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1. Introduction

It is well known that the solution of the word problem for finitely pre-
sented (henceforth ‘f.p.’) groups can be arbitrarily difncult in the sense
that it can have any preassigned recursively enumerable degree (see
Boone [2], [3], and Clapham [7]). The study of the word problem
with respect to the finer degrees of the relativized Grzegorczyk hierarchy
was begun by Cannonito [4] and continued by Gatterdam [8]. A com-
prehensive background to this work can be found in the authors’ paper
[5], of which a knowledge on the part of the reader is assumed. The exist-
ence of f.p. groups with word problem stricly cn(A) computale in the re-
lativized Grzegorczyk hierarchy, for n &#x3E;_ 4 and A, a recursively enumer-
able subset of the natural numbers, was shown by Gatterdam [9]. It should
be observed that the degree of solvability of the word problem for a fini-
tely generated (henceforth ‘f.g.’) group is an invariant of the f.g. presen-
tation. Groups with word problem 03B5n(A) computable are said to be
’03B5n(A) standard’.

The question being considered here is in the opposite direction and
stems from current efforts to locate, if possible, with respect to the
Grzegorczyk hierarchy, the level of computability of the word problem in
f.p. residually finite groups (see [6] for some discussion). Thus, knowing
how difncult the word problem can become for f.p. groups, we ask in-
stead how ’easy’ is it for classes of f.g. groups with known solvable word
problem? In particular, some classes have word problem solvable by
(Kalmâr) elementary functions, 03B53 in the hierarchy. These classes include
finite groups, free groups, automorphism groups of f.g. free groups, braid
groups and f.g. abelian groups. More recently, the authors in [6] have
shown why one relator groups may not have elementary word problem.
The main result of this paper is to show the word problem for polycyclic
groups and, hence, f.g. nilpotent groups is elementary. Now, Auslander
has shown in [1 ] that any polycyclic group is embeddable in Gl(n, Z) for
suitable n, and since Gl(n, Z) is isomorphic to the automorphism group of
the free group of rank n, we have immediately from [5] Corollary 3.7
that the word problem in polycyclic groups is elementary. In this paper
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we derive this result by analysing the construction of a polycyclic group
given by (finitely many) cyclic extensions. In this manner, we also show
the computability level for a wider class of groups is elementary and de-
monstrate a computability level preserving construction.

2. Group Extensions

In this section we develop some basic notions concerning the compu-
tability of group extensions. The background material on extensions can
be found in MacLane [11 ], which we use without further reference.

Consider an extension, 0 ~ K ~ G ~ Q ~ 1 with both K and Q f.g.
and 03B53 standard. We write the group operation in K and Q additively
even though they in general will not be abelian. A departure from the
MacLane approach is that we will distinguish between K and x(K)  G.

For every q E Q let 2(q) be a lifting into G (in general not a homo-
morphism) so that u2(q) = 1Q. Then conjugation of x(K) by 2(q) in G
yields a homomorphism ik : Q ~ Aut K/In K. For q E Q let 0(q) e 03C8(q)
be a choice of automorphism of K in the class 03C8(q). Since K is f.g. and
03B53 standard, 0(q) is 03B53 computable for fixed q (see [5]; for k1,···, k"
generators of K and w(k1, ···, kn) e K, 0(q):w, that is, the image of w
under 0(q), can be obtained from w(~(q):k1, ···, ~(q):kn) by a

bounded minimalization and w(~(q):k1, ···ü ~(q):kn) can be ob-

tained from w(k1, ···, kn) by an 03B53 limited recursion).
The group G is determined (up to natural isomorphism) by the 0(q)

and a function f : Q x Q ~ K which expresses the deviation of 03BB, from

being a homomorphism Q ~ G by

The associative law in G yields

Recalling ~(q):k =G À(q)+k-À(q), conjugation by the left and right
side of (1) in x(K)  G yields

By taking 03BB(1) = 0 we may as well have 0(l) = 1 K and f(q, 1) =x
OK = f(1, q) foraine Q.
Now a simple computation ([11] lemma 8.1) shows G = {(k, q) 1 k E K,

q e Q} as a set with multiplication and inversion given by
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LEMMA: If under the above conditions f : Q x Q ~ K is f9’3 computable
with respect to standard indices on Q and K then G is f9’4 standard.

PROOF: We need f9’3 pairing functions J, Ml, M2 (see [5]; Ml is K
and M2 is L of [5] § 2) and f9’3 standard indices (il, ml, jl) and (iz, m2,
j2) of K and Q respectively (again see [5]).

Then G = {(k, q)lk e K, q e QI as a set so we define i(G) by i(k, q) =
1(i1(k), i2(q)). Thus x ~ i(G) ~ M1(x) ~ i1 (K) ^ M2(x) ~ i2(Q) so i(G)
is f9’3 decidable.

By (4) and (5) m : i(G) x 1(G) - i(G) and j : i(G) ~ i(G) can be de-
fined in terms of f and 0 suitably encoded. Thus let j : i2(Q) x i2(Q)
--, il(K) by J(i2(p), i2(q)) = iif(p, q) and  : i2(Q)  i1(K) ~ i1(K) by
(i2(q), i1(k)) = i1(~(q):k). We have assumed f is f9’3 computable.
Postponing the computability of , we can encode multiplication and in-
version as follows:

Thus to show G is 03B54 we need to prove e is tff4 computable. It suffices
to show e(x, y) is tff4 for x E i2(Q) and y = il (a generator of K) since
then a standard 03B53 bounded recursion can be used to compute (x, y)
for arbitrary y E i1(K) (see [5 ] proof of Theorem 3.2). Now, let x =
i2(q0 ··· q03B2) for qu - - - qp a freely reduced word, each q03B1 being a generator
or inverse of a generator of Q. Since K and Q are f.g. there are finitely
many values e(x, y) for x = i2 (generator of Q or the inverse of a
generator of Q) and y = il (generator of K) so (x, y) is 03B54 if fi = 0. By
means of a recursion on 03B2, let x’ - i2(q1 ··· q03B2) and xo = i2(qo). Then

Since this recursion has no a priori 03B53 bound, the best that can be said in
general is that 4J is 03B54 computable and, hence, G is an 03B54 computable
group.
To show G is tff4 standard let a 1, ..., as generate and as+1, ···,

as+t generate Q so G is generated by

We must show the homomorphism i : a1, ···, as+t;) --+ G by a03B1 H
(aa , 0) if 1 ~ a ~ s, a03B1 H (1, aa) if s + 1 ~ a ~ s + t, is tff4 computable,
for then G is tff4 standard by Theorem 3.4 of [5]. The idea is to write a
freely reduced word in the free group as b0 ··· ble for each b symbol a
generator a03B1 or an inverse a03B1-1. Then if 03C4(b1 ··· bfJ) = (k’, q’) we have
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Thus the encoding of i can be given by a recursion involving e3 com-

putable functions.
For the interested reader we record the details of the above. The no-

tation is that of [5] (see also [10] p. 222 ff.) as is the assumed encoding of
the free group. Define

Then

We note that if K and Q are f.g. e"(A) standard for n ~ 3 then G
is f.g. e""(A) standard by the same proof, replacing 03B53 by 03B5n(A) and
03B54 by 03B5n+1(A). Of more interest are situations when the recursion
involved in the compitability of î can be bounded by an 03B53 function
so that G is 03B53 standard.

COROLLARY: If K is.f’.g., 03B53 standard and Q is a f.g. free group then G
is 03B53 standard.

PROOF: In this case the extension splits, i.e., the lifting 03BB can be taken

to be a monomorphism. Then f(p, q) = 0 for all p, q E Q and 0 : Q -
Aut k is a homomorphism.
The recursion defining î becomes

To show G is 03B53 standard we must show i is 03B53 computable. It suffices
to show Ml t and M2 î are 03B53 computable. Since M2 i is the encoding of a
homomorphism from a f.g. free group to the 03B53 standard group Q, it
is 03B53 computable.
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To see Ml t is d" computable first observe that p(x) encodes either
a generator or inverse of a generator. Now for u the index of a generator
or inverse thereof in Q, and w E i1(K), (u, w) is C3 computable since K
is f.g. and o3 standard. We must show the recursion yielding Ml î is C3
limited. For w E i1(K) let «w) denote the length of the word (relative to
the standard index presentation) w encodes. Similarly for x encoding a
word in F = a1, ···, as+t&#x3E;; let 03B2(x) be the length of the word. It suffices
to find an C3 bound on CM1 -r since M1(x)  03C103B6M1 (x) exp «Ml (x).
J(s, 2)). For u encoding a generator or inverse thereof of Q and v encoding
a generator of K set z = max 03B6(u, v). Then for w ~ i1(K), 03B6(u, w) ~ z -
03B6(w). Now in the recursion defining Ml î either ml or  is applied. In
the first case (Ml î is bounded by its previous value plus 1 and the latter
by z times its previous value. Thus CM1 (x) ~ z exp 03B2(x), an 03B53 func-
tion.

COROLLARY: If K is f.g. C3 standard and Q is finite then G is C3 stan-
dard.

PROOF: Q being finite it is C3 standard, 1 is C3 computable (there
being only finitely many values for the argument), and  is d-’ computable
(K being f.g. and C3 standard). The problem, as above, is to C3 limit
03B6M1 . Here let z = max 03B6(u, v) + max (u, w), the maximums taken
over all u, w E i2(Q) and v encoding a generator of K. Then (Ml (x) ~
z exp 03B2(x).

Observe that in the corollaries if K is assumed f.g. and cn(A) standard
for n &#x3E;_ 3 the conclusion is that G is en (A) standard.

3. Main Results

We are now ready to prove the

THEOREM: Polycyclic groups have elementarily decidable word problem,
i.e., are C3 standard.

PROOF: If G is a polycyclic group it is necessarily f.g. and there exists
a sequence G0, ···, Gn = G of groups such that Go is cyclic (hence C3
standard) and G., 1 is an extension of G. by a cyclic group for m  n.

Inductively assume Gm is C3 standard. Then it is extended either by an
infinite cyclic group, i.e., a free group, or a finite cyclic group. By the
corollaries of the preceding section Gm+1 is C3 standard.
The theorem above can be generalized of course. Let G0 be the class

of finite groups union that of f.g. free groups. Define Gn+1 to be the
class of extensions of a group in gn by a group in G0 and G = Un= 0 e. -
By the above argument the groups in G all are f.g. and C3 standard. We
can say more.
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THEOREM: Let K be aig. d"(A) standard group for n ~ 3 and Q E td.
Then any extension of K by Q is f.g. and e"(A) standard.

PROOF: K and Q are f.g. so an extension G of .K by Q is f.g. Let Q E Gm.
If m = 0, then G is C3 standard by the corollaries. Inductively if m &#x3E; 0

then Q is an extension of Ql E Gm-1 by Qo e tdo. Consider

Here xo N = ker pu  G and G is an extension of N by Qo E G0. We
must show N is f.g. and cn(A) standard. Consider the natural embedding
N/K - G/K ~ Q. Since 03C3003BA0(N) = 0, the image of N/K is in i (Q 1 ).
Thus we have an embedding ( : N/K ~ Q1. Now if q E Q, there exists
g E G such that Q(g) = i(q). Then pu(g) = 03C1(q) = 0 implies g E 03BA0(N)
so ( is onto. Therefore N/K ~ 61 so N is an extension of the f.g. 03B5n(A)
standard group K by Q E 9. and by induction is f.g. and en (A) stan-
dard.

It should be noted that 9 contains f.g. abelian and polycyclic groups
so in particular an extension of a f. g. 03B5n(A) standard group by a f. g.
abelian or polycyclic group preserves the computability level.
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