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Introduction

A Riemannian manifold M of dimension n &#x3E;_ 2 is said to be c5-pinched
if the sectional curvature of M, K : G2(TM) ~ R takes values only in the
interval [c5. A, A] cr R+ for some A &#x3E; 0 and c5 &#x3E; 0. In this paper
we shall study compact c5-pinched manifolds M with 03C01(M) = Z2 .

It is well known that M is homeomorphic to Sn if M is simply-connected
and c5 &#x3E; 4, see Klingenberg [10], M is even diffeomorphic to S" when
c5 &#x3E; 0,80, see Ruh [13] and Shiohama, Sugimoto and Karcher [15].
From this we have especially that any c5-pinched manifold, M with
xi (M) = Z, is homotopy equivalent to the real projective space, RP" when
c5 &#x3E; 1 4. However within the class of homotopy projective spaces there are
several manifolds of different topological and differentiable type, see e.g.
Lopéz de Medrano [12].
The main theorem of this paper is the following

THEOREM: If M is a connected, complete c5-pinched Riemannian manifold
with 17:1 (M) = Z2 and c5 ~ 0,70, then Mn is diffeomorphic to the real

projective space, Rpn.
Since the fundamental group of an even dimensional compact mani-

fold with positive curvature by Synge’s theorem is either {0} or Z2 our
theorem gives a classification of c5-pinched even dimensional manifolds
with c5 &#x3E; 0,80. 
The idea of the proof is first to desuspend the involution on the cover-

ing space, M - Sn in such a way that we get a specific diffeomorphism
from Sn-1 to the desuspended submanifold of M, - as in the classical
proof of the sphere theorem, Section 1. By restricting c5 further we obtain,
using the diffeotopy theorem of [15], that the induced involution on
S"-1 is conjugate to the antipodal map of Sn-1 and that the conjugation
diffeomorphism is diffeotopic to the identity map of Sn-1, thereby giving
us the desired result.

1 This work was done under the program ’Sonderforschungsbereich Theoretische
Mathematik’ (SFB 40) at the University of Bonn.
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In Section 3 we generalize the diffeotopy theorem of [15] and the in-
volution conjugation theorem to arbitrary manifolds.
We like to mention that the problem was originally brought up by

Shiohama in a discussion with one of the authors. He has independently
obtained a similar solution.

1. Curvature and desuspension of the involution

Let us assume now and for the rest of the paper that M is a connected,
complete, n-dimensional c5-pinched Riemannian manifold with b &#x3E; 4
and xi (M) = Z2 . Let us also w.l.o.g. assume that the metric is normalized
1,e, ô ~ K03C3 ~ 1 for all two-planes, J E G2(TM).
From the sphere theorem we have that the universal covering space,

M of M is homeomorphic to Sn. Let T : Ài - M be the action of the non-
trivial element in xi (M) on M. Then T is a fixed point free isometry on
M with T2 = 1 M and M = /T(x) = x.
For an arbitrary p E M put E(p) = {x ~ |(p, x) = d(T(p),x)}

where d :    6~ R is the distance function on M. It is obvious that

E(p) is an invariant subset of M under T since T is an isometry and T’ -
1. If now E(p) is a sphere we have desuspended T : ÀÎ - M. First we
note that there are at least two shortest geodesics from p to T(p) since
the midpoint of a unique segment would be a fixed point for T. In partic-
ular T(p) is in the cut-locus C(p) of p for any p E M. Therefore since
c5 &#x3E; 4 we get from the estimate on the cut-locus distance d(p, C(p)), see
Klingenberg [10], that d(p, T(p)) ~ 03C0 for all p E M. For any point
x ~ M we then have using Toponogov’s triangle comparison theorem, see
e.g. Gromoll, Klingenberg, Meyer [5], p. 184, that d(x, p) + d(x, T(p))
~ 27r ’ 03B4-1 2-03C0 for all p E M. This together with the cut-locus estimate
again tells us that E(p) is a T-invariant submanifold of M diffeomorphic
to sn-l when c5 &#x3E; A i.e. T :  ~ M desuspends when c5 &#x3E; 4 9. However we
shall now see that by choosing po E  more carefully, E(p0) is a sphere
even when c5 &#x3E; 1 4.
The displacement function for T, fT :  ~ R defined by fT(p) =

d(p, T(p)) for all p E M is continuous. For any minimum point po E M
of fT we have that a minimizing geodesic from po to T(p0) and its T-image
determine a simple closed T-invariant geodesic (for a general theory of
isometry- invariant geodesics see Grove [6], [7]). Let y : [0, 2d(po,
T(p0))] ~  be such a geodesic i.e. y(O) = po, y(d(po, T(po))) = T(po)
and y [d(po, T(p0)), 2d(po, T(p0))] = T(y [0, d(po, T(p0))]). Let r de-
note the image of y in M.
For po E M a minimum point of fT we have,

LEMMA 
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PROOF: Since d(po, T(p0)) ~ diam () ~ 7c ’ 03B4-1 2 by the theorem of
Myers, see G.K.M. [5] p. 212, the claim is obvious for x E r, so assume
that x 0 r. Let q E 0393 be such that d(x, l’) = d(x, q), it then follows using
the second variation formula of Berger [1], that d(x, q) ~ tn. 03B4-1 2. As-
sume d(po, q) ~ 1 203C003B4-1 2 (otherwise d(T(po), q) ~ 1 203C003B4-1 2) and use

’Toponogov’ on a triangle with vertices (po, q, x) to get d(x, p0) ~ 2 ’
7r (or d(x, T(p0)) ~ 1 203C003B4-1 2); note p0qx = 90°.
REMARK: Lemma 1.1 holds also for a maximum point of fT, Shiohama

[14], but the present proof is simpler.
From Lemma 1.1 and the cut-locus estimate we have that the distance

functions, 0, = d(p0,·) and 02 = d(T(p0),·) are differentiable in a neigh-
bourhood of E(p0) = 03A6-1(0) with 03A6 = ~1-~2. Since ~~1(x) is the

velocity vector of the unique minimizing normal geodesic from po to x
and similar for T(po) it follows that Vq,!E(po) =1= 0 so E(po) is a submani-
fold of M. Furthermore each normal geodesic from po of length less that
03C0 intersects E(po) transversely exactly once, thus E(po) is diffeomorphic
to Sm-1 i.e. we have proved
THEOREM (1.2) : A fixed point free isometric involution on a c5-pinched

sphere (03B4 &#x3E; 1 4) desuspends.
REMARK: For any fixed point free involution T on a homotopy-sphere

In there is an associated invariant, u(T, In) the Browder-Livesay invariant,
such that for n ~ 6 u(T, In) = 0 if and only if T : .rn --+ In desuspends,
see e.g. Lopez de Medrano [12]. Here we have proved directly that
T :  ~  desuspends if c5 &#x3E; 4 and thus u(T, M) = 0, n ~ 6. From
this we see that all the manifolds In IT with u(T, 03A3n) ~ 0 do not admit a
Riemannian metric whose sectional curvature is c5-pinched with c5 &#x3E; 1 4.
By means of the exponential map of M at po we get a diffeomorphism

of the standard sphere Sn-1 to E(po) i.e. the involution Tl : E(po) -
E(po) induces an involution T on Sn-1 so that E(po)IT(x) = x is diffeo-
morphic to Sn-1/T(u) = u. If T is conjugate to the antipodal map of
Sn-1 we obtain that M is homeomorphic to RP", since any homeomor-
phism on the sphere extends to the disc. This is not true for diffeo-
morphisms, if rn = Diff (sn-l)jDiff (Dn) ~ 0; so we need here that the
conjugation map is isotopic to the identity map 1Sn-1. However we
know that 03931 =... = 03936 = 0, Cerf [3] and Kervaire and Milnor [9],
so in dimensions less than seven we can proceed as follows.

PROPOSITION (1.3) : The image of the sectional curvature,  : G2(TE(p0))
~ R of E(po) lies in the interval
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where

PROOF: Since

sectional curvature of a two-plane a e G2(TE(p0)) spaned by two ortho-
normal vectors {v, w} at x e E(po),

(this is a special case of a formula due to P. Dombrowski, see e.g. G.K.M.
[5] p. 109). For K03C3 we have 03B4 ~ K03C3 ~ 1 and the estimate for 

is obtained by estimating the angle at x in a geodesic triangle with ver-
tices (po, x, T(p0)), quite similar to Gromoll [4] pp. 357, 364. The es-
timate for the other terms are also done similar to Gromoll [4] p. 364,
except for a sign mistake there.
From proposition 1.3 we see that E(po) is 03B5(03B4)-pinched with

when ô is sufficiently big. Now 03B5(03B4) ~ 1 as à - 1 so there is a Ô2 such
that e(b2) = 03B41 = 1 4, i.e. with M Ô2-pinched, E(po) is 1 4 - pinched and
T : E(po) - E(po) desuspends. By induction we get a sequence with
03B5(03B4k+1) = bk such that if M is ô-pinched with ô &#x3E; 03B4k then T :  ~ SI
desuspends k times. This together with the remarks before Proposition
1.3 and the fact that any fixed point free involution is conjugate to the
antipodal map in dimensions less than four (in the topological category
proved by Livesay [11 ]), gives us

THEOREM (1.4): Let Mn(n ~ 6) be a connected, compact b-pinched
manifold with 1Cl (M) = Z2. Then M is diffeomorphic to Rpn if ô &#x3E; bn-3.
We note that

In the next paragraph we shall study the involution T : Sn-1 - Sn -1 in
detail. We shall see that independent of n, T is conjugate to the antipodal
map ( -I) : S"-1 - Sn-1 and the obtained conjugation diffeomorphism
isotopic to the identity map of Sn-1 as soon as 03B4 ~ 0.70. This will prove
our main theorem.
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2. Conjugation of the desuspended involution

Let Sn-1p ~ TpM be the unit sphere in the tangent-space of  at p ~ .
The diffeomorphism

mentioned in Section 1 sends a unit vector u E Sn-1p0 to the unique
intersection of E(po) with the normal geodesic of length less than 03C0

determined by u ~ Sn-1p0. The involution

is then defined by

Let us now give another expression for T. Analogue to the map Hpo we
have the diffeomorphism

Put

and denote by T*T(p0) the differential of T at T(po). Then we have T =

T*T(po) 0 h. 
We want the involution T to be conjugate to the antipodal map

i.e. to find a diffeomorphism

such that ( - 1) o ,u = Il o T.
Now for each u E Sn-1p0 let y(u) be the mid point of the unique mini-

mizing geodesic on S’P", joining u and ( -I) o T(u) i.e. p(u) = expu
(1 2expu-1(-T(u))). Note that Sn-1po carries the standard metric of con-
stant curvature 1. Since (-I) : sn -1 --+ Sn-1 is an isometry it follows that
( - I) o p = p o T Thus to prove that Tis conjugate to ( - I) we shall prove
that ju is a diffeomorphism. Setting Jlt = expu (t exp: 1 ( - T(u))) we have
that ju = Jlt and furthermore from the expression of ,ut we see, that we
are in position to apply the diffeotopy theorem of [15] as soon as we can
prove that ( - I) o T is C1-close to the identity map I of Sp-1p0. At the same
time we will get that 1À is isotopic to the identity map. The last property
enables us to extend the Z2-equivariant diffeomorphism
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to a Z2-equivariant diffeomorphism from M to S’n as follows: First ob-
serve that the differential T* of T induces an involution of the normal
bundle v : NE(po) - E(po) of the submanifold E(p0) in M. In a trivial-
ization NE(p0) ~ E(po) x R this involution is simply given by (p, t) -
(T(p), - t). Similarly we have on the normal bundle of sn-l in Sn,
NSn-1 ~ Sn-1 x R, the involution (u, t) ~ ( - u, - t). Extend the given

first to a Z2-equivariant bundle map

The restriction of this bundle map to suitably small metric 8-disc-bundles
of NE(po) and NS"-’ defines via the exponential maps of M and S" re-
spectively a trivial extension of J1 o H-1p0 to a Z2 -equivariant diffeomor-
phism F between tubular neighbourhoods of E(p0) in M and of Sn-1 in
Sn. The boundary of each of these tubular neighbourhoods has two com-
ponents each diffeomorphic to Sn-1. On M these boundary spheres are
transversally intersected by the shortest geodesics from po and T(po) for
small 8 (on S" the geodesics from the poles n, s intersect orthogonally).
Therefore we can compose the restriction of F to the ’upper’ part of the
tubular neighbourhood with exponential maps, to obtain a diffeomor-
phism expn o F o exppo of ’ring’ domains (~ sn-l x [0, 03B5]). Now use
the diffeotopy from J1 : Sn -1 ~ Sn-1 to the identity to extend this map
over the hole in the ’ring’ to a diffeomorphism of balls. Composition with

exp;o 1 and expn gives the extension F of F over the ’upper hemissphere’
of M, and (- I)o F o T extends this equivariantly to a diffeomorphism
F :  ~ Sn, i.e. M is diffeomorphic to RP".
We prove next that (-I)o T : Sn-1 ~ Sn -1 satisfies the assumptions

of the diffeotopy theorem of [15, p. 16] as soon as 03B4 is big enough.
Put fi =  (u, (- I) o T(u)) in R n= Tp0 i.e. fi is the distance on

Sn-1p0 from u to - T(u). Furthermore for A ~ TuSn-1p0 put 0 (A,
((- I) o T)u(A)) in R n = Tpo M after canonical identification.
We shall estimate 03B2 and 0 in terms of ô.
From the expression T = Hpol o T|E(p0) o Hpo we see that oc = (u,

T(u)) is the angle at po in a geodesic triangle on M with vertices (po ,
Hpo(u), T(Hp0(u)). Now since d(Hpo(u), T(Hp0(u))) ~ 03C0 as we have

seen and d(po, Hpo(u)) = d(po, T(Hp0(u))) ~ 1 203C003B4-1 2 by lemma 1.1 we
get using Toponogov’s triangle theorem, that cos a ~ cos (03C003B41 2) i.e.

a ~ nbt and therefore

LEMMA
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To estimate 03A6 =  (A, (( I) o T)*u(A)) we shall use the expression

For u e S;-l ~ TpM denote by Yu : Tu(Tp ) ~ Tp the canonical
identification of Tu(Tp ) and TpM.

Let A E TuSn-1p0 be a unit tangent vector of Sn-1p0 at u and let h*(A) E
 be the differential of h applied to A. Put X = (h*(A)).
Since now T*: TT(p0) ~ TpoM is a linear isometry we get that T*(X) =
T =  h)*u(A)) = 
i.e. 03A6 =  ( - T*(X), Ju(A)) =  ( - T*(X), r), when we put r =

Ju(A). With w = h-1(X-1X) we also have 03A6 =  ( - T*(h(w)), r)
~ 03B2+03B3, where 03B2 = (-T*(h(w)), w) and 03B3 =  (w, r) i.e. 03A6 ~

03C0(1-03B41 2)+03B3 by Lemma 2.1.
Note that y =  (w, r) only depends on h and not on T (except that

h depends on T by the choice of po and T(po)). y is the angle at po in the
geodesic triangle on M with vertices (po , q, m), where q = exppo (tnr)
and m = Hpo(w). Having eliminated T as remarked this problem is the
same as a problem in [15] (including notation), so we can just take the
formulas from there. Thus we have [15, 9.8] that

where

and A(03B4) is given by

This formula is the same as [15, 9.7.3] combined with [15, 9.6.3], also
(9.6.1) refers to [15].
We could now use the estimates on A(03B45) and B(03B4) from [15] and there-

by get a 03B40 such that l5 &#x3E; 03B40 implies thaty is a diffeomorphism isotopic to
1Sn-1 and thus M diffeomorphic to RP".
We shall here take the opportunity to prove a lemma on slowly rotating

Jacobi fields which simplifies and improves estimate 9.6.1 of [15], and
which might be of independent interest.

LEMMA (2.5): Let c be a normal geodesic in a Riemannian manifold
whose sectional curvature K satisfies 0 ~ 03B4 ~ K ~ Li. Let J be a Jacobi-
field normal to c and P a parallel field along c parallel to J (or J’) at t = 0.
With 03B8(t) =  (J(t), P(t)) we have,

(1) If J(0) = 0:
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If J’(0) = 0:

In (1) we have at t = 1nl5-t(L1 = 1):

PROOF: Let P be the parallel unit field along c with P(0) parallel to
J’(0) (or J(0)) and let Q be the parallel unit field orthogonal to P and at
a given to satisfying ~J(t0)~-1J(t0) = cos O(to). P+sin 03B8(t0) ·  Q. From
the Jacobi-equation we have

Since J and Q are orthogonal to c we have (note the symmetry in J and
Q), that

Therefore

The Rauch-Berger-comparison theorems, see G.K.M. [5] and Berger
[2], give explicit bounds for J:

if

if

Now, if we have a differential inequality, a"+k·a ~ f (k &#x3E; 0) and
the corresponding equality A" + k · A = f, where the functions a and A
have the same initial conditions a(0) = A(0) and a’(0) = A’(0), then
a(t) ~ A(t) for t ~ 03C0 · k - -1. To prove this statement put b = a-A,
hence b" +k. b  0, b(0) = b’(0) = 0. For s(t) = sin (kit) we have
s"+ks = 0, s(0) = 0 and s’(0) = 0. Therefore

hence b/s ~ 0 and thus b ~ _ 0 for t ~ 03C0 · k--1.
In the case J(0) = 0 we take a = J, 6X hence a(0) = 0 a’(0) = 0

(Q PJ’(0)) and f = 03B4-1 2 sin (c5it). Using the above
statement together with (a) and (*) we get
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In the case J’(0) = 0 take a = (J, Q&#x3E;, hence a(0) = 0 (Q  Pl IJ(O»,
a’(0) = 0 and f = J(0) cos (03B41 2t). As before using (b) and (*) we get

In both cases (-a) satisfies the same differential inequality so the lemma
is proved since

REMARK: If the curvatures are not necessarily positive, then the tri-
gonometric functions have to be replaced by the corresponding linear
ones (ô = 0) or hyperbolic ones (ô  0).

Instead of cos’ (9.6.1) in (2.4) we can now write 1-sin2 (03B8(1203C003B4-1 2))
i.e. A(ô) is determined by

where 0 is given by Lemma 2.5 with d = 1.
Lemma 2.1, 03A6 ~ 03B2+03B3, (2.2), (2.3) and (2.6) gives us that 03B2 ~ 27°,6

and 03A6 ~ 133°,7 when 03B4 ~ 0,70 i.e. from the diffeotopy theorem [15, p.
16] we get that Pt is a diffeomorphism for all t e [0, 1 ], especially ju = p
is a diffeomorphism isotopic to the identity map of Sn-1. As mentioned
earlier this proves our

MAIN THEOREM: Let M be a connected, compact n-dimensional (n ~ 2),
b-pinched Riemannian manifold with 1Cl (M) = Z2. Then M is diffeo-
morphic to the real projective space Rpn, when 03B4 ~ 0,70.

REMARK: Our proof can only give diffeomorphism. This raises the
question if a homeomorphism result can be obtained with a smaller ô. -
As mentioned in the introduction our theorem together with the diffe-
entiable sphere-pinching theorem [13] and [15] gives a classification up
to diffeomorphism of even dimensional ô-pinched manifolds with à &#x3E;

0,80. Note that the pinching-constant in the S’"-case is bigger than in the
RP"-case !

3. A diffeotopy theorem

In this paragraph we shall give another application of Lemma 2.5.
Let M be a connected, compact Riemannian manifold. For the sec-

tional curvature, K of M we then have min K = 03B4 ~ K ~ 0394 = max K.
A diffeotopy between f and g E Diff (M) results in a diffeotopy between

1 M and f-1 o g. Therefore we restrict our attention to that situation.
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Let D(p) = d(p, C(p))) be the cut-locus distance of p E M. D is a con-
tinuous function. Note that if 03B4 &#x3E; 0, if M is simply connected and if dim
(M) even or 03B4/0394 &#x3E; 1 4 we have the bound D(p) ~ 0394-1 2. 03C0. Assume now
that d(p,f(p))  D(p) for all p E M, then

defined by F(p, t) = expp (t · expp-1(f(p))) is a well-defined homotopy
with Fo = 1 M and F1 = f. We shall give conditions in terms of curvature
that this homotopy is a diffeotopy. The conditions will be such that fairly
large balls in the C1-metric of Diff (M) are contractible.

Let A E Tp M be a unit tangent vector at p E M. Denote by Tp : Tp M
~ Tf(p)(M) the parallel translation along the unique minimizing geodesic
(f(p) ~ C(p)) from p to f(p). Then we have,

THEOREM (3.1 ): Let f ~ Diff (M) and put 03B2(p) = d(p,f(p)). Then there
is a number C(0394, b, /3), which can be estimated explicitly, such that if

then f is diffeotopic to 1M .

PROOF: Since M is compact and we have already a homotopy F, it is
sufficient to prove that each F, has maximal rank at each point, since then
{Ft} is a family of differentiable covering maps and Fo = 1M implies that
each of the coverings Ft is a diffeomorphism.
From 13 = d(p, f(p))  D(p) we have that the shortest connection

from p to f(p) has no conjugate points. The reason for 13  0394-1 203C0 if

d &#x3E; 0 is that we are going to use comparison theorems.
Now for a unit tangent vector A E Tp M consider the geodesic, yA

defined by 03B3A(s) = expp (s · A). Clearly 03B3’A(0) = A and (Ft)*p(A) =
d/ds(Ft o 03B3A)|s=0. Since all the curves c, defined by c,(t) = F(yA(s), t)
are geodesics it follows that J(t) = (Ft).p(A) is a Jacoby field along co
with J(o) - A and J( 1 ) = f*p(A). Thus F, has maximal rank at p if none
of these Jacoby fields ever vanishes. Assuming the contrary i.e. that
there is a to and an A such that J(to) = 0, we shall derive an estimate
 (f*p(A), 03C4p(A)) ~ C(03B4, 0394, fi) and thereby finish the proof of the theo-
rem.

We write J as sum of its tangential and normal component J = JT + .TN .
Then

and
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(If e.g. ô  0, then the last expression changes to (-03B4)-1 203B2 sinh ((-03B4)1 2
P(t - to).)
We have A = JT(O)+JN(O),f*p(A) = JT(1)+JN(1) and

where Q is a parallel field with Q(0) = JN(O).
Define angles 03B1i =  (J(i), c(i)) i.e. tan a; = IIJT(i)II-1 . 

i = 0, 1 and put

Finally

supplies an explicit upper bound for  (ipA, -v). If we use this and lem-
ma 2.5 in (*) we get

This completes the proof.

COROLLARY (3.2) : Let T : M ~ M be an arbitrary isometric involution
on M and let I : M ~ --+ M be another involution. If T-1 o I satisfies the
assumptions on f in Theorem 3.1, then I is conjugate to T.

PROOF: p(p) = expp(t expp-1(T-1 o I(p))) conjugates I and T.

so we getby lemma
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Added in proof

The following modifications improve the main theorem to:
M is diffeomorphic to RPn if 03B4 ~ 0.6 and homeomorphic to Rpn if ô ~ 5.56

For an arbitrary n E E(po) consider the isometry U : TpoM --+ TpoM de-
fined as the composition of the following maps:
s = reflection at the hyperplane perpendicular to the initial

direction u of the segment p o n,
ii = parallel translation along p o n,
Dl = simple rotation in TnM of the tangent vector of po n to the

tangent vector of nT(p0),
i2 = parallel translation along nT(po),
-T*T(p0) = (- id) o (differential of the involution),
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D2 = simple rotation in TpoM of u to - T(u), this corresponds - after
canonical identification - to the Levi-Civita translation along the
great circle arc from u to - T(u) on the unit sphere of TpoM.

Although the description of the isometry (9 looks complicated, it is

easy to prove with the arguments in this paper that:

If A is a tangent vector at u of the unit sphere in Tpo M then we have
also with the function 0 of Lemma 2.5 (1 ):

(a) and (b) provide a simpler and slightly better estimate of 4T than
(2.2), (2.3) and (2.6). Secondly we use (3.17) of [8] to improve the dif-
feotopi theorem of [15] and get with (a) and (b) the result : Ilt (see § 2) is a
diffeomorphism if 03B4 ~ 0.56 and each ju, is a diffeomorphism if 03B4 ~ 0.6.


