
only finitely many abelian subvarieties. Let A1 be the irreducible compo-
nent of h-1(0), which contains the origin of A. Then A1 is an abelian
subvariety of A. If necessary we shall take a finite unramified covering
of A 1 and we can assume that Ai = El x A2 , where A2 is an abelian
subvariety of A 1 and El is an elliptic curve such that a translation of
El is mapped onto a general fibre of the Albanese map a by g. Moreover
we can assume that A = El x A2 x A3, where A3 is an abelian subvariety
of A. The restriction h3 : A3 ~ Alb (V) of a group homomorphism h
on A3 is a finite unramified covering morphism. Let P be the fibre prod-
uct of Y and A3 over Alb (V). As h3 is finite unramified, Fis a finite
unramified covering of V. Hence we have K(V) = 03BA(V). On the other
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hand there exists a generically surjective rational map g : A ~ v.

Moreover the composition A3~A V gives a rational section of the
elliptic fibre space fi : V ~ A 3 . Hence by Proposition 6.14 the elliptic fibre
space fi : V ~ A3 is birationally equivalent to the basic elliptic fibre space,
which is constructed by the similar way as in Section 4. Let S be a singular
locus of fi : V ~ A3 . (See Section 4, p 299.) As all regular fibres are the
same elliptic curve E, the image of 0 : 03C01, (A3 - S) ~ SL (2, Z) is a finite
group. (See Section 4, p. 299.) Then there exists a finite unramified cover-
ing u’ : B’ ~ A3 - S whose covering transformation group is isomorphic
to G = 03A6(03C01(A3 - S)). Then we can extend the finite ramified covering
u : B ~ A3 such that B is a normal complex space and the group G oper-
ates on B. Moreovei u : B ~ A3 is unramified if and only if every com-
ponent of S is of codimension at least two. By Hironaka [11 ] there exists
a non-singular model B of B such that G operates on B. For any element
g E G, g operates on B x E by

where

and (1, r) is fundamental periods of the elliptic curve E. Then a : Î7

~ A3 is birationally equivalent to B  E/G ~ B/G. Let oc : V ~ A be a

non-singular model of B x E/G ~ B/G. Then there is a birational mor-
phism : A ~ A3. By the arguments in Section 6 we infer readily that

1 2Kç is linearly equivalent to 03B1*(12KV + F) + G + H, where F is an effec-
tive divisor on À and G and H are effective divisors on V. We write
F = mv=1nvCv where C,’s are prime divisors on W. We can assume
03C0(C1),···, n( Cr) are of codimension one in A3 and 03C0(Cr+ 1), 03C0(Cr+2),···,
n( Cm) is of codimension at least two. As V and V are birationally equiva-
lent 12KV is linearly equivalent to an effective divisor
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where F’ and G’ are effective divisors on r As we have 03BA(V) = 0, for
any positive integer 1

Since A3 is an abelian variety this means

Hence again using the arguments in Section 6 we infer readily that
03B1: V~A3 is bimeromorphically equivalent to an analytic fibre bundle
over A3 whose fibre is the elliptic curve E. Hence a : V ~ Alb (Y) is also
bimeromorphically equivalent to an analytic fibre bundle over Alb ( )
whose fibre is the elliptic curve E. q.e.d.

8. Examples

In this section we shall construct certain Kummer manifolds of Kodaira

dimension zero and calculate dimensions of their infinitesimal defor-

mation spaces. 

EXAMPLE 8.1: Let A be a complex torus of dimension 1 and let zl ,

Z2 , ’ ’ ’, zl be its global coordinates. Then the automorphism (z1,
Z2,···, Zl) H (-Z1, -Z2,···, -Zl) of C" induces the involution g : A
~ A. g has 2 21 fixed points. Hence if 1 ~ 2, the quotient space A/G has
2 21 singular points, which correspond to fixed points, where G is a cyclic
group of analytic automorphisms of A generated by g. Each singular
point has a neighborhood which is isomorphic to a neighborhood of the
singular point p in Q2 in Appendix (8.16). By the canonical resolution
of its singularities given in (8.16), we obtain a non-singular model M(l)
of A/G. The complex manifold M(l) is usually called a Kummer manifold.

If 1 = 1, A/G is analytically isomorphic to Pl.

LEMMA 8.2: For 1 ~ 2, we have

Hence K(M(I») = 0.
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Moreover for ml = 0 (2), the effective m-th canonical divisor has the
form

ivhere Ei is an exceptional divisor appeared by the canonical resolution.
(See (8.16).)

PROOF: As we have

the first part holds in view of Proposition 1.10. On the other hand we
have

We use the notation of Appendix 8.16. For mk = 0 (2), we have

This implies that G-invariant m-tuple 1 form (dZ1 A... A dzl)m induces
a holomorphic m-tuple 1 form on M(l). Hence by Remark 1.11 and Ap-
pendix 8.16 we have desired results. q.e.d.

LEMMA 8.3: M(l) is simply connected.

PROOF: See Spanier [32]. Another proof. Since M(l) is a deformation
of a Kummer manifold which is obtained from a product of 1 elliptic
curves (See (8.9)), we can apply a similar argument as one in the proof
of Lemma 8.12. q.e.d.

COROLLARY 8.4: If 1 ~ 1(2), there does not exist a complex manifold
V such that V is bimeromorphically equivalent to M(l) and 2KV is ana-

lytically trivial.

PROOF: Since Pg(M(l) = 0, if such V exists, then 03C01(V) ~ 1 by Ko-
daira [20] II, Theorem 33. q.e.d.

LEMMA 8.5:

PROOF: When 1 = 2, M(2) is a K 3 surface and the result is well known.

(See for example Kodaira [20] 1 p 782.) Assume 1 ~ 3. We set @ = uEi -
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We have a long exact sequence of local cohomology groups

On the other hand A - S is a covering manifold of M(1) - G, where S
is the set of all fixed points of g. Hence we have a spectral sequence

which degenerates and we have a canonical isomorphism

If q ~ 1- 2, by the Riemann extension theorem of cohomology groups
(Scheja [30]), we have an isomorphism

Hence we have an isomorphism

In our case it is easy to show that H1(A, e)G = H1(A, e). By the ex-
cision theorem of local cohomology groups, we have

and

where E and M are the same as those in (8.16). Hence by Lemma 8.18 we
have

Hence by (8.6), H1(M(l), e) is a sub space of H’(M(’) - OE, 0398
H1(A, 0398). Now we consider the analytic family (1,: R ~ U constructed in
Remark 8.9 below. There exists a point p ~ U such that -1(P) = M(l).
Let p: Tp(u) ~ H1(M(l), e) be the Kodaira-Spencer map for the family
: R ~ U. Then it is easy to show that the composition p : Tp(u) ~
Hl (M(l), 0398) ~ H1(M(l)-R, 0398) ~ H1(A, e) is nothing but the Ko-
daira-Spencer map of the analytic family M U ~ U of the complex
tori. As p is isomorphic (Kodaira-Spencer [21 Chap. VI Th. 14.3), we
have

and
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When A is an abelian variety, the above lemma is proved by Schles-
singer [31].

REMARK 8.9: Let U be a set of all l x 1 complex matrices X such that

U is an open set in C,2. Let G be a group of analytic automorphisms of
U x C’ consisting of all automorphisms

G acts properly discontinuously and freely on U x Cl. Let 2t be the quo-
tient manifold U x C’Ig and by (X, [z]), we denote the point in A which
corresponds to the point (X, z) ~ u  C’. Then the projection

gives a complete effective analytic family of complex tori.
Let G be a cyclic group of order two of analytic automorphisms of

91 generated by the automorphism

Then g has 221 fixed monifolds Di, i = 1, 2,···. 221 and the quotient
space U/G has 211 singular loci -9j corresponding to Di. For any point
p E Di, there exists an open set ? in 9f/G such that B is isomorphic to
? x W, where ? is an open set in U and W is a neighborhood of the sin-
gular point p in Q12. (See (8.16) below.) Hence we can resolve the singu-
larities of u/G, by using the canonical resolution of the singularity
of Q2 and obtain a complex manifold 3K. Moreover the natural projec-
tion : u/G ~ U can be lifted to the morphism : m~u.  ;m~u
is an analytic family of Kummer manifolds. If 1 ~ 3, from the iso-
morphism H’(M(l), 0398)  H1(A, e), we infer readily that the family
:m~ U is complete and effectly parametrized.

EXAMPLE 8.10: Let Ep be the elliptic curve with a period matrix (1, p),
where p = exp (2nif3). We set E(l) = E  E  ··· x E. Let G be a

cyclic group of order three of analytic automorphisms of E(l) generated
by the automorphism
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Then g has 3’ fixed points pi, i = 1, 2, ···, 31. Hence if 1 ~ 2, the quo-
tient space E(l)/G has 31 singular points pi, i = 1, 2, ···, 3’, correspond-
ing to the fixed point pi. Each singular point has a neighborhood in
E(l)/G’ which is analytically isomorphic to a neighborhood of the sin-
gular point p in Q13. By the canonical resolution of singularities, we ob-
tain a complex manifold N(l).

LEMMA 8.11 :

Hence K(N(l)) = 0, if 1 ~ 3. Moreover for 1 ~ 3, lm = 0 (3), the effective
m-th canonical divisor has the form

where Ei is an exceptional divisor appeared by the canonical resolution.
The proof is similar as that of Lemma 8.2.

LEMMA 8.12: N(l) is simply connected.

PROOF: We use the fibration f : N(l) ~ N(1) = P’ induced by the pro-
jection 

The morphism f is of maximal rank at any point over

and f : N(l) ~ N(1) = P(1) is a fibre space of principally polarized abelian
varieties. It is easy to generalize the argument of Ueno [34] 1 p. 86-87
and we infer readily that the singular fibres over these three points

have the form
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where Ci is one of the exceptional divisors Ek, k = 1, 2,···, 3’. (See
(8.11 ). )

Ci is analytically isomorphic to Pl-1. Ci and N(l-1) intersect transver-
sally.
Now we shall prove the lemma by induction on 1. N(1) is isomorphic

to P1, hence it is simply connected. Assume that N(l-1) is simply connect-
ed. Then the above singular fibres 9--j, j = 1, 2, 3 over qj are simply
connected. As Fj is a compact algebraic set, -f7j has a tublar neighbor-
hood Bj in N(l), which has a retraction to 57j. Hence Bj is simply con-
nected. We se t N’ = N(l)-3j=1 Fj, B = 3j =1 Bj. Then N’ is a torus
bundle over 4 ’. As N(1) is isomorphic to P1, ni (4 ’) is a free group ge-
nerated by the homotopy classes of loops 03C41, 03C42 which are small circles

arround qj , j = 1, 2 in d’, respectively. Let 03B31, 03B32,···03B32(1-1) be gener-
ators of the fundamental group of a general fibre f-1(u), u E d’. Then
7r,(N’) is generated by yi, 03B32,···, 03B32(l-1), 03B41, a2, where 03B41, b2 lie

over Tl, i2, respectively. We can choose r, i so small that there exists
a neighborhood mi of qi in N(1) such that ri = Ui and Bi ~ f-1(mi).
Then by Van Kampen’s theorem, we infer readily that 03C01(N(l)) is

trivial. q.e.d.

COROLLARY 8.13: If l&#x3E;3, l~0 (3), then N(l) does not have a bira-
tional model V such that 3Kv is analytically trivial.
The proof is similar as that of Corollary 8.4.

LEMMA 8.14: For 1 ~ 3, we have

PROOF: By similar arguments as those of the proof of Lemma 8.5, we
infer readily that

EXAMPLE 8.15: E(l) is the same as above. Let G be a cyclic group of
order three of analytic automorphism of E(l) generated by the auto-
morphism
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Then g has 3’ fixed points and the quotient space has 3’ singular points.
The resolution of these singularities is obtained by generalizing the pro-
cess given in [34] 1 p 56 and we obtain a non-singular model L (1) of the
quotient space E(l)/G. Then L(’) is simply connected. Moreover 03BA(L(l))
= 0. If 1 ~ 3, mKL(l) is not analytically trivial for any positive integer
m. If 1 = 2, L(2) is a K3 surface.

Appendix. The canonical resolution of certain quotient singularities

In this appendix we shall give the canonical resolution of the singular
point p of Qm (see (8.16) below) and calculate local cohomology groups
associated to the resolution.

(8.16) Let G be a cyclic group of analytic automorphisms of C1 generat-
ed by

where em = exp (203C0i/m). The quotient space Q’ = C’IG has only one
singular point p, which corresponds to the origin of C’. We shall resolve
this singularity.

Let Ui, i = 1, 2, ···, 1 be 1 copies of C’, whose coordinates are (w1i
w?, ’ ’ ’, W!), respectively. We shall construct a complex manifold M =
li=1 Ui by identifying open subsets of Ui - 1 and Ui, i = 2, 3, *’’,/,
through the following relations.

Meromorphic maps

induce a meromorphic map T : Qlm ~ M. Let E be a submanifold in M
defined by the equations
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Then E is analytically isomorphic to (1- 1 )-dimensional complex pro-
jective space p’- 1.

The meromorphic map T : Qlm ~ Af induces an isomorphism between
Qlm - p and M - E. Hence M is a non-singular model of Qm .
We set V = {(z1,···, Zl)~Zi|  (03B5)1/m}. Then the group G operates

on V and the quotient space VIG has only one singular point P. Let M be
an open set in M defined by the inequalities:

Then E c M and the above meromorphic map T induces an isomor-
phism between V/G-tl and M - E. Hence M is a non-singular model of
the quotient space VIG.
The procedure of resolving singularities will be called the canonical

resolution.

LEMMA 8.18: If 1 3 we have

PROOF: We have a long exact sequence

It is easily shown that

and

On the other hand by the same method as in the proof of Lemma 8.5
we have an isomorphism

As 1 ~ 3, we have

Hence we have an isomorphism

Using the Cech cohomology group with respect to the Stein covering
{Ui}, it is easily shown that
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