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1. Introduction

1.1. In this paper we investigate the coalescence of certain classes of
Lie algebras and answer a question of Ian Stewart [8], p. 98.

1.2. Notation. We employ the notation and terminology of [8].
Unless otherwise stated all Lie algebras referred to in this paper are of fz-
nite or infinite dimension over an arbitrary field f.

Let L be a Lie algebra and H a subspace of L (qua vector space over
f). By H ~ L, H ~ L, H si L, H « m L we shall mean respectively that H
is a subalgebra, ideal, subideal (in the sense of Hartley [2] p. 257),
m-step subideal (m a non-negative integer) of L. L (n) and Ln will denote
respectively the nth terms of the derived series and lower central series
of L. We define inductively L(0) = L, L (n+l) = [L (n) , L(n) and L1 = L,
Zn+1 = [Ln, L]. Square brackets [, will denote Lie multiplication, and
triangular brackets ,&#x3E; will denote the subalgebra generated by their
contents. If A, B are subsets of L, [A, B] is the subspace spanned by all [a, b]
with a E A, b E B; AB&#x3E; is the smallest subalgebra containing A and left in-
variant under Lie multiplication by the elements of B. If H  L the
ideal closure series of H in L is defined inductively by Ho = L, Hn+ 1
= HHn&#x3E;. Thus Hn+1 is the smallest ideal of Hn which contains H.
By a class  of Lie algebras over f we shall mean a class in the usual

sense, whose elements are Lie algebras over f, with the further properties
that 0 E , and if H ~ K e 3i then H E . An algebra (ideal, subideal, ... )
lying in  may be called an 3i-algebra (-ideal, -subideal, ...). A
closure operation A assigns to each class X another class AX in such a
manner that for all classes ,  we have %0 = 0,  ~ A3i, A(A3i) = A3i,
and if  ~ then A ~ Ay. (Here 0 denotes the class of all 0-dimen-
sional algebras, ~ is class inclusion).

3i is A-closed if X = AX. Given two closure operations A and B we
can define another closure operation {A, B} by letting {A, B}  be the
smallest class y ~  such that y = Ay = By. Given two classes , y
we define a (non-associative, non-commutative) product  comprising
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all Lie algebras L having an ideal 1 E X such that LfI E Y. Inductively
we define 1··· n to be (1··· n-1)n and put n = ···  (to n
factors). We also define an associative and commutative sum +
comprising all Lie algebras L with a finite series 0 = Lm~ Lm-1 ~
... · ~ L1 = L such that each factor is in  or 9).
We shall need the closure operations s, L, Q, E, L, No, defined as

follows: s3i, I3i, and Q3i consist respectively of all subalgebras, subideals,
and quotient algebras of -algebras. EX = ~~n=1 n (thus +y =
E( u y)). L E L3i if and only if every finite subset of L lies inside an
3i-subalgebra of L. 3i is No-closed if whenever H, K are -ideals of L
then H+ K E 3i ; in general No 3i is the smallest No-cl osed class containing
3i. We say a class  is subjunctive if X = {I, NOIX.
As regards classes, 9t denotes abelian Lie algebras, ? nilpotent, Rc

nilpotent of class ~ c, F finite dimensional, Fm finite dimensional of
dimension ~ m, OE finitely generated. Thus EU is the class of soluble
Lie algebras and Un denotes soluble Lie algebras of derived length ~ n.

Let L be a Lie algebra. If H and K are subspaces of L we write H+ K
to mean the vector subspace of L generated by H and K (it consists of
elements h + k, h E H and k E K). By J ~ H+ K we mean J is a subalgebra
of L contained in the subspace H+ K. We say H and K are permutable (or
H permutes with K) if [H, K] is contained in H+ K. Thus if H, K ~ L
and H permutes with K, then H, K&#x3E; = H+ K. Let H, K ~ L then we
define; IK(H) = {x E K|[H, x] ~ H}. IK(H) is the idealiser of H in K and
is a subalgebra of K. The permutizer of H in K, PK(H) = X ~ KI [X,
HI 9 X+H&#x3E;. Clearly PK(H) is the largest subalgebra of K which per-
mutes with H.

Let A, B, A1, A 2 ... be subspaces and a, b, al , a2, ... be elements of
a Lie algebra L. Then we define inductively [A, oB] = [A, ,B] = [[A,
n-1B], B] and [A1,···, An, An+ 1 = [[A1,····, An], An+1]. Similarly
for [a, nb] and [a1,···, an, an+1].

1.3. Basic Results.

LEMMA (1 ): Let H~mL, K~n L, and J = (H, K). If H permutes with
K, then J ~r L, where r ~ (m+n)!.

PROOF: See Amayo [1 ].

It is well known and easy to prove that if H, K ~ L and K idealises H

(i.e [H, KI 9 H) then K idealises every term of the ideal closure series
of H in L. Furthermore H si L if and only if H equals some term of its ideal
closure series, and if H ~ K, then every term of the ideal closure series
of H in L is contained in the corresponding one for K. Finally if H a m L
and K~n L, then H n K~r L, where r ~ max (m, n).
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LEMMA (2): Let H~m L, K~n L and P = PH(K). Then

where rOn = 0, rln = 1, and Ymn = (rm-1,n+1+n+2)!.
PROOF: The result is trivial for m = 0, 1. Let m &#x3E; 1 and assume in-

ductively that the result is true for m -1, for all n. Put Hl = HL&#x3E;,
K1= (pK) n K, and Pl = PH(Kl ). Then K1 ~ H1, K1 ~ K ~n L,
and H ~m-1 H1. Thus Kl ~n+1 H1 and so by induction

where r = rm-1,n+1. If Q = P1, K1&#x3E;, then Q = Pl + Kl and by lemma
1, Q ~s L, where s = (r+n+2)!. Since (P, K&#x3E; = P+K and P ~ U =
PK&#x3E;, then

which implies that P permutes with Kl and so P ~ P1. Thus U = P+
U n K = P+K1 ~ P1 + Kl - Q. Hence the sth term, Us, of the ideal
closure series of U in L is contained in 6s = Q. But K1 = U n K ~
U ~ Us ~ Q = P1 + K1, and so U, = Pl n Us + K1. Furthermore K
idealises U and so K idealises Us. Therefore (Us, K&#x3E; = Us + K =
(Us n P1+K1)+K = U, n Pi + K. This implies that Us n Pi per-
mutes with K and so

Thus P = US n P1. Finally Us ~s L and Pi ~r+1L and s = (r+n+2)!
&#x3E; r+1, and the result follows.
We recall that a class  is subjunctive if  = y, N0}.
THEOREM (3): Suppose that X is a subjunctive class and H, K are per-

mutable -subideals of L. Then J = (H, K) is an X-subideal of L.

PROOF: By lemma 1, J si L and J = H+ K. Let H ~m L and K ~n L.
We induct on m + n to show that Je . W.L.O.G we may assume that

m, n &#x3E; 0. If m + n ~ 2, then J is a sum of two 3i-ideals and so J E 3i.
Assume that m + n &#x3E; 2 and the result true for m + n -1. Let H1 =
HJ&#x3E;. Then Hl - Hl n J = H+ Hl n K, and so H permutes with Hl
n K. Now H~m J and so H ~m-1 H1, and H1 ~ K ~n H1, and
Hl n K« K ~  = I3i, and so by induction Hl E . Similarly K, =
(KJ) E . Finally J = H1 + K1, a sum of two 3i-ideals and so Je .
This completes the proof. 

REMARK: These results are the Lie theoretic analogues of the ones in
Roseblade [6]. In a somewhat similar vein we can prove:
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LEMMA (4): Let H, K E I, a subjunctive class, and suppose that H, K si
L. If A ~ H, B ~ K and A permutes with B, then there exists X E I,
X si L with A, B&#x3E; ~ X :9 H+ K.
From Amayo [1] we have;

LEMMA (5): Let H, A, B ~ L and J = A, B). If A idealises H and
permutes with B, then (HI) = HB&#x3E;.

Finally we need the simple result,

LEMMA (6): Let L be a Lie algebra, H si L and P ~ L such that L =
H+P2. Then L = H+P(n) for all positive integers n.

PROOF: Since pen) ch P ~ L, then P(n) ~ L, and so by lemma 1,
K = (H+P(n» si L. Let Kl = (KL). Then L/KI is soluble. But we also
have

L/K1 = (H + P2)/K1 ~ (Kl + L2)/K1 = (L/Kl)2.
Therefore L = Kl and, since K si L, we must have L = K.

PROOF: (of lemma 4)
Let J = (H, K), C = A, B) and suppose that H ~m L and K a " L.

We induct on m. For m = 0 or 1 we have H ~ L so H ~ J, whence J is
an -subideal of L by theorem 3. So we may take J for X. (since also
J = H+K). Let m &#x3E; 1 and suppose that the result holds for m - 1 in

place of m. Put Hl = (HL) and A1 = (AB). Evidently C = A + B so
A1 = C ~ A1 = A+B ~ A1 and B ~ A1 ~ K ~ H1. Now H~m-1
Hl, K n Hl ~n Hl and K n Hl ~ K so that K n Hl E II = I. Further-
more A1 ~ L and A1 = A + B n A1 implies that A permutes with
B n A1. So by the inductive hypothesis we can find Xl e T with Xl a p L
for some p and

Let Qp+1 be the (p+1)th term of the ideal closure series of A in L.
Since X1~p H1 ~ L then Qp+1 ~ Xi. We also have Qp+1 ~p+1 L.
Now B idealises A and so by the remarks in section 1.2 we have that B
idealises Qp+1 and so

By lemma 2 we have P ~r L for some r. Since P permutes with Qp+1
then Qp+1, P) = Qp+1 + P si L by lemma 1. Put

We have Qp+1 ~ Xl so Qp+1 si Xl whence Qp+1 ~ I = . Further-
more P ~ K so P si K and so P ~ . Thus by theorem 3 X E I. Now

C = A, B&#x3E; = A1 + B ~ Qp+1+P =X and X ~ X1 + P ~ (H+K~H1)
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+ K 9 H+ K. Hence the result holds for m and our proof is complete.

2. The derived join theorem

Here and in the sequel the symbols À( m, n, ···) and 03BBi(m, n,···),
for i = 1, 2, ..., will denote non-negative integers depending only on
the arguments shown.

In [1] we proved:

THEOREM (A): (The Derived Join Theorem). Suppose that J = H1···,
Hn&#x3E; and Hi a hi L for i = 1, 2, ..., n. Then there ex ists À = À(h, r) such
that

and

whenever h1+··· + hn ~ h and r1 + ... + rn ~ r.
By lemma 2 if Hl ~h1 L and H2 ~h2 L, then there exists 03BB1 = 03BB1 (h)

such that

whenever h1 + h2 ~ h · 03BB1(0) = 0, Zl (h) = rhih2 as defined in lemma 2.
Let 03BB2(h) = 03BB(h, 0) in theorem A and let n = 2. Then

Put M = J(;.2) and K = M, H2&#x3E;. Then = M + H2 ~ Hl + H2 and
so K = K n I-Il + H2. This implies that K n Hl permutes with H2 .
Thus

This proves

COROLLARY (A1): Let Hl a hl L, H2 a h2 L. Then there exists 03BB2 =

;’2 (h) such that

whenever h1 + h2 ~ h.
Theorem B. Suppose that J = H1,····, Hn&#x3E;, where Hi ~hi L for

i = 1, ..., n. Then there exists 23 = 23 (h) and subideals P1,···, Pn of
H1,···, Hn respectively such that

and
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whenever hl + ... +hn ~ h. 

PROOF: If some hi = 0, then J = Hi = L. We may assume that
i = 1 and put Pl = Hl, Pj = Hj(j &#x3E; 1) and A3 = 0. W.L.O.G assume
that hi &#x3E; 0 for all i. We define inductively subalgebras Pi, Qi of J and
integers pi, qi as follows:

By induction on i it follows that

Suppose inductively that

and

Since hi+1  h it follows from (1) and (8) that Pi+1 ~pi+1 L. Now
Pi+1 and Qi are permutable and so by lemma 1, (5) and (9), we have
Qi+1 ~qi+1 L. But Pl = Q1 = H1~h1 L, and so (10) and (11) hold for
all i, 1 ~ i ~ n.

Let rl = 0, ri+1 = 03BB2(h+qi) for 1 ~ i ~ n -1. We apply corollary
A 1 to the pair Hi+1, Q to obtain

Finally we define 03BB3(h) = A(h, r1+r2+··· +rn). Then by (3), (12) and
theorem A it follows that

This proves theorem B.



125

Suppose that X is a subjunctive class of Lie algebras (i.e. I = I =
No I) and each Hi E I. Then by theorem 3 and a simple induction on i
(for each Pi E I = I) it follows that each Qi E I. Since J(03BB3) ~ J, and
so J(03BB3) ~ Qn, we have,

COROLLARY (B1): Suppose that J = H1,···, Hn) and Hi ~ hi L (1 ~
i ~ n) and each Hi lies in a subjunctive class I. Then

and so

We recall that a class  is said to be Q-closed if quotients of 3i-algebras
are also -algebras.

LEMMA7.Let H ~m L, and H, K ~  = {I,Q}.If J = H,K&#x3E;
and K permutes with H, then J E Il +m.

PROOF: By induction on m. If m = 0, then J = H E . Let m &#x3E; 0,
and assume the result for m -1. Now J = H+ K, since K permutes with
H. Let Hl = HJ&#x3E;. Then Hl = H+ Hl n K, and so Hl n K permutes
with H. Furthermore Hl n K ~ Ke 3i implies Hl n K ~ X. We also
have H ~m-1 H1 and so by induction, Hl ~ 1+m-1. But Hl ~ J, and
J/H1 ~ K/H1 n K ~ Q = , and so J ~1+m.
We note that if J = (H, K&#x3E;, H a m J, K ~n J, and H permutes with K,

then J ~ 1+r, where r = min (m, n).
Trivially, if  is {I, Q}-closed, then so is m for every m &#x3E; 0.

COROLLARY (B2): Let J = H1,···, H) H. ~ htJ and Hi ~ X =
{I, Q)Xfor 1 = 1, 2, ··· , n. Then there exists 03BB4 = Â4(h) such that

and so

whenever hi + ... + hn ~ h.

PROOF: Using the notation of theorem B we have P1 = Q 1 = Hl E 3i.
Define ml = 1 and mi+1 = (1+qi)mi, i = 1, 2, ..., n. Assume induc-
tively that Qi ~ mi and apply lemma 7 to the pair Pi+1, Qi (for Pi+ 1 si

Hi+1 implies that Pi+1 ~  ~ mi). Then

Hence Qi E mi for all i, in particular Qn E aemn. Put 03BB4(h) = mn . By
theorem B, JO-3) ~ 6n and the result follows.
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3. Local coalescence

Let 3i be any class of Lie algebras. We say that  is coalescent if and
only if in any Lie algebra the join of a pair of 3i-subideals is always an
X-subideal. We say that  is locally coalescent if and only if whenever
H and K are 3i-subideals of a Lie algebra L then every finitely generated
subalgebra C of J = H, K) is contained in some -subideal X of L
with C ~ X ~ J.

In [2] Hartley has proved that over fields of characteristic zero, the
class 9è of nilpotent Lie algebras is locally coalescent (This is false for
characteristic p &#x3E; 0). We shall prove the following:
THEOREM (C): Over fields of characteristic zero, the universal class D

of all Lie algebras is locally coalescent.
By the derived join theorem the join of a pair of soluble subideals is

always soluble. Thus we have

COROLLARY (C1): Over fields of characteristic zero, the classes R and
OE n E% are coalescent.

COROLLARY (C2): (Over fields of characteristic zero) Let J = (H, K),
H si L and K si L. If JIJ2 E R, then J si L.

PROOF. Since J/J2 ~ CR then there exists C ~ R with J = C+J2. By
theorem C we can find X si L with C ~ X ~ J. Thus J = X + J2. By the
derived join theorem there exists r such that J(r) si L. Finally since X si
J, then by lemma 6, J = X +J(r) and so by lemma 1, J si L.

REMARK: The result above holds if J is the join of finitely many subi-
deals. We say a class  is persistent if in any Lie algebra the join of a pair
of 3i-subideals is always an -algebra. For example by the derived join
theorem the class EU of soluble Lie algebras is persistent. From theorem
C we have

COROLLARY (C3): Over fields of characteristic zero, every i-closed per-
sistent class is locally coalescent.

Finally we mention a result which generalises corollary C2. First we
note that if 3i is locally coalescent then OE n X is coalescent. If  is a sub-
junctive and locally coalescent and H, K e 3i in corollary C2, then the sub-
ideal X may be taken to be in 3i. Finally by corollary B 1 we may choose
r such that J(r) ~  and so by theorem 3, J = X +J(r) E 3i. Thus we have
(if OE is the class of Lie algebras L with L/L2 e F)
COROLLARY (C4): (Over fields of characteristic zero) Suppose that X

is a subjunctive and locally coalescent class. Let H, K E , H si L, K si L,
and J = H, K). If J E OE, then J si L, J ~ R n  In particular the class
OE m 3i is coalescent.
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PROOF: (of theorem C).
First we need the simple result,

LEMMA (8): (Any field) Suppose that we have a chain of Lie algebras
An ~ An-1 ~ ... ~ A1 ~ Ao = A such that Bi ~ Ai and Bi si Ai-1
for i = 1, ..., n . Then 

PROOF: Trivial by induction on n.
In order to prove theorem C we seek the truth of the following state-

ment (over fields of characteristic zero):
If H, K si L, J = H, K&#x3E; and C ~ J, Ce @, then there exists X si

L with C ~ X ~ J. *
We establish the truth of (*) by first considering some special cases.

We assume throughout that H ~m L and K ~n L.

Case 1. L = A +J, A~ L, A2 = 0, A n J = 0. We have [A, Hm] ~
[A, mH] ~ A n H = 0 and so A centralises Hm. By lemma 5,

Similarly (Kn)L&#x3E; ~ J. Put F = (Hm)L&#x3E; + (Kn)L&#x3E;. Then F -:1 L,
F ~ J. Clearly JIF is the join of two 9è-subideals of L /F and, as 9è is
locally colescent (see Hartley [2] p. 259, theorems 2-4), there exists
X jF si L /F with (C+F)/F ~ X/F ~ J/F. Thus X si L and C ~ X ~ J.
This proves (*) for case 1.

Case 2. L = B + J, B2 = 0, B ~ L.
Since B is abelian then U = B n J ~ B. But U ~ J and so B a L. Now

L / U satisfies the hypothesis of case 1, and so there exists X/ U si L / U
with (C + U)/U ~ X/U ~ J/ U. Hence X si L and C ~ X ~ J and (*)
is proved for case 2.

Case 3. L (d) = 0 for some d.

Case 4. HamL, K ~n L, and JE E2[.
Let H a Hm-1 ~ ··· ~ L and K = Kn a Kn-1 ··· ~ L. We use in-
duction on m + n. If m + n ~ 2, then J si L (by lemma 1) and so we may
take J for X. If one of m, n is 0 then J = L and there is nothing to prove.
Assume that m, n &#x3E; 0, m + n &#x3E; 2 and (*) is true for m + n -1. Let J1 =

* Is trivially true if d = 0 or 1. Let d &#x3E; 0 and assume inductively that (*) is true
for d-1 in place of d. Let B = L(d-1). Then by induction there exists Y/B si LIB with
(C+B)/B ~ Y/B ~ (J-r-B)/B. Thus Y si L and C ~ Y ~ J+ B and C ~ J, C e G.
Apply case 2 to J+B (for B2 = L (d) = 0, and B a L). Then we can find XI si J+B
with C ~ Xl ç J. Put X = Xl n Y. Then by lemma 8, X si L. We also have C ~ Xl
~ Y ~ J. This completes our induction on d and proves (*) for case 3.
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Hm-1, K), and J2 = H, Kn-1&#x3E;. As H and K are soluble then by the
derived join theorem (Hm-1 ~m-1 L and Kn-1 ~n-1 L), for a sufficient-
ly large r, we have

and

Let

be the ideal closure series of D in L. Since D a Jl , then by an earlier
remark (see remark before lemma 2) Jl idealises every Di. Let us fix i,
1 ~ i ~ r. Then (J1 + Di)/Di ~ E, (J1+Di)/Di i = (Hm-1+Di)/Di,
(K+Di)/Di&#x3E; ~ (J1+Di-1)/Di, (Hm-1+Di)/Di ~m-1 (J1+Di-1)/Di,
and (K+Di)/Di ~n (J1 + Di-1)/Di. Therefore by the induction on

m+n-1 there exists Yi/D si (J1 + Di-1)/Di with (C+Di)/Di ~ Yi/Dii
 (Jl +Di)/Di. Thus for each i, 1 ~ i  r, we have Yi si Jl + D i -1 and
C ~ Yi ~ J1+Di. Let Y = ~ri=1 Yi . Then by lemma 8 Y si J +Do = L,
and C ~ Y ~ J1 + Dr = Jl.

Similarly by considering E, we get some Z si L with C ~ Z ~ J2. Let
Xi - Y n Z and F = Jl n J2 . Clearly J ~ F, C ~ X1 ~ F and Xl
si L. Now Hm-1 idealises H and Kn-1 idealises K, and so Hm-1 n Kn -1
idealises both H and K and so idealises J. Furthermore from above,
F(r) ~ J(r)1 ~ J(r)2 ~ Hm-1 ~ Kn-1. Thus F(r) idealises J. We apply case
3 to F/F(r) to obtain an X2/F(r) si F/F(r) with (C+F(r))/F(r) ~ X2/F(r)
~ (J+F(r))/F(r). Thus X2 si F and C ~ X2 ~ J+F(r). But J ~ (J+ F(r))
and so J n X2 ~ X2, which implies that J n X2 si F. Finally let X = Xl
n J n X2. Then C ~ X ~ J and since Xl si L, X1 ~ F, then by lemma 8,
X si L. This completes our induction on m + n and proves (*) for case 4.

Case 5. The general case.
We have H si L, K si L, J = H, K) and C ~ J, C e R. By the derived
join theorem there exists an integer r such that Y = J(r) ~r L. Let
Y = Yr « Yr-1 a ’ ’ ’ o Fi ~ Yo = L be the ideal closure series of

Y in L. Since Y ~ J then J idealises Yi and (J, Yi) = J+ Yi for all i,
0 ~ i ~ r.
We fix i, 1 ~ i ~ r. Then (J+ Yi)/Yi E ÇJ1r and is the join of a pair of

subideals of (J+ Yi-1)/Yi. Hence applying case 4 to (J+Yi)/Yi we get
an XilYi si (J+Yi-1)/Yi with (C+Yi)/Yi ~ Xi/Yi ~ (J+ Yi)/Yi . Thus
for each i, 1 ~ i ~ r, there exists Xi si J + Yi-1 with C ~ Xi ~ J+ Yi .
Let X = n i =1 Xi . By lemma 8 X si J+ Yo = L. We also have C ~ X ~
J+Yr = J.

This proves (*) in the general case and so proves theorem C.
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REMARK: In [6] Roseblade and Stonehewer prove that every subjunc-
tive class of groups is locally coalescent. It is still an open question for Lie
algebras, though most of the more familiar classes of Lie algebras are
locally coalescent (see Amayo [10]).

Let 3i be any {I, Q, E}-closed class of Lie algebras and suppose that
3i n E21 is locally coalescent. Clearly 3i is also a subjunctive class. In the
proof of case 5, let H, K be -subideals of L, J = H, K&#x3E;. By corollary
B 1 we can choose r such that j (r) -a r L and J(r) E . By local coalescence
of 3i n E2f we can choose Xi/ Yi e 3i n EU (for 3i is Q-closed implies that
(H+Yi)/Yi ~ and (K+Yi)/Yi ~  for all i; and (J+Yi)/Yi ~ EU). ln

particular XrlYr e 3i and since Yr = Y = J(r) E 3i, then by E-closure

X,. e 3i and so X e 3i as X si L implies that X si Xr ( = I).
Thus we have proved;

COROLLARY (C5): Let 3i = {I, Q, E) be a class of Lie algebras. Then
3i is locally coalescent if and only if X n EU is locally coalescent.
We note that by corollary Bl or B2 we may replace ’locally coalescent’

in corollary C5 by ’persistent’. In the next section we will show that we
may even replace ’locally coalescent’ by ’coalescent’.
We recall that if ,  are classes of Lie algebras, then  +  denotes

the class of Lie algebras L with a finite series 0=L0~L1~ ····~ Ln
= L such that the factors are in X or Y. It is easily verified that 1(3i + )
~ I+) Q( + ) ~ Q+Q, and ( + ) n E% =  n EU + y n E2f.
Obviously +y is always E-closed. Thus from these properties and
corollary C5 we have,

COROLLARY (C6): Let , y be any {I, QI-closed classes. Then X +
is locally coalescent (resp. persistent) if and only if X n E2[+ ?-) n E21
is locally coalescent (resp. persistent).

4. Coalescent classes with finiteness conditions

Using the notation of [8] and [9] we let

denote the classes of Lie algebras satisfying the minimal condition for
(respectively) subalgebras, ideals, subideals, and ascendant subalgebras
(H asc L if there is a chain H = Ho ~ H1 ~··· H03C3 = L, for some or-
dinal (1 so that for all 03B1  (1, Ha ~ H03B1+1 and for all limit ordinals 03B2 ~ 03C3,

H03B2 = ~03B103B2 H03B1). We let

denote the corresponding maximal condition classes. We also denote by
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the class of Lie algebras in which every subideal is finitely generated.
For fields of characteristic zero, it follows from Hartley ([2] p. 259,

theorem 5) that the class r¡J of finite dimensional Lie algebras is coales-
cent ; and from Stewart [8], the class Min-si is also coalescent and the
question as to whether Max-si is coalescent is raised.
We will show that all the classes in (a), (b) and (c) apart from possibly

Max-a, are coalescent (for fields of characteristic zero, false for charac-
teristic p &#x3E; 0).

It is easy to show that if 3i denotes any of the classes in (a), (b) and (c)
then (for X ~ Min-« )

If X ~ Min-a or Max-~, then

(Min-a is {Q, E}-closed.)
By Corollary CI the class R n EU is coalescent. Now a Lie algebra

with a finite series each factor of which is finitely generated is necessarily
also finitely generated. Thus if , y denote any of the classes in (a), (b)
or (c), and , y) ~ Min-a then

a coalescent class (for characteristic zero; false for characteristic p &#x3E; 0).
We note that  +  is the smallest E-closed class containing 3i and y
Thus if  is E-closed then  +  = 

THEOREM (D): Let X be a Q-closed class of Lie algebras such that
3i n E% is coalescent. Suppose that H si L, K si L, J = (H, K), and
there exists A ~ J, A si L, with (H+ A)/A ~  and (K+ A)/A E  Then

J si L and there exists B ~ J with J/ B e X n EU.

PROOF. By the derived join theorem, there is an integer r such that J(r)
si L. Since J(r) ~ J, then B = (A + J(r)) ~ J. Clearly JjB is a join of two
3i n E2!-subideals and so is in 3i n EU( is Q-closed). By lemma 1, B a"
L for some n.

Let B = Bn ~ Bn-1 « ... ~ B1 ~ Bo = L be the ideal closure series
of B in L. Then J idealises each Bi for i = 0, 1, ..., n. Let us fix i, 0 - i
~ n -1. Since 3i = Q3i and J(r) ~ B ~ Bi+1, then (H+Bi+1)/Bi+1
~  ~ E and (K+Bi+1)/Bi+1 ~  ~ EU. Furthermore (J+ Bi+ 1)/Bi+ 1

= (H+- Bi+1)/Bi+1, (K+Bi+1)/Bi+1&#x3E;, the join of two X n E2!-sub-
ideals of (J+ BJ/Bi+ 1. Therefore as X n E91 is coalescent, (J+ Bi+ 1)/Bi+1
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si (J+Bi)/Bi+1, which implies that

So we have a series J = J+ Bn si J+Bn-1 si ... si J+Bo = L. Thus J
si L, and theorem D is proved.

REMARK: To obtain J si L in theorem D, it is enough to insist that
3i n E91 be a class satisfying; in any Lie algebra, the join of a pair of
3i n E2!-subideals is always a subideal.
The derived join theorem is also true for groups (see Roseblade [5])

and so is lemma 1 (see Robinson [3]). So we have the group theoretic
analogue of theorem D,

COROLLARY (Dl): Let 3i be a class of groups closed under the taking
of quotients and such that the class of soluble X-groups is coalescent. Let
H sn G, K sn G, J = H, K&#x3E;, and A a J, A sn G such that HA/A, KA/A
E 3i. Then there exists B ~ J with J/B ~  n EU and J sn G. (where E91
denotes the class of soluble groups).
THEOREM (E): Suppose that X = {I, Q, E} is a class of Lie algebras.

Then 3i is coalescent if and only if X r) EU is coalescent.

PROOF: Clearly 3i = No . By the derived join theorem E2! is persistent.
Thus if  is coalescent then so is 3i n E2f. On the other hand let J =

H, K&#x3E;, H si L, K si L and H, K E . By the derived join theorem, there
is an r such that J(r)~r L, and J(r) E (for  is subjunctive, and by
corollary B 1 or B2). Let J(r) be the A of theorem D. Then the hypothesis
of theorem D is satisfied (taking 3i n E2! as coalescent) and so J si L. But
J/J(r) e 3i m E2!, being the join of two 3i n E2’f-subideals, and since
3i = EX and J(r) E , then J E . So 3i is coalescent. This proves theorem
E.

REMARK: A similar statement holds for groups and provides an al-
ternative method for proving the coalescence for such classes whose
soluble groups are well behaved.

Clearly if ,  are both {I, Q}-closed then X +  is {I, Q, E}-closed.
So we have

THEOREM (F): If 3i and P are {I, QI-closed classes then X + ID is co-

alescent if and only if  n E91 +  C) E2f is coalescent.
From this and the remarks before theorem D we have

COROLLARY (FI): Let , denote any of the classes Min, Min-si,
Min-asc, Max, Max-si, Max-asc and RI. Then (over fields of character-
istic zero)  +  is coalescent. In particular X is coalescent.
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We note that the class Min-si + Max-si is the Lie theoretic analogue
of the class of minimax groups which is also coalescent (see Robinson
[4]).
From (d) and theorem D we note that if H, K E Max-a and H, K si L,

then (over fields of characteristic zero) if J = (H, K), J si L. We will
show that Min-~ is coalescent (we still cannot decide whether Max-~
is persistent).

Let H, k ~ Min-~, H si L, K si L, J = (H, K&#x3E;. Let

By a result of Schenkman [7 ], A ~ L and B a L. Let C = A + B. By
Min-~, there exist integers m, n with A = Hm, B = Kn. Thus HIA E
ll4’in-« (’) 9è = r¡J n 9è, which is coalescent (by Hartley [2]). Hence
J/C ~  n 9è and j/C si L/C. Now A has Min-H (the minimal condition
on ideals of H contained in A) and so Min-J. Similarly B has Min-J and
since B n A ~ J, B/B n A ~ C/A has Min-J (as a J-module). Thus
C has Min-J and so J E Min-a and J si L. This completes the proof of
Min-a is coalescent (over fields of characteristic zero). We note that
if Min-~n denotes the class of Lie algebras satisfying the minimal con-
dition on n-step subideals, then Min-~n is coalescent, by a similar proof.
(n &#x3E; 0).
REMARK: Over fields of characteristic p &#x3E; 0, the classes in corollary

FI are not persistent. This follows from corollary C6 and a forthcoming
paper of mine which shows that the class  is not persistent in character-
istic p &#x3E; 0.
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