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0. Introduction

In [1 ] J. Barback gives a characterization of those unary recursive
functions which map the regressive isols into the regressive isols. In [6]
M. Hassett does the same for the binary recursive functions. Following
their lead we characterize the n-ary functions which map the cosimple
regressive isols into the cosimple regressive isols. Thus our work extends
that of [1 ] and [6] in that (i) the function may have any number of ar-
guments, (ii) the function is not necessarily recursive, and (iii) the argu-
ments of the function are cosimple. Our results however do include the
non-cosimple case. The reader may find a precise statement of our results
in the last paragraph of this paper.

1. Closure properties

Let m be the non-negative integers. We refer to elements of cv as
numbers. If 03B1 ~ co is a set and n E ()) let x "a be the n-fold direct power
of a, and if f is a function let 03B4f, 03C1f denote its domain, range respectively.
If n E co and f : x n()) -+ 03C9 we define a function f : x n03C9 ~ co. If x =
(x0, ···, xn-1) let

Note that if x E x nw then we write xi for the i-th component of x. For
j  n we define n-ary functions Ejf, L1 jfby

1 Subject classification, Primary 02F40. Key words and phrases: regressive isol,
almost recursive increasing function.

2 This paper was partially supported by a New Jersey Research Council Faculty
Fellowship, and partially by a grant from The Institute for Advanced Study.
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Finally let Li = 03940 ··· 0394n-1 be the composition of the Ails. Â is Church’s
functional operator, i.e., f = Àxf(x), and if x, y E x n03C9 write x ~ y if
xi ~ yi for i  n. In general when notions usually reserved for the one
variable case are applied to n-tuples then we are to understand these
notions as holding for each component separately.
A function f : x nw -+ cv is called recursive increasing if f is recursive

and 0394(x) ~ 0 for every x E x nco, f is eventually recursive increasing if
03BBxf(x+m) is recursive increasing for some m E  n03C9 (here + is compo-
nentwise addition). If a is a finite set let la denote the number of elements
in a, and if n ~ cv let v(n) = {x E coix  n}. Consider h, 6, d, and j which
together satisfy

With h we associate a function h* : x dQ) - x "co as follows. If x E x dQ)
let h*n(x) = y E x nro where

f is called almost recursive increasing if f o h* is eventually recursive in-
creasing for every h that satisfies (3) (o denotes composition of functions).
Note that every almost recursive increasing function is necessarily re-
cursive.

Let  be the isols, R the regressive isols, A 00 = A - OJ and ~R =
R-03C9.

THEOREM 1: Let n &#x3E; 0 and R - x nl 103C9 the graph of a function r.
(i) If r is eventually recursive increasing then for each x E X n~R there

is exactly one y E A such that (x, y) E RA.
(ii) If r is almost recursive increasing then for each x E X nR there

is exactly one y E A such that (x, y) E RA.
We start with a lemma and then discuss the notions that are necessary

to complete a proof of Theorem 1.

LEMMA 1. Let n &#x3E; 0 and f : x nOJ ~ 03C9.
(i) f can be represented as f(x) = 03A3i~x0394(i) where i is understood as

ranging over x nOJ.

(ii) If f(x) = 03A3i~xb(i) is any other representation of f as a sum then

PROOF. For n = 1 the result is due to Barback [1] and for n = 2 it is
due to Hassett [6]. For n = 1
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because f (x+ 1) = f(x). (i) for n = 1 will then follow by induction. Now
assume as hypothesis A that (i) holds in the n-ary case and that f : n+1
m - co. Let x, i range over co and y, j over x nw. If g(y) = f(0, y) then
by hypothesis A

since the various 0394i operators commute. Now assume as hypothesis B
that (i) holds for a given x e co and all y e x "co.

Now by hypothesis B

and by hypothesis A if g(y) = f(x, y) then

But (j) = (x + 1,j) and hence

Summing now shows that (i) holds for x+ 1 and all y E  n03C9. Thus by
induction (i) holds in the n+ 1-ary case and hence by another induction,
for all n.

Uniqueness in the one variable case is trivial because if

then

Now assume as hypothesis C hat (ii) holds in the n-ary case and that
f : n+103C9 ~ 03C9 is represented as

Let x, i range over co and y, j over x n03C9. If g(y) = f(O, y) then
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and hence by hypothesis C we have b(0, j) = c(O, j) for all j E x nw. If
x+1 ~ 03C9 then

Thus if g(y) = L1of(x, y) then

and hence by applying hypothesis C to g( y) we have b(x+1,j) = c(x + 1,
j) for all j ~ x nco. Thus (ii) holds in the n + 1-ary case and hence by in-
duction for all n. q.e.d.
Next we introduce the various concepts that will appear in the proof

of Theorem 1. We start with the notion of a frame. Let P be the set of all

subsets of co and let Q be the set of all finite subsets of co. F is a frame
if F - x nQ and F is closed under componentwise intersection (also de-
noted by n ; in general when discussing frames we extend set theoretic
operations and relations componentwise and use the usual symbols to
denote these extensions). Let F* = f a E nQ|(~03B2)(03B1 ~ 03B2 ~ F)} and let
CF(ot) be the minimal with respect to ~ element p E F such that a z fi,
provided a e F* (such an element exists because F is closed under inter-
sections). CF(03B1) is undefined for a e F*. F is a recursive frame if CF is a
partial recursive function. If R ~ x nw then F is called an R-frame if

|03B1| E R for every a E F. An element 03BE E x nP is attainable from F (in sym-
bols 03BE E A(F)) if for every oc E x "g, 03B1 ~ 03BE there is a 03B2 E F such that

03B1 ~ 03B2 c 03BE. For any oc E x nP let ~03B1~ be the recursive equivalence type of
a (the componentwise convention is also used here). Then if R sz x nw,
the extension R used in Theorem 1, i.e., the Nerode extension (cf.
[7])is

The next set of notions that enter into Theorem 1 center on the defini-
tion of a regressive function. A function t is called regressive if it is a one-
one mapping of 60 into cv for which there exists a partial recursive func-
tion p such that

for all n ~ 03C9. If t is a regressive function then we can find a partial recur-
sive p which satisfies (6) as well as
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where p" is the n-th iterate of p. A function p satisfying (6) and (7) is
called a regre.rsing function of t. Then we define a function p* by

The function p* is also partial recursive, pt z bp* and p*t(n) = n for all
n e co. We also define a set valued function p by

p is also partial recursive and in particular pt(0) = 0 (= the empty set).
A function t is called retraceable if it is regressive and strictly increasing,
and any regressing function p of t which also satisfies

is called a retracing function of t. A set is called regressive if it is finite
or the range of a regressive function and is called retraceable if it is finite
or the range of a retraceable function. An isol is called regressive if it con-
tains a regressive set. By [2] every regressive isol contains a retraceable
set so there is no need to define retraceable isol. Let AR be the set of all re-

gressive isols.
Let j : x 203C9 ~ m be the usual recursive one-one mapping of x 2úJ

onto 03C9 defined by

and let k, 1 be its first, second inverse respectively. If 03B1, 03B2 ~ 03C9 let j(03B1 x 03B2)
= {j(x, y)|x ~ 03B1 and y~03B2}. Identify j2 with j and inductively define

jn : x n03C9 ~ co, a one-one onto map, by

For i  n let ki be the i-th inverse to jn . We shall also use variations of
the obvious notation jn(03B10  ···  03B1n-1), etc.

PROOF oF THEOREM 1: First assume that r is a recursive increasing
function so that by Lemma 1 we can represent r as

Let T = (T0, ···, Tn-) ~ X n A; and choose retraceable functions t and
retracing functions Pi such that Pi is a retracing function of ts and pti-
{ti(0)} = Li E Ti for i  n. We use componentwise conventions through-
out; in particular we define functions p, p*, and p by bp = 03B4p* = 03B4p =

03B4p0 x ... x 03B4pn-1 and if x e bp then
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and similarly for p and p*. Also if a, x ~  n03C9 then define

Lastly if x E x "A and y E A write (x, y) for the concatenation of x and y,
an element of x n+1A. If x E bp let

where a, b e xnw and + is componentwise addition. 03BE(x) makes sense
because L1 (b) ~ 0 for every b e x °co. Let

We claim that F is a recursive R-frame. If x, y e ôp then there exists
a, b, Z E x nco such that z = P’(x) = pb(y). Choose such a z so as to be
componentwise maximal. First we show that

Re. (18). If u e p(z)i then u = pc(z)i for some c  p*(z). But p*(x) =
a+p*(z),

and c+a  p*(x), c+b  p*(y). Consequently u E P(X)i n P(Y)i i.e.,
p(z) ~ p(x) n p(y). Conversely if u e fi(x); ~ p(y)i then by the maxi-
mality of z we have u = pc(x)i for some a ~ c  p*(x). But then

and c-a  p*(z) because p*(x)-a = p*(z). Thus u E p(z)i, i.e., p(x) n
p (y) - p(z).

Re. (19). If u e 03BE(z) then u = j(j,,(pc(z», v) for some c ~ p*(z) and
v  0394(p*(z)-c). Then

and v  L1r(p*(x)-(c+a», v  L1r(p*(y)-(c+b» because p*(z)-c =
p*(x)-(c+a) = p*(y)-(c+b). Thus u e ((x) n ç(y), i.e., 03BE(z) ~ 03BE(x)~
03BE(y). Conversely if u e 03BE(x) n 03BE(y) then u = j(jn(PC(x)), v) for some
c ~ p*(x) and v  L1r(p*(x)-c). But u E 03BE(y) and hence by the maxi-
mality of z we have a ~ c. Then pc(x) = pc - a (z) and v  4 t(p*(z) -
(c - a» because p*(x)-c = p*(z)-(c-a). Thus u E ç(z), i.e.,
((x) m ((y) G 03BE(z).
By (18) and (19) F is closed under intersection and hence is a frame.

Since r is a recursive function, so is L1 r, and since p is partial recursive, F
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and consequently F* are r.e. (recursively enumerable). Given a e F*
there is a unique x E bp which is the componentwise minimal element
satisfying ce G (p(x), 03BE(x)). By using (9), (14), and (16) we can effectively
analyze the elements of ce and find this x. Then the partial recursive-
ness of 0394 and p allows us to compute (p(x), 03BE(x)). Thus CF is partial
recursive and F is a recursive frame. If x E Ôp and p*(x) = a then by
(9) and (14) |p(x)| = a componentwise, and by computing the cardinal-
ity of (16)

Thus by (13) and (17) F is a recursive R-frame.
Recall 03C4i = 03C1ti-{ti(0)} for i  n, and let 03C4 = (03C40, ···, T.- ,),

Now observe by a standard argument that if 03BE contained an infinite r.e.
subset then so would jn(03C40 x ...  03C4n-1) which we know is impossible.
Thus 03BE is an isolated set. If we evaluate 03BE(x) for x = t(a), a ~  n03C9, we
obtain

since 03C1t ~ ôp and pi(t(a» = t(a-i). By computing p(t(a)) and using
(17) we easily get (r, 03BE) E A(F). But (I) = T so by (5), (T, ~03BE~) E R.
The uniqueness of 03BE&#x3E; follows because R(x, y) ^ R(x, y’) - y = y’ is a
Horn formula valid in 03C9 and hence by [7] is valid in A. Now we proceed
to consider the case where r is only eventually recursive increasing. Then
there is a function s = 03BBxr(x+m) which is recursive increasing for some
m E x nw. Let S z n+103C9 be the graph of s and note that the Horn for-
mula

is valid in m and hence in A. Then if T ~ n~R and T- m = (To - mo,
’ ’ ’, Tn-1-mn-1) then T-m E x n~R and we may apply what we have
already proved to S. Uniqueness follows as above. This completes our
proof of (i). Finally if r is almost recursive increasing and T ~  nR
let J = {i  nITi is finitel and define h on 03C3 by h(i) = Ti. If 03C3 = v(n)
there is nothing to prove because r is a function. Otherwise let d be as
in (3) and note that r o h* (cf. (4)) is a d-ary eventually recursive increas-
ing function whose graph is

By[7] l
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and hence (ii) follows by applying (i) to ShR and that x E  d~R for
which h*n(x) = T. Uniqueness follows as above. This completes our
proof of (ii). q.e.d.

Let Az be the cosimple isols, i.e., those isols which contain at least one
set with r.e. complement,

and

COROLLARY 1. Let n &#x3E; 0 and R z X nl lQ) the graph of a function r.
(i) If r is eventually recursive increasing then for each x E n~RZ

there is exactly one y E A such that (x, y) E RA and moreover this y E Az.
(ii) If r is almost recursive increasing then for each x E X n ARz there

is exactly one y E A such that (x, y) E Rl and moreover this y E Az.
PROOF. We show that if r is recursive increasing and T ~  nA;z then

there is a y E Z such that (T, y) E R. (i) and (ii) then follow by meta-
theorems just as in the proof of Theorem 1. By a result of [2] we can find
retraceable functions ti such that pt, is cosimple and 03C1ti-{ti(0)} =
ii E Ti for i  n. To complete our proof it will suffice to show that (
as defined in (21) has a r.e. complement. Let ki for i  n be defined as in

(12). Then

Since each 03C9-pti is r.e. (23) defines an r.e. condition and hence ro-ç is
r.e. q.e.d.
Next we introduce the n-ary minimum function. If x E x n03C9 then min

(x) is simply the least number in the set {x0, ···, xn-1}. A function f : x n
ro -+ co is called recursive regular if there exist unary recursive increasing
functions g0, ···, gn-1 such that

(24) f(x0, ···, xn-1) = min (g0(x0), ···, gn-1(xn-1)).
We use the convention g(x) = (g0(x0), ···, gn-1(xn-1)) so (24) may be
written in the shorter form f(x) = min g(x). f is called an eventually
recursive regular function if Âxf(x + m) is recursive regular for some
m e x nro. The essential domain of a recursive regular function as given in
(24) is {i  n|03C1gi is infinité}, and it is said to be of essentially n variables
if its essential domain is v(n). It is easy to see that the notion of essential
domain can be unambiguously extended to eventually recursive regular
functions. F’inally f is called almost recursive regular iff o h* is eventually
recursive regular for every h that satisfies (3).
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THEOREM 2. Let n &#x3E; 0 and R 9 n+103C9 the graph of a function r.
(i) If r is eventually recursive regular then for each x E X n~R there

is exactly one y E  such that (x, y) E RA and moreover this y E R.
(ii) If r is almost recursive regular then for each x E X nR there is

exactly one y E  such that (x, y) E RA and moreover this y E AR.
PROOF. We start with a detailed analysis of the n-ary min function.

First we show that min is recursive increasing. Since the computation is
rather nasty we proceed in a roundabout way. Let b : x n03C9 ~ (1) be de-

fined by b(i) = 1 if all the components of i E X n03C9 are equal to one another
but different from 0, and b(i) = 0 in all other cases. Let

and observe that

Lemma 1 and (25) then give d P(i) = b(i) for all i E x nro, i.e., that min is
a recursive increasing function. Let R z n+103C9 be the graph of r. By
Theorem 1 for all x E x n AR there is exactly one y ~  such that (x, y) E
R. In particular we can apply this result to the T used in the proof of
Theorem 1 (we use the same notation as in that proof). We claim that the
y such that (T, y) E R belongs to R. It suffices to show that 03BE as com-
puted in (21) is regressive. For i ~ 03C9 let

and observe that 03BE is recursively equivalent to

Then

if x E bp and x ~ jn(t(1)) and qjn(t(1)) =jn(t(l» is a partial recursive
function that retraces 03BE’. This takes care of the case when all compo-
nents of T are infinite. Now assume that at least one component of T is
finite and that To = m is the smallest such component. Then the Horn
formula

is valid in 03C9 and hence in A so that the value of y is m ~ 03C9 ~ R. This
proves that Theorem 2 holds for the min function. Now let f be recursive
regular as given in (24). Let F be the graph of f, Gi the graph of gi and
R the graph of r = min. By [1 ] for all x E AR there is exactly one y ~ 
such that (x, y) E G,, and moreover this y E R. Then the Horn formula
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is valid in 0) and hence in A. This, the same result for r and the gi, and
the fact that f is a function guarantee that for all x E x nR there is a
y E R such that (x, y) E FA. (i) and (ii) follow from this result by using
metatheorems just as the corresponding parts of Theorem 1 follow from
the result for recursive increasing functions. We do not stop to prove this
here. q.e.d.

Corollary 1 and Theorem 2 can be combined to give

COROLLARY 2. Let n &#x3E; 0 and R 9 x n+ 103C9 the graph of a function r.
(i) If r is eventually recursive regular then for each x E X nA’ there is

exactly one y E A such that (x, y) E Rl and moreover this y E RZ.
(ii) If r is almost recursive regular then for each x E X nARz there

is exactly one y E A such that (x, y) E RA and moreover this y E RZ.

2. Converse properties

THEOREM 3. Let n &#x3E; 0 and R Éé X n+ 103C9 the graph of a function r.
(i) If for each x E x n~RZ there is a y E A such that (x, y) E RA then r

is an eventually recursive increasing function.
(ii) If for each x E X nRZ there is a y E A such that (x, y) E RA then

r is an almost recursive increasing function.

The following machinery is necessary in order to complete a proof of
Theorem 3.

LEMMA 2. For any d &#x3E; 0 there exist retraceable functions to, ..., td-1
such that ii = pti is cosimple for each i  d, and if 0 = 03C40 x - - - x 03C4d-1

and p is any partial recursive function whose domain is a subset of x d03C9 and
which assumes values in x d03C9 such that 03B8 ~ ôp and p(03B8) ~ 0 then there is
an m E x d03C9 such that pt(n) ~ t(n) for every n E x d03C9 with m ~ n (cf. (20)
for a definition of t(n), ~ is used componentwise).

PROOF. Our proof consists of a priority argument involving finite in-
juries. Let qn(x), n E 0), x E X d03C9 be a partial recursive function of d+ 1
variables which with index n enumerates the partial recursive functions of
d variables x, which assume values in x dcv. Let q’(x) = y if qn(x) = y is
computed in s or fewer steps; otherwise we say that qn(x) is undefined.
Throughout this proof the variable i will be restricted to v(d) and when-
ever we assert a statement Si we shall understand it to mean the assertion
of So and... and Sd-1. For each n E 0) let /li(n) be a movable marker.
Our proof will consist of a stage by stage construction of the functions
tsi(n).

Stage 0: Let t?(O) = 1 and at the end of this stage no markers are
attached to numbers. Then go on to stage 1.
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Stage s+ 1: We first state our inductive hypothesis in (28)-(31) below.
Assume at the end of stage s that we have defined numbers tsi(n) for n ~ s
such that

(cf. (11) for a definition of k) and that /li(n) is attached to tsi(mi), m e x d
v(s) only if (29) and (30) are true. We also assume (31).

no other markers are attached to numbers.

Construction: If there is an n e m such that the /li(n) are not attached to
numbers at the end of stage s and there is an m e x dv(s) such that

then go to step B below; otherwise go to step A.

Step A: Let

Then go on to stage s + 1.

Step B: Find the least n and the lexicographically least m which
together satisfy (32)-(34). For each n’ &#x3E; n detach the pi(n’) from num-
bers. Attach pi(n) to tsi(mi). Find the least number zi such that

Let

Then go on to stage s + 1.
This completes the construction. Our first claim is that each marker
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moves finitely often. Assume that for some stage u each pi(n’) is never
moved after stage u for each n’  n (after stage u the 03BCi(n’) may or may
not be attached to any numbers). If at any stage s &#x3E; u the Ili(n) are at-
tached to the tsi(mi) then by (34) pi(n) will never move again. This proves
our claim. Our second claim is that lims tsi(n) exists for every n. If there
is a stage u such that markers are not attached to numbers at or after

stage u then tri(n) = tsi(n) for every n ~ r, n ~ s, u ~ r, u ~ s by (35).
If there is no such u then for infinitely many n the Ili(n) reach final po-
sitions attached to numbers and if n is such a number and pi(n) is never
moved at or after stage u then tri(x) = tsi(x) for every x ~ n, n ~ r,
n ~ s, u ~ r, u ~ s by (32). This completes the argument. Now define

We must show that

(40) ti as a retraceable function,

(41) r, has a r.e. complement,

(42) if p is partial recursive and 0 z 03B4p, p(0) G 0 then there is an
m e x d03C9 such that pt(n) ~ t(n) for every n E x d(o with m ~ n.

(43) zi is immune.

Re. (40). We can show by using our inductive hypothesis and (35), (37)
and (38) that there are functions z; : m - m such that

By the basic properties of the j function t is a strictly increasing function
which is retraced byp(x) = k(x), x ~ 1, p(1) = 1.

Re. (41). u e 03C9-03C4i if and only if

by (37). But (45) is clearly a r.e. predicate. 
 

d03C9Re. (42). If p is a partial recursive function mapping a subset of d03C9
into x d03C9 then p = q" for some n. Assume that 03B8 ~ 03B4p and p(0) G 0.
Say that a set R 9 x dco is totally unbounded if for every x E x dw there
is a y e R with x ~ y. We will show that R = {x e x d03C9|not pt(x) ~ t(x)l
is not totally unbounded. Suppose that it is. Choose u E w such that

03BCi(n’), n’ ~ n do not move at or after stage u. Say that 03BCi(n’) is attached
to numbers by stage s if pi(n’) was attached to numbers at some stage
prior to s and subsequently was not moved. The Jli(n) are not attached
to numbers by any stage s ~ u for otherwise (30) would imply that p(03B8)
$ 0. Choose m E x d03C9 such that if n’  n and Jli(n’) are attached to
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tsi(m’i) by any stage s ~ u then m’ ~ m. Since R is totally unbounded
there is an m’ E R such that m ~ m’ and n ~ m’i. Choose the lexico-
graphically least such m’. Finally there is a u’ ? u such that qntstm’) = y
is defined and tsi(x) = ti(x) for s ~ u’, x ~ m’+ 1. Now the mi(n) are
not attached to numbers by stage u’ and not qsnts(m’) ~ t’(m’) for
s ~ u’ by our choice of m’ and u’. But p(0) G 0 so that tsj(m’j+1) ~ yj
for s ~ u’ and some j  d. Then the Jli(n) are attached to numbers at
stage u’ + 1 by (32)-(34) which contradicts our choice of u. So R is not
totally unbounded which proves (42).

Re. (43). Suppose some 1:j were not immune. Take j = 0 for notational
convenience. Then by [4] to is a strictly increasing recursive function.
Define a partial recursive function p by p(to (n), y) = (to (n + 1 ), y) for
y E X d-103C9. But then p violates (42) so 03C40 must be immune. q.e.d.
We need one more bit of notation. Let F be a frame and let a =

(03B10, ···, 03B1n-1) ~ F* where the ai need not be the individual components
of oc (we allow the ai to be blocks). We define

(where -,/’ occurs as a superscript to exactly one 03B1i) to be that value fi such
that for some 03B2j, j ~ i we have CF(03B1) = (03B20, ···, fi. - 1 ) and 03B1j ~ 03B2j for
j  n. We say that (Cto, ..., 03B1n-1) is unenlarged by F at oc, if and only if

Since the 03B1i generally are blocks this notation allows us to make state-
ments about a without spelling out its individual components.
Proof of Theorem 3: (i) Assume that R ~ n+103C9 is the graph of a

function r and that for all x e x "A’ there is a y e ll such that (x, y) e R,.
Let t0, ···, tn-1 be the functions that were constructed in Lemma 2,
03C1ti-{ti(0)} = ’Ci E Ti, and T = (T0, ···, Tn-1). In particular there must
be a y E  such that (T, y) E RA. Let T = (ïo? ’ ’ ’? 03C4n-1) and choose a
il - 03C9 and recursive R-frame F such that (r, ~) E A(F). We also let pi
be a retracing function of ti and adhere to the componentwise conven-
tions used for the proof of Theorem 1, in particular to (9), (14), (15), and
(20). Let

03B4 is r.e. and hence we may define a partial recursive function q whose
domain is 03B4 and which assumes values in n03C9 by

where the max is taken in the componentwise sense. Also let



296

Then 0 z ôq and q(O) - 0 because Cr, q) e A(F). Hence by Lemma 2
there is an m e x "co such that q(t(i)) ~ t(i) for all i &#x3E; m. This implies
that

and define a function ç with domain A and range - Q by

Notice that pt(i) e A for i ~ m, that A is a r.e. family of finite sets and
that ç is a partial recursive function. For the moment let a, f3 e A. We
claim that

Re. (52). (a, qJ(ex» e F, (fl, ~(03B2)) e F and since Icxl = IPI and R is the
graph of a function we have |~(03B1)| = |~(03B2)|.

Re. (53).

Consider any a, b E x "o with a ~ m and ai+1 = b i for i  n. Let
a = pt(a), 03B2 = pt(b) and note that 03B1 ~ 03B2, |03B1| = a, 1 fil = b, and a, fi E A.
Define G and g/ on G by

It follows immediately from (51 )-(54) that

Thus G is a frame and g/ is a frame map which induces a numerical
function. Next define the essential 03C8* on G by
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By well-known methods (cf. 5.8 of [7]) (55) implies that

Now define c : n03C9 - ce by c(x) = |03C8*(03B3)| if x = 1 yi for some y e G
and c(x) = 0 otherwise. c(x) is well defined by (58). Let

for x e x "co and summation on a variable i E x n03C9. Since (03C3 ~ 03B3, 03C8(03B3)) EF
for y e G, (57) and (59) give r(a+x) = f(x) for x e n{0, 1}. If 03C3 ~ v(n)
let 0394i~03C3 be the composition of the 4 ; for i e a. Then by well-known pro-
perties of combinatorial functions (cf. [7])

Thus 0394i~03C3r(m+x) ~ 0 for every x E X nw. Let s = Âxr (x + m). We show
that s is recursive increasing. Consider any x E x no) . Let 6 = {u|xi ~ 01
and y E x nW, yi = xi for i E 6 and yi = 1 for 1 o 6. Thus

by

and s is increasing. Let B = {(a, b)|a e x "co, b e co and (~03B1, fi)(a =
l a 1, b = 1/31 and (a, /3) e F)}. Then B is a r.e. set which makes s a recursive
function. Thus r is eventually recursive increasing which proves (i).
In order to prove (ii) let h, 6, d and j satisfy (3). Then

is the graph of a d-ary function s = r o h*n and since Sh(RA) = (ShR) we
easily see that Sh R satisfies the hypothesis of (i). Then s is eventually
recursive increasing by (i) and r is almost recursive increasing. q.e.d.
There is an easy consequence of this material which should be stated.

First we need some definitions. A set S’ of regressive isols is strongly
recursively independent if for any n &#x3E; 0, any distinct elements x0, ···,
xn-1 ~ S, and for any R ~ x n+103C9 the graph of a function r, if there is a
y ~  such that (x0, ···, xn-1, y) E RA then r is eventually recursive
increasing. A set S of cosimple isols is r.e. if it can be arranged in a se-
quence xo, xi, ... such that for some recursive functions f, for each n,



298

f(n) is the r.e. index of an r.e. set whose complement is in Xn. We state
without proof the following

COROLLARY 3. There exists an infinite r.e. set S z RZ which is strongly
recursively independent

THEOREM 4. Let n &#x3E; 0 and R ~ n+103C9 the graph of a function r.
(i) If for each x E X nA;z there is a y ~ R such that (x, y) E RA then r,

is an eventually recursive regular function.
(ii) If for each x E X nARz there is a y E R such that (x, y) E RA then

r is an almost recursive regular function.
Several notions and lemmas are necessary in order to complete a proof

of Theorem 4. In [3 ] a Turing degree D(x) is associated with every x E R.
It is the (unique) degree D(03BE) of any retraceable set 03BE E x. In case x E llRz
we know from [4] that x contains a retraceable set with r.e. complement.
Thus in this case D(x) is r.e. degree. For us the most important property
of this association is that (cf. [3 ])

Let go, ..., gn-1 be a sequence of unary functions. We say that g =

(go, ..., gn-1) is jointly stricly increasing if each gi is increasing, has
an infinite range, and g(x) =1= g(x + 1) for each x ~ co. We state without
proof the obvious

LEMMA 3. Let to, ..., tn-1 be retraceable functions and let go, ...,
gn-1 be jointly strictly increasing recursive functions. Then 03BE = {jn(tg(i))|
i E col is retraceable and the degree of 03BE is the least upper bound of

LEMMA 4. Let n &#x3E; 0 and R z n+103C9 the graph of a function r. If r is
recursive increasing, for all x E x n~RZ there is a y E R such that (x, y) E RA,
and B = {i E X nrolA (i) &#x3E; 01 is totally unbounded then (i) there is a

finite set B0 ~ B and jointly strictly increasing recursive functions go,
..., gn-1 such that B -Bo = {g(i)|i E ay, and (ii) r is an eventually re-
cursive regular function of essentially n variables.

PROOF. Let T ~ xnA;z and to, ..., tn-1 retraceable functions with
pti - {ti(0)} = Ti E Ti . Since r is recursive increasing we know from Theo-
rem 1 that there is a y E  such that (T, y) E RA and moreover that 03BE E y
where 03BE is given by (21). We also know that 03BE is regressive because
y ~ R. Now consider the set

We see that 03BE1 ~ 03BE, 03BE1 is infinite, and 03BE1 is recursively separable from
03BE-03BE1 by the recursive set {x|l(x) = 0}. Recall that 1 is the second inverse
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of j. Hence 03BE1&#x3E; ~ 03BE&#x3E; and since AR is closed under predecessors, ji
is an infinite regressive set, regressed say by a partial recursive function
q. With q we can associate a partial recursive function q’ mapping a
subset of x "co into x "co by

Let p, retrace ti and adhere to the componentwise conventions given in
(14). Since B is a recursive set we can extend q’ to a partial recursive
function q 1 by

Let 0 be as in (48). We readily see that ql agrees with q’ on (t(i)|i ~ B},
0 z ôql and ql (0) z 0. We are now in a position to use Lemma 2 for
the ti constructed in that lemma and conclude that there is an m e x nw
such that q1(t(i)) ~ t(i) for all i ~ m. In particular this implies that
q’(t(i)) ~ t(i) for all i e Bi = {i E B|i ~ ml. But then there exist jointly
strictly increasing functions go, ..., gn-1 such that Bi = (g(i)|i E ay (it
is best to see this by ones self). Since Bl is recursive so are the 9 i. Let
Bo = B-Bl. We claim that Bo is a finite set. Let

Now 03BE’1 ~ 03BE1, 03BE’1 is infinite, and 03BE’1 is readily seen to be recursively
separable from 03BE1-03BE’1 Hence 03BE’1&#x3E; ~ 03BE1&#x3E;, so 03BE’1 is regressive, and by
(61) has the same degree as 03BE1. By using Lemma 3 and the form of B,
above, we compute the degree of 03BE’1 (and hence of ~1) as the least upper
bound of {D(03C4i)|i  nl. Now assume that Bo is infinite. Since Bo is not
totally unbounded, by a simple numerical argument (used for example in
[7]) there must be a non-empty 03C3  v(n), |v(n)-03C3| = d and h : 03C3 ~ e)
such that Sh Bo is a totally unbounded subset of x d03C9. For notational ease
assume that h specifies the last n - d arguments of Bo. Then we can find
an a E n-d03C9 such that

is totally unbounded. Define

Now 03BE’0 ~ 03BE1, 03BE’0 is infinite, and we readily see that 03BE’0 is recursively
separable from 03BE1-03BE’0. Hence 03BE’0 is regressive and has the same degree
as Çl. Now apply the same line of reasoning that was used to compute the
degree of ç 1 to 03BE’0. Since the situations are essentially the same we can
compute the degree of 03BE’0 (and hence of Çl) as the least upper bound of
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{D(03C4i)|i  dl. Also by [4] we know that for each non-recursive r.e.
degree there is a cosimple retraceable set of that degree. Choose cosimple
retraceable Ti such that {D(03C4i)|i  dl and {D(03C4i)|i  nl have distinct
least upper bounds and evaluate 03BE1 for this choice of ri. Then we obtain
two contradictory values for the degree of ç 1 which proves that Bo must
be finite. This completes our proof of (i). For (ii) we may assume without
loss of generality that the m e x "co and the jointly strictly increasing
functions go, ..., gn-l of (i) have been chosen so that

Next we define a number c E m and for each d  n unary functions rd by

Then if x e x n03C9 we use Lemma 1, (68) and (69) to get

Since gd is recursive so is rd and since gd has an infinite range so does rd.
Clearly rd is an increasing function which implies that s = Àxr(x+m) is
recursive regular, i.e., r is an eventually recursive regular function. q.e.d.
The purpose of Lemma 4 was as much to exposit the method of degrees

as it was to obtain a specific result. In the following proof certain degree
computations will be omitted when it is obvious from the proof of Lemma
4 how to obtain them.

Proof of Theorem 4. We start with the case where r is a recursive in-

creasing function. Let B = {i E x n03C9|0394 r(i) &#x3E; 0}. If B is totally unbound-
ed then r is eventually recursive regular by Lemma 4 so there is nothing
to do, and if B is finite the result is trivial. From now on assume that B is
infinite but not totally unbounded. Then by induction we can show that
there is a number m ~ 03C9 and Bi , B’i, hi, 03C3i, d for i  m such that

{Bi|i  m} is a partition1 of B into disjoint subsets, hi, 03C3i, di satisfy (3),
B’i ~ di03C9 is totally unbounded, and Bi = {(hi)*n(x)|x ~ B’i}. Let
1’i, Ti and 03BE be as in the proof of Lemma 4. We shall use most of the
notation of Lemma 4 except for the new name

Then just as before Z is an infinite regressive subset of 03BE. For each x  m
let

1 Except for an unimportant finite set.
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Using methods of Lemma 4 we can show that Çx is an infinite subset of ç
and that 03BEx, 03BE-03BEx are recursively separable. Thus Çx is regressive and has
the same degree as ç. Reproduce enough of the proof of Lemma 4 to
compute the degree of 03BEx as the least upper bound of {D(03C4i)|i E v(n) - 03C3x}
and conclude that the (1x for x  m are the same. Assume now for no-

tational ease that there is a number d such that hx specifies the last n - d
components of Bx. We can then find ax E n-d03C9 such that for each
x  m

Now define

where

Now B is recursive, hence the Bx are recursive, hence the B’x are recursive,
hence c is recursive, hence s is recursive, and s is also increasing since

0394() = c(i) ~ 0 for i E x dco. Let S be the graph of s. Then as in the
proof of Theorem 1 we know (r, 11) e A(G) for some recursive S-frame G.
Now C = {i ~ d03C9|0394(i) &#x3E; 0} = {i ~ d03C9|(~x  m)i ~ B’x} is clearly
totally unbounded so we may apply Lemma 4 to s once we know that

But c is a recursive function and consequently 03BE and n are recursively
equivalent (again it is best to see this by ones self). Hence s is an eventual-
ly recursive regular function of essentially d variables. Choose a E n-d03C9
so as to satisfy a ~ ax for each x  m. Then r(x,y+a) = s(x) for
x E x dQ), y E X n-dQ) which proves that r is an eventually recursive re-
gular function whose essential domain is v(d). To obtain (i) of Theorem
4 we note that if r meets the hypothesis of (i) then s = Àxr( x + m) for
some m E x n03C9 also meets these hypotheses and moreover is a recursive
increasing function. Apply what we have just proved so as to conclude
that s is eventually recursive regular and hence so is r. (ii) is proved in
the same way. q.e.d.
We summarize our results below. For each function r : n03C9 ~ co we

let the Nerode extension r be defined by r(x) = y iff x E x nA, y E A
and (x, y) E R where R is the graph of r. Thus r may or may not be
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defined on all of x n. By Theorems 1 and 3 r maps x nR into iff r A
maps x nRZ into Z iff r is almost recursive increasing, and by Theorems
2 and 4 r maps x "AR into R iff r A maps x nRZ into RZ iff r is almost
recursive regular. To complete the picture we quote some results of [5]
and [7]. r maps x nA into  iff r A maps x nZ into Z iff r is almost re-
cursive combinatorial.
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