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The diametral dimension 0394(E) of a locally convex vector space E
is known to be a measure for the nuclearity of E. Therefore it is of in-
terest to characterize the class S2 of those locally convex vector spaces,
the diametral dimension of which is maximal. We show that the class
S2 has the same stability properties as the class X of all nuclear spaces,
and characterize the members of Q, that are contained in the smallest

stability class, by a property of their bornology. At first let us define
what we mean by a stability class:

DEFINITION. (a) A stability class is a class of locally convex vector
spaces, which is closed under the operations of forming

(Si) completions
(S2) subspaces
(S3) quotients by closed subspaces
(S4) arbitrary products
(SS) countable direct sums
(S6) tensor products
(S7) isomorphic images.

(b) If E is a locally convex vector space, we denote by u(E), the
stability class of E, the smallest stability class containing E.

Let us remark, that in (S6) we choose the projective (03C0-) topology
on the tensor product; but as we shall be solely concerned with nuclear
spaces, we could equally well have chosen the (03B5-) topology of bi-equi-
continuous convergence. Note further, that because of (S4) a stability
class (if not empty) will always be a proper class.

Examples of stability classes are

the class  of all Schwartz spaces (cf. e.g. [4]),
the classa of nuclear spaces, or more generally,
the class JÇ of ~-nuclear spaces, which are defined as follows:

DEFINITION. Let 4T denote the set of all continuous, subadditive,
strictly increasing functions 0 : [0, ~) ~ [0, oo) vanishing at 0. Let
~ e 4Y; a locally convex vector space E is a member of N~, the class of
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~-nuclear spaces, if for every neighbourhood U of 0 in E there is a neigh-
bourhood V of 0 contained in U, such that E ~(03B4n(V, U))  oo, where

03B4n(V, U) denotes the n-th Kolmogorov diameter of V with respect to
U [1].
By a theorem of Rosenberger [6] for ~ ~ 03A6 N~ is a stability class,

and so is

A further example of a stability class is given by the spaces of maximal
diametral dimension:

DEFINITION. If E is a locally convex space, we denote by 0394(E), the
diametral dimension of E, the set of all nonnegative sequences 03B4, such that
for each neighbourhood U of 0 in E there is a neighbourhood V of 0
contained in U, such that

(cf. [1]).
Call co the set of all strictly positive non-increasing sequences of real

numbers, and Q the class of all locally convex vector spaces, such that
co cr 4(E). The following proposition will show, that S2 is a stability
class of nuclear spaces.

PROPOSITION. N03A6 = Q.

PROOF. (a) N03A6 c Q : Let E ~ N03A6, 03B4 ~ 03C9, U a neighbourhood of 0
in E. Choose ~ ~ 03A6, such that for all n ~ N ~(03B4n) &#x3E; 1/(n+ 1): such a
function may be obtained by considering the ’upper boundary’ of the
closed convex hull of {(0, 0)} u {(03B4n,, 1/(n + 1 )); n e N}. As 0 is subadditive,
~(03B4n/(n+1)) &#x3E; ~(03B4n)/(n+1) &#x3E; 1/(n+1)2. If ~ E 03A6, ~ will also be in
03A6, so there is a neighbourhood W of 0 such that 03A3 (~(03B4n(W, U)))  00,

hence

and so we may find a neighbourhood V of 0, such that for all n e N
~(03B4n(V, U))  (n+ 1)-2  ~(03B4n/(n+1)), which means

and consequently ô E A (E).
(b) S2 c N03A6: Let E E Q, 0 e 4l, U a neighbourhood of 0 in E. Choose

a neighbourhood V of 0, such that 03B4n(V, U)  ~-1 (1/(n+1)2).
COROLLARY. S2 is a stability class.
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We shall now be investigating the smallest nontrivial stability class,
i.e. 03C3(R).

THEOREM. A locally convex vector space is in a(R), if and only if E is
isomorphic to a subspace of a product of ~N R.

PROOF1. It suffices to prove the ’only if’ part. We introduce an auxil-
iary class 1 as follows: A locally convex vector space E belongs to I, if E
possesses a basis u(E) of neighbourhoods of 0, such that for all U E O//(E)
E/ker pU (with the quotient topology) is isomorphic to a subspace of
~N R, where pU denotes the seminorm associated with U. Note that a
subspace of QN R is again an at most countable sum of real lines. Note
further, that E is a subspace of a product of QN R if and only if E e 1.
For, suppose E is subspace of

and choose a neighbourhood Uo of 0 in X, such that

Let U = Uo n E, then ker pu = ker puo n E, and we have a continuous
injection i : E/ker pu - X/ker puo. But X/ker puo carries the finest

locally convex topology, so E/ker pu is itself an at most countable sum
of real lines. The theorem will be proven, if we show, that the class of
locally convex spaces which are subspaces of a product of ~N R is a
stability class. So let us check conditions (S1) to (S6):

(S1 ): If E is a subspace of (QN R)’, then Ë is just the closure of E in
(eN R)A, since (E9 N R)’ is complete.

(S2): If E is a subspace of (QN R)A, and F is a subspace of E, then
clearly F is a subspace of (~N R)’.

(S3): Let F be a closed subspace of E E 03A3, U ~ 0/1 (E), 03C0F : E ~ E/F,
1ty : E/F - (E/F)/ker PXF(U)’ 7ru : E ~ E/ker pu canonical projections,
V : = 03C0F(U). We shall show, that any seminorm q : (E/F)/ker pV ~
R is continuous. W : = q-1([0, 1)) is absorbing and absolutely
convex, and so is 03C0U03C0-1F03C0-1V(W). But since E/ker pu is isomor-

phic to a subspace of ~NR, 03C0U03C0-1F03C0-1V(W) contains an open neighbour-
hood a of 0. Then the open neighbourhood 03C0V03C0F03C0-1U(O) will be contained
in W+03C0V03C0F(ker pU); and since F + ker pu c ker py , 1ty1tF(ker pu) = 0.

1 We are very grateful to the referee for drawing our attention to a slip in the first
version of this proof.
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So W is indeed a neighbourhood of 0. As (EIF)Iker pv is a nuclear space
carrying the finest locally convex topology, it must be isomorphic to a
subspace of ~N R.

(S4) and (S5) are clear.
(S6): Let

canonical projections. Consider a seminorm q on E ~03C0 F/ker (pu O pv).
Then W : = q-1([0, 1)) is absorbing and absolutely convex; hence
(03C0U ~ ny)p - 1 (W) is an absorbing and absolutely convex set in

where N’ and N" are at most countable. So (1Tu ~ 03C0V)03C1-1(W) contains
an open neighbourhood (9 of 0, and so does W, since the open neigh-
bourhood p(nuQ91Ty)-l«(!) is contained in W+ 03C1(ker 03C0U ~ 03C0V) and
p(ker 03C0U ~ rcy) = 0. That means, that E ~03C0 F/ker pU ~ pv carries the
finest locally convex topology, so it is again a subspace of ON R.

REMARK. Diestel, Morris and Saxon [2] define a ’variety’ of locally
convex spaces as a class, which is closed under the operations (S2),
(S3), (S4), and (S7). They show, that Q(R) is the second smallest variety.
At this stage the question naturally arises, whether Q actually equals

03C3(R). One feels that this should be true, if the diametral dimension of
a space is indeed a measure for its ’nuclearity’, for this would mean, that
maximal diametral dimension should determine the smallest stability
class. On the other hand, the following proposition may perhaps provide
a method to refute the equality 03C3(R) = 03A9.

PROPOSITION. Let E E Q. Then E E 6(R), if and only if E has the following
property

(PB) there is a basis 0// of neighbourhoods of 0 in E, such that for all
U E 0// E/ker pU is bornological.

PROOF. If E E 03C3(R) = 1, E clearly has property (PB), since an at most
countable sum of real lines is bornological. Conversely, let E ~ 03A9 and
U E u. Now note, that bounded sets in E/ker pU are finite-dimensional.
For, if B is bounded in E/ker pu, for each non-increasing sequence b of
positive reals

(where Uo is the image of U in E/ker pu), since E/ker pU is in Q, too. This
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means, that ô.(B, Uo ) = 0 for n &#x3E; no, which implies, that B is finite-
dimensional, since puo is a norm. Now choose an algebraic basis

The identity map

is a continuous bijection; and if Elkerpu is bornological, id will be open,
too, hence an isomorphism. But then I must be at most countable,
since Elkerpu is nuclear.
Taking a different approach, one could try to prove the equality

a(R) = 0 by showing, that ueR) and 03A9 are generated by the same ideal
of operators. This is, however, not possible, since the equality 03A9 = N03A6
implies, that neither 03C3(R) nor 03A9 is generated by an ideal:

DEFINITION. Let S be an ideal of operators. The class of locally convex
vector spaces generated by f consists of all locally convex vector spaces
E with the following property: For each neighbourhood U of 0 in E
there is a neighbourhood V of 0 contained in U, such that the canonical
map E(V, U) : Ev - Eu belongs to S (EU denotes the completion of the
normed vector space (E, pU)/ker pu).

THEOREM. 03C3(R) and Q are not generated by an ideal.

PROOF. Suppose, there is an ideal S generating 03C3(R) or Q. We shall ob-
tain a contradiction by constructing a function ~ e 4T and a locally convex
vector space E in the class generated by S, such that E is not ~-nuclear.
As 03C3(R) and S2 consist of nuclear spaces, we may assume, that Y is an
ideal of compact operators between separable Hilbert spaces. As the
ideal of operators with finite-dimensional images does not generate a
stability class, S contains an operator S with infinite-dimensional range.
By combining S with a partial isometry, we may obtain a compact self-
adjoint operator T ~ , such that the eigenvalues (03BBn) of T form a de-
creasing sequence of positive reals. By construction, the sequence space

will be in the class generated by . But clearly, A is not ~-nuclear, if we
choose a function q5 ~ 03A6, such that for all n E N ~(03BBnn) &#x3E; 1/(n+ 1).

Finally we observe, that X and Q(R) share still another ’restricted’

stability property, as is shown by the following

PROPOSITION. A Fréchet space E belongs to a(R), if and only if Eb belongs
to 03C3(R).

This proposition may equally well be stated as
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PROPOSITION. A Fréchet space E belongs to Q, if and only if Eb belongs
to Q.

PROOF. (a) Let E E Q. E has property (PB), so E E Q(R). As we proved
already, this implies, that E possesses a basis Olt of neighbourhoods of 0,
such that for U E Olt E/ker pU is a subspace of E9 N R. So E/ker pU being a
Fréchet space, too, is finite dimensional, which means, that E is a closed
subspace of 1IN R. Then E is itself an at most countable product of real
lines, so E’ E a(R).

(b) If E’ E S2, E’ is nuclear, so E is nuclear and reflexive. Choose a
hilbertian neighbourhood U of 0 in E’ and a hilbertian bounded set
B in E’. Then we have for all n c- N 03B4n(B, U) = bn(BO, UO). So, if B is
bounded in E and U is a neighbourhood of 0 in E, the image of B in
Elkerpu is finite-dimensional. As E has property (PB), this implies, as
we have already seen, that E e r = a(R).
We did not include this stability property in our definition of a sta-

bility class, since there exist stability classes of nuclear spaces, which do
not possess this property, e.g. the class of strongly nuclear spaces (cf. [5]).
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