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1. Summary

The major objective of the present paper is to generalize some of the
results of Vervaat [12] and of the present author [1] and [6] in metric
number theory by considering an algorithm which includes those investi-
gated in the above papers. Though hints have been given for this more
general expansion in the literature, metric results achieved their most gen-
eral formulations in the quoted papers. Some of the results are new for
the special cases of [1 ], [6] and [12], or even for the classical expansions
of Engel, Sylvester and Cantor.

2. The algorithm

Let xj (n) &#x3E; 0, j = 1, 2, ... be a sequence of strictly decreasing func-
tions of natural numbers n and such that, for each j, 03B1j(1) = 1 and

03B1j(n)~ 0 as n - + oo . Let 03B3j(n) be another sequence of positive func-
tions of n on which some further assumptions will be imposed in the
sequel. Let 0  x  1 be an arbitrary real number and define the integers
dj = dj(x) and the real numbers Xj by the algorithm

In view of (1) and (2), we have to make a restriction on yj(n) in order to
guarantee that 0  xj+1 ~ 1. Since by (1)

we impose the condition

on the selection of 03B3j(n) for j = 1, 2,···. (1) and (2), under (3), yield
the infinite series
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Note that for any N,

and thus the infinite series in (4) always converges and

In this general set up, it is a very difficult question to find a criterion
for an infinite series in the form of (4) to be the expansion of its sum y
by the algorithm (1) and (2). We will not make an attempt to answer
this question. Its difliculty will be made clear through the examples, taken
from the literature, which are all special cases of (1) and (2). We shall
however formulate a simple criterion for y(x) = x, which is actually a simple
consequence of (5). For its formulation, we introduce a concept. Let
ki , k2,···, kN be positive integers and assume that there is at least one
real number x such that dj(x) = kj, j = 1, 2,···, N. Then, following
Vervaat [12], we call the vector (kl, k2,···, kN) realizable (with re-
spect to the sequences 03B1j(n) and 03B3j(n)), and an infinite sequence k 1, k2,···
of positive integers is called realizable if (kl, k2,···, kN) is realizable
for N = 1, 2,···. We now have

PROOF: Applying (2) in (5), we have that, for N ~ 2,

which, by (1), is smaller than

and the part ’if’ of the theorem is thus proved. On the other hand, as-
sume that for each x e (0, 1 ], y(x) = x. Then the decreasing sequence

of intervals, for any given realizable sequence k1, k2,···, contains a
single point in common as N - + oo . Since by (1) and (2),
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and

BN-AN~0 is exactly the condition of the theorem, hence the proof is
complete.

Though Theorem 1 is stated in terms of realizable sequences, it is ap-
plicable without their complete characterization as our examples below
will show this. We shall even have an example when the characterization
of realizable sequences is known but complicated and Theorem 1 will
therefore be applied without making use of the criterion for realizability.

Let us turn to some examples of the algorithm (1) and (2).

EXAMPLE 1: Let aj(n) = 03B1(n) for all j ~ 1. Let further 03B3j(n) = y(n) =
{03B1(n-1)-03B1(n)}/03B1(h(n)), where h(n) is an arbitrary integer valued func-
tion with h(n) ~ 1. Our algorithm reduces to that of Vervaat [12], who
termed the expansion (4) as the Balkema-Oppenheim expansion. (3) is
evidently satisfied and the criterion for realizability is easily seen to be
k1 ~ 2, and kj &#x3E; h(kj-1) for j ~ 2.

EXAMPLE 2: When 03B1j(n) = 1/n for all j ~ 1, and yj(n) = aj(n)/bj(n),
where aj(n) and bj(n) are positive integer valued functions of n, we get
back the expansion considered in Galambos [1 ] and called there the Op-
penheim expansion. The condition (3) was overcome by the assumption
that 03B3j(n)n(n-1) = hj(n) is integer valued for all j. In this case, realizabil-
ity is similarly characterized as in the case of Example 1 with hj(n) for
h(n). Dropping, however, this restriction, a complete solution of the
problem of realizability under (3) is yet to be found; for further details,
see Oppenheim [9]. The question y(x) = x is, however, settled for most
cases in [9], which solutions are all consequences of Theorem 1. We re-
mark here that Oppenheim [8] recommended a much more general ex-
pansion than the one described in this example, most of his results are
unpublished on that line.
Both examples include the classical expansions of Engel, Sylvester,

Lüroth and the product expansion of Cantor; see the quoted references,
and also [11 ].

EXAMPLE 3: Let g &#x3E; 1 and let 03B1j(n) = oc(n) be the sequence ug-m,
u = 1, 2, ..., [g]-1 and m=1,2,···, arranged in a decreasing order.
The digits dk = dk(x), determined in (1) and (2), when we choose 03B3j(n) =
1 for all j and n, are the non-zero digits of the usual algorithm. For non-
integral g, the criterion for realizability is very complicated, see [5],
Theorem 1, however, immediately yields that y(x) = x for each x e (0, 1 ].
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EXAMPLE 4: Let 03B1j(n) = 03B1(n) be the sequence ukiq, q2 qk, where
qt 2 are given integers and Uk = 1, 2, ’ ’ ’, qk-1, and let yj(n) = 1

again for all i and n. Then our algorithm reduces to the Cantor series,
leaving out the zero terms. For a list of references on metric results for
this series, see Galambos [5].

3. Metric results

We now turn to the investigation of some metric properties of sequences
associated with the algorithm (1) and (2), assuming, of course, the
validity of (3). These metric results will be in terms of Lebesgue measure
03BB. Our first results will be for the variables

THEOREM 2: For any integer t, zt has a uniform distribution and it is
independent of (dl, d2, ..., dt-1), that is, for any integers j1, j2,···, it-1
and for any real number 0  c ~ 1,

and

PROOF: We first prove the second equation. Note that if (j1, j2,···,
jr -1 ) is not realizable then both sides are zero and thus the conclusion
is evidently true. Let now (j1, j2,···, jt-1) be realizable. Then by (1)
and (2), the set

is an interval with

and

Hence its length

which proves the second equation. The first equation immediately follows
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from the second one by simply adding up both sides for all positive inte-
gers j1, j2,···, jt-1.
We could now proceed to show that, under some restrictions on 03B1j(n)

and yj(n), the z’s satisfy an ’almost independence’ property, and thus
strong laws and asymptotic normality follow. We do not go into the de-
tails of this program, which can be done on the line of Galambos [1 ].
We shall rather make our investigation in another direction, obtaining
some new insight even into the classical expansions of Engel and Syl-
vester and Cantor’s product representation.

THEOREM 3: Assume that 0  cj ~ 1, j = 2, 3, ..., t are such that for
every n ~ 2, there is an integer kj = kj(n) satisfying

(8) 03B1j+1(kj) = cj+1{03B1j(n-1)-03B1j(n)}/03B3j(n), 1 ~ j ~ t-1.

Let further r ~ 1 be an integer and put cl = 03B11(r -1). Then the events
{zj ~ cj}, j=1,2,··· t are independent, i.e.,

Before giving its proof, let us clarify the statement of Theorem 3. Since
the z’s are dependent random variables, the events {zj ~ uj} with ar-
bitrary real numbers 0  uj ~ 1 are dependent as well. Our aim in Theo-
rem 3 was to show that for some expansions, i.e., for certain a’s and y’s,
we can find (non-continuous) sequences Cj for uj such that the events
above are independent. Formula (8) explicitly gives these sequences
{cj}, when they exist. Since the cj are not arbitrary, the events {zj ~ cj}
cannot describe completely the behavior of the zj, but they may provide
interesting discrete approximations. Immediately following the proof,
we shall give several examples for determining the cj and applications will
also be presented.

PROOF: By the algorithm (1) and (2) and by the assumption (8),

Therefore

where the summation £’ is over all t-vectors (j1,···, jt) for which
jl &#x3E; r, j2 &#x3E; k1(j1),···,jt &#x3E; kt-1(jt-1). Thus by Theorem 2,
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By induction over t this yields that

The fact that this equation does mean the independence of the events
{zk  ckl follows from Theorem 2. The proof is complete.

In the remainder of the paper, we discuss the conclusion of Theorem
3 and deduce some of its consequences for the special cases of Examples
1-3. We first show that it generalizes some earlier results of the present
author. Note that for the Oppenheim expansion of Example 2, (8) is

satisfied with cj+1 = 1/rj, where rj is an arbitrary positive integer, when-
ever the hj(n) are integer valued. Hence Theorem 3 implies the following
COROLLARY 1: With the notations of Example 2, we define the positive

integers Tj = Tj(x) as

where we put ho(j) = 1. Then, if the hj(n) are integer valued, Tl, T2, ...
are stochastically independent and for s = 2, 3, ...

PROOF: By (9) and by the definition of the T’s, zj ~ 1/rj if, and only if,
Tj+1 &#x3E; rj, where the rj are arbitrary positive integers. Thus Theorems
2 and 3 immediately yield our corollary.
Though this Corollary was stated in my recent paper [6], we refor-

mulated it here to show the strength of Theorem 3, and to state one of
its consequences not mentioned in [6]. First note that the Tj are distri-
buted as the denominators in the Lüroth expansion, hence everything
known for the Lüroth denominators can be restated for the T’s, see

Jager and de Vroedt [7], Salât [10], Galambos [1] and Vervaat [12]. In
particular, by the result on p.116 of Vervaat [12], we have that, as N ~ +~,

exists and is an absolutely continuous proper distribution function. From
this limit relation it follows that

in probability. As for the Lüroth denominators it then follows that the
limit relation (10) cannot be strengthened to hold for almost all x. All
these interesting properties are believed to be new even for the classical
expansions, except that of Lüroth.
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Turning to Example 3, we consider the case 1  g  2 and when g
is the solution of an equation ga+1-ga = 1 for some integer a ~ 1.

Theorem 3 is again applicable with cj = g-m, where m is an arbitrary
integer. Indeed, from (8) we get that for the above choice of cj, kj(n) =
n+a+m. Through the relation (9) we therefore get that the variables
Tj = dj - dj - 1 with do = 0, are stochastically independent, a result of
Galambos [2] which has interesting statistical applications [3]. We re-
mark here that this earlier result of the author is implicitly reobtained in
Vervaat [12], through example 1.2 on p. 104 and the discussion on p. 116.
Vervaat’s work, however, does not cover Example 3 for any other g.
Theorem 3 is applicable to the general case of Example 3, by choosing
cj = g-m/(g-1) where m is a positive integer such that cj  1. For

these m, kj(n) has the same form as before and through (9) we have the
joint distribution of T, = dj-dj-1 if this difference is at least M defined
by

and Tj = 0 otherwise. This result again appears to be new.
To several special cases of the Balkema-Oppenheim expansion as well,

Theorem 3 is applicable. One can go through the extensive list of exam-
ples on p. 104-109 of Vervaat [12], for instance. 1 wish to point out that
Theorem 3 actually is applicable in connection with any Balkema-Oppen-
heim expansion when h(n) is monotonic as follows. Consider an arbi-
trary Balkema-Oppenheim algorithm and apply this in (1) and (2) for
j = 1. Take a sequence 0  cj ~ 1, and define 03B12(n) by (8) as follows.
We choose a monotonic function k(n) (in most cases h(n) itself is possible),
so that the right hand side of (8) should define a monotonic function
a2(.) at values of k(n). For any integer m not taken by k(n), a2(m) is
defined arbitrarily. We now complete the definition of the algorithm by
taking 72(n) corresponding to a Balkema-Oppenheim algorithm with
k(n) as the new map h in the second step. We now proceed to define each
successive step in this same manner. This results in an algorithm each step
of which is a Balkema-Oppenheim algorithm but possibly with varying
a’s and h’s. Our results are then in principle applicable to these cases.
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