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1. Introduction

A result of Roseblade and Stonehewer [5] states that every subjunctive
class of groups is locally coalescent. Whether the corresponding result
for Lie algebras is true remains an open question. In this paper we will
prove that certain ’nice’ subjunctive classes of Lie algebras are locally
coalescent. These include the classes 9è, L 9è, and Lr¡J of nilpotent, locally
nilpotent and locally finite Lie algebras respectively.

All Lie algebras considered in this paper will be of finite or infinite di-
mension over a fixed but arbitrary field k of characteristic zero, unless
otherwise specified.

Notation and terminology for Lie algebras will be the same as in
Stewart [6] p. 80-81 and Hartley [4] p. 260-261.
A class X of Lie algebras is coalescent if and only if in any Lie algebra

the join of a pair of 3i-subideals is always an X-subideal. We say that X is
locally coalescent if and only if whenever H and K are X-subideals of a
Lie algebra L, then every finitely generated subalgebra C of J = (H, K)
is contained in some -subideal X of L with C ~ X ~ J.

Evidently if  is a locally coalescent class, then R m 3i is coalescent,
where R is the class of finitely generated Lie algebras.
A class  is said to be subjunctive if and only if (i) subideals of X-al-

gebras are again 3i-algebras and (ii) in any Lie algebra the join of any
pair of 3i-ideals is in .
The classes 9è, L9è, and LF all satisfy (i), and by lemmas 1 and 7

and the remark at the end of p. 265 of Hartley [4], they all satisfy
(ii).

2. Preliminary results

Let A, B be (vector) subspaces of a Lie algebra L. We define [A, B] to
be the subspace spanned by Lie products of the form [a, b] where a E A
and b E B. Inductively we define [A, nB] = [ [A, n _ iB], B] if n &#x3E; 0, and

put A = [A, oB]. We let AB denote the smallest subspace containing A
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and invariant under Lie multiplication by the elements of B. Evidently

We say that A and B are permutable if and only if

Let A1 = A&#x3E; be the subalgebra generated by A and suppose that A and
B are permutable. Now Ai is spanned (qua vector space) by elements of
the form [a1,···, an] where a1,···, an ~ A and n &#x3E; 0. If b E B, then by
the Jacobi identity

From this and a straight forward induction on n we get [al’ ..., an, b] E
A1 + B for all al’ ..., an E A and b E B. Thus [A1, B] ~ A1 + B. Similarly
if El = (E), then [Al’ B1] ~ Al + B1. Thus Al and B, are permutable.

This together with lemma 4 of Amayo [1 ] yields

LEMMA 1: (Over any field). Let X be a subjunctive class and let H, K be
X-subideals of a Lie algebra L. If A, B are permutable subspaces of H and
K respectively, then there is an -subideal X of L such that

(Here H+ K denotes the subspace of L spanned by H and K; it may not
be a subalgebra of L. )
We recall briefly a construction of Hartley [4] p. 265-266. Let L be a

Lie algebra over a field  of characteristic zero. Let 0 = t&#x3E; be the field
of formal power series in the indeterminate t with coefficients in ; a
typical element oc of ko is of the form

ar e f, n = n(ot) is an integer; addition and multiplication is defined in the
usual way. We denote by L ~, the set of all formal power series

with coefficients xr e L and where n is an integer depending on x. Let
y = 03A3yrtr be another element of L~ and define addition, multiplication.
and multiplication of elements of L~ by scalars from to according to the
rules
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This makes L 1 into a Lie algebra over fo and L is contained in L t as a
subset.

Now let A be any subspace of L and let A t be the set of elements
x = E Xrtr of L~ such that every xr E A. This clearly makes A~ a (fo-)
subspace of L~. If also A is a subalgebra of L, then it is easy to see that
A t is a (fo-) subalgebra of L~.
From the definitions above we obtain

1

(a) If A ~ H ~ L, then A
(b) If H ~ L, then for any n &#x3E; 0, (H~)n ~ (Hn) t and (Ht )(n) ~ (H(n» 1
(c) If A is finite dimensional over f, then A t is finite dimensional over 0.

Evidently any non-zero element x of L t may be expressed uniquely in
the form

where x0 ~ 0. We shall refer to xo as the first coefficients of x. Now let
y = tm Il 0 Yrtr, where y0 # 0, and let oc, fi E k. Then

and [x, y = tn+m [x0, yo ] + terms involving higher powers of t.
Let M be a subspace (i.e. fo-vector subspace) of L t and denote by

M~, the collection of all first coefficients of elements of M together with
the zero element. Then the equations above show that

II

(a) If M is a subspace (resp. subalgebra) of L~, then MI is a subspace
(resp. subalgebra) of L,
(b) If M ~ N ~ L~, then Ml ~ N~ ~ L,
(c) If M ~ L~, then for each n &#x3E; 0, (Mn)~ = (M~)n and (M(n))~ =
(M~)(n),
(d) If A is a subspace of L, then (A’)’ = A.

Let d be a dérivation of L. We define a mapping exp (td) of L t by
the following; for x = 03A3 xrtr ~ L~,
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Then it is easy to show that exp (td ) is a Lie automorphism of L. Now
let d1,..., ds be derivations of L and let e = exp (td), ei = exp (tdi),
1 ~ i ~ s.

If z is any element of L, then as z can be considered as an element of
L t, we have 

Thus

Put

Furthermore if A is a subspace of L, define

Then A* can be considered as naturally embedded in L~, and consists of
elements 03A3xrtr such that all the coefficients xr lie in some finite dimensional
subspace of A; it is obviously a subspace of L~ and (A*)’ = A.

LEMMA 2: 

(a) zd1··· ds = 0 or lst coefficient of ws;
(b) If A is a subspace of L then there exists a finite number 03B11,···, (Xk

(k ~ 2s) of automorphisms of L~ such that if M = A*03B11 + ··· + A*03B1k,
then Ad1 ··· ds ~ M’.

PROOF:

(a) For s = 1, this follows from (3). Let s &#x3E; 1 and suppose that the

result is true for s-1. Let w = zd1 ··· ds-1. If w ~ 0, then w is the first
coefficient of ws-1. Thus by (3), zd1 ··· ds = wds = 0 or 1st coefficient
of wes - w. But it is easy to see that

and so the result follows for s.

(b) Let {03B11, ···, ocj = {ei1 ··· eij 0 ~ j ~ s and 1 ~ i1  ···  i.
~ S}. Then (4) and (a) above show that for every element z of A, zd1···
ds is either zero, or the first coefficient of some element of M. Hence the
required result follows.

It is not very hard to see that if 1 ~ i1 ... ij ~ s, then

Let A, B be subspaces of L and let exp (B) = group of automorphisms of
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L generated by all exp (t ad (b)) with b e B and ad (b) denoting the ad-
joint map of L defined by b.
Define

It follows from (1) and lemma 2 that

(for clearly N G (AB)~ and by II(d) ((AB)~)~ = AB)
We note that if L* = L (Dk ko, then L* is a subalgebra of L~. Further-

more if in 1 we replace’~’ by ’*’ then the results of 1 remain true; indeed
the inequalities of I(b) may be replaced by equality signs.

DEFINITION: A class  of Lie algebras is said to be complete if and only
if (i) if L ~ , and L is defined over a field f (of characteristic zero), then
L* E , as a Lie algebra over 0 and (ii) if L is a Lie algebra over f and
M ~ L* and M E , then M~ e 3i as a Lie algebra over f.

REMARK: Previously by a class  of Lie algebras, we have meant a
collection of Lie algebras all defined over a fixed field f, together with
their isomorphic copies and the zero dimensional algebra. In the defini-
tion above we have extended a class to include not only algebras over f,
but others which are defined over fo (and so over f) and are members of
the class only as algebras over fo. Thus in a complete class , a member
over f, gives rise to one over 0; and one over over fo yields by restriction
another member over f.

It is clear from I and II that the classes R and E9[ of nilpotent and
soluble Lie algebras are complete.

Suppose that L is defined over t and L c- is the class of finite di-
mensional Lie algebras). Then by II, L~ c- and so L* E F. Conversely
suppose that M ~ H* and M E F. Let ui , ..., ur be a basis for M over
îo. By the remarks just before lemma 2, each each ui can be written in the
form ui = l uiiti, where all the Uij lie in some finite dimensional sub-
space A i of H. Thus ui ~ Ai ~ 0 = A i * . Hence if A = 03A3 Ai, then

M ~ A*, so M~ ~ (A *) 1 = A and therefore M~ ~ F. Hence  is

complete. From this it is trivial to show that LF is also complete.
If L E L9è, then as above for any finite subset S of L* we can find a

finitely generated subalgebra A of L such that S c A* ; but A E 9è,
since L E L9è, and so by I, A* E 9è. Conversely if M E L9è, and M ~ H*
for some H, then for any finite subset T of M~ we can find a finitely ge-
nerated subalgebra N of M such that T - N 1 ; but N E 9è, implies by
II that N4 e 9è. Hence M~ E L9è. Therefore L9è is a complete class.
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REMARK: In general if M ~ L t, for some L and Me L9è, then M~ E
L9è. However it is easy to see that if L E L9è, then L~ need not be locally
nilpotent.

Evidently if M and A are (respectively) ascending unions of 0 and
f-vector spaces, M = u i Mi and A = ~iAi, then

We recall also (see for instance Stewart [6]) that a Lie algebra is said to
be hypercentral if and only if it has an ascending central series. We denote
by 2, the class of all such algebras. Then by the definitions and the re-
marks above it follows that  is complete. It is well known to be sub-

junctive.
Thus we have

LEMMA 3: The classes F, 9è, E2(, 2, L9è, LF are all complete and sub-
junctive.

Let L be a Lie algebra over f (a field of characteristic zero) and d a
derivation of L. Let e = exp (td) be the automorphism of L induced by
d. In general L* is not invariant under e. However if we make the

DEFINITION: A derivation d of a Lie algebra L is said to be locally
finite if and only if every finite subset of L is contained in a finite dimen-
sional d-invariant subspace of L.

(Thus a nil derivation is necessarily locally finite) Then we have

LEMMA 4: Suppose that L is a Lie algebra and H a LF-subideal of L.
Then every element of H induces a locally finite derivation of L.
Also from Stewart [6] p. 85 we have

LEMMA 5: Let L be a Lie algebra over a field of characteristic zero, H
a subspace of L and d a locally finite derivation of L which leaves H in-
variant. Then if e = exp (td),

We recall that if B is a subspace of L then exp (B) is the group of auto-
morphisms of L 1 generated by all exp (t ad (b)) with b E B.

LEMMA 6: Let K be a LF-subideal of a Lie algebra L, B a finite dimen-
sional subspace of K, and A any finite dimensional subspace of L. Then
there exists a finite number (Xl’ ..., ar of elements of exp (B) such that
if D = A*03B11 + ... + A*03B1r, then

PROOF: Suppose that K~m L. Then [A,mB] ~ K and so as K E LF
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and [A,mB] is finite dimensional, we have [A,mB], B) ~ F. Hence
03A3~i=m[A,iB] is a finite dimensional space. But AB = A + [A,B] + ···
+ [A,m-1B]+03A3~i=m[A,iB] and so AB is finite dimensional. Hence so is

(AB)*. By lemmas 4 and 5, (AB)* is invariant under exp (B) and so
contains N = 03A303B1~exp(B)A*03B1; thus N is finite dimensional. Hence for

some 03B11,···, 03B1r ~ exp (B), N = D = A*03B11+... +A*r. But by (5),
AB = N~ and the result follows.

3. The Main results

THEOREM (A): (Over fields of characteristic zero). If  is a complete and
subjunctive class of Lie algebras and  ~ LF, then X is locally coalescent.
In particular R ~  is a coalescent class.

PROOF: Let H, K be -subideals of a Lie algebra L and J = (H, K&#x3E;.
Clearly every finitely generated subalgebra of J is contained in one of the
form C = A, B&#x3E;, where A, B are finite dimensional subspaces of H, K
respectively. So it is enough to show that we can find an -subideal X of
L such that C ~ X ~ J.
Now H, K ~ LÎS-, and so if D is the subspace of L* defined in lemma 6,

then

so D ’ and B are permutable. Let Mi = H*03B11, ··· , H*03B1i&#x3E; for 1 ~ i ~ r.
Then D z Mr .

Suppose that H ~m L. We induct on m to show that we can find an
X with the required properties. If m = 1, then jyo L, so J = H+ K and
J si L, by lemma 5 of Hartley [4]. Furthermore H and K are permutable
and so by lemma 1, Je . Thus we may take J for X. Suppose M &#x3E; 1,
and the result true for m -1. Let Hl = HL&#x3E;. By lemma 5, Hi is in-
variant under exp (B). Hence as H ~m -1 H1 it follows by 1 that

Furthermore 3i is a complete class, so H* e 3i and hence

Therefore by the inductive hypothesis on m -1 and a second simple induc-
tion on i, it follows that given any R-subalgebra Ci of Mi, there exists an
3i-subideal Xi of Hi such that

In particular we can find an -subideal Xr of Hi such that D c Xr ~ Mr .
Now X~r ~  (since  is complete) and Xr si Hl ~ L. Finally D~ and B
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are permutable. Thus applying lemma 1 to Xr and K, there exists an
-subideal X of L such that

But Xr ~ Mr ~ (HB)*, so Xr + K ~ J; and C = (A,B) = AB&#x3E; + B z
D~, B&#x3E; so C ~ X. This completes our induction on m and with it

the proof of theorem A.
It is well known that every finitely generated and nilpotent Lie algebra

is finite dimensional. Furthermore R ~  ~ LR ~ LF. Thus by lemma
3 we have

THEOREM (B): (Over fields of characteristic zero) The classes 9è,  L R,
and LF are all locally coalescent. In particular the classes R ~ LF
and R ~ R = F () 9è are coalescent.

REMARK: The result that f and R (’) 9è are coalescent has been proved
by Hartley [4], using different methods.

Following [5 we may define for each class , the classes

by L E Js  if and only if L can be generated by its -subideals; L E Ls 
if and only if every finitely generated subalgebra of L is contained in some
3i-subideal of L. Thus for any , Ls  ~ Js  and if 3i is locally coalescent
then it is not very hard to show that Js  = Ls , and that Js  is locally
coalescent.
So we have

COROLLARY (C): If  is a complete and subjunctive class and  ~ LF,
then JS 3i = Ls  and J sae is locally coalescent.
However W  Js  and F  Js F. But we have

DEFINITION: (Hartley (unpublished)). Let L be a Lie algebra and de-
fine the ’locally nilpotent radical’ 03B2*(L) by

Then it follows from above that 03B2*(L ) =~ {H/H E L 9è and H si LI.
Hence 03B2*(L) E LR (a result also obtained by Hartley in an unpublished
paper).
PROPOSITION (D): Let L be a Lie algebra over a field of characteristic

zero. Then 03B2*(L) is invariant under every locally finite derivation of L.
In particular if L is locally finite, then 03B2*(L) ~ L.

PROOF: Let H be a L R-subideal of L and d a locally finite derivation
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of L and e = exp (td). By lemma 5 L*’ = L*. By lemma 3, H* E L9è;
hence H* and H*" are L 9è-subideals of L*. Thus if M = H*, H*e&#x3E;
~ L*, then M ~ 03B2*(L*) and so ME L 9è.
If x E H, then xd is either zero or the first coefficient of xe - x E M.

Thus we can find, by our previous remarks, a L 9è-subideal N of L* with
xe - x ~ N. Thus xd ~ N~ and N’ si L and N~ E LN so N~ ~ 03B2*(L).

4. Applications

A Lie algebra L satisfies the Engel condition if and only if for any x, y EL
there is an integer m = m(x, y) such that [x, y] = 0. We denote by ,
the class of all Lie algebras satisfying the Engel condition.

THEOREM (E): (Over fields of characteristic zero) If 3i is a subjunctive
class and  ~ OE, then 3i is locally coalescent.
The proof of theorem E is similar to that of theorem A but we need a

few more facts.

A derivation d of a Lie algebra L is called a nil derivation if for every
x E L, there is a positive integer m = m(x) such that xdm = 0. Thus
every element of an Engel algebra induces a nil derivation. If d is a nil
derivation of a Lie algebra L over a field of characteristic zero, then the
map

is a well defined Lie automorphism of L. By lemma 3 of Hartley [4] we
have

LEMMA 7: If A is a finite dimensional subspace and d a nil derivation of
a Lie algebra L, then

for some 03B11,···, at E group (exp (d)&#x3E;. (A03B1 = {a03B1; a E A}) As an obvious
corollary we have

COROLLARY (7.1): Suppose that K is an R-subideal of a Lie algebra
L, B is a finite dimensional subspace of K and A is a finite dimensional
subspace of L. Then for each r ~ 0, there exists a finite number of auto-
morphisms 03B11,···, 03B1s E (exp (ad (b))|b E B) of L such that

(We note that s = s(r)).
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From [2] we have

THEOREM 8: (The Derived Join Theorem). Let L be a Lie algebra,
H a m L, K a" L and J = (H, K). Then there exists q = q(m, n) such
that

PROOF of Theorem E: Let L be any Lie algebra (over a field of charac-
teristic zero), H ~m L, K a" L, J = (H, K&#x3E; and A, B finite dimensional
subspaces of H, K respectively and suppose H, K E . To prove theorem
E it is enough to show that there is an 3i-subideal X of L such that AB
+B~X~J.
As before for m = 1, the result is true. Let m &#x3E; 1, and assume the usual

inductive hypothesis. Let q be defined as in theorem 8, and put M = J(q).
It is well known (see for instance [3]) that

Thus (H+M)/M ~R ~ EU ~ L 9è and similarly (K + M)/ M E L 9è. Hence
J/M = 03B2*(J/M) ~ L R and so we can find ri such that [A, r1 B] M.
Let r = r 1-1. Then 

Let N = (H, M&#x3E;. Then N = H+ M ~ H+ K, by theorem 8, so N = H
+ N n K. But N n K si K (since N = H+ M si L) and so N n K E 3i.
Thus N is the join of two permutable -subideals, H and N n K, and
so be lemma 1, N E . But M « N, and so Me .
From (1) and the result above,

and so if Y = AB&#x3E;, then

where A 1 = 03A3ri=1 [A, iB]&#x3E;. By corollary 7.1, we can find 03B11,···, as E
 exp (ad (b))lb E B) for which

By the inductive hypothesis on m-1, in the same way as in the proof of
theorem A, we can find an 3i-subideal Xo of L such that

Now Y = A1+ Y ~ M, implies A, and Y n M are permutable and so
applying lemma 1 to Xo and M, we can find an -subideal Xl of L such
that
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Finally AB&#x3E; and B are permutable and so by lemma 1 applied to Xl
and K, there is an X-subideal X of L such that

This completes our induction on m and the proof of theorem E.

REMARKS: Strictly speaking theorem E is independent of theorem A.
To see this we note that as (K+ M)IM E LW and [A, nB] and B are
both finite dimensional subspaces of K, then there exists a k such that
[A, n+kB] £ M. We could then use n + k in place of rl .
We can also obtain a corollary similar to corollary C.
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