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1. Introduction

Let (P, ~) be a partially ordered set. We say that (P, ~) can be
embedded in the isols () if there is a one-one function f : P ~ Il such
that x  y if and only if f(x) ~ f(y) for all x, y E P (by f(x) ~ f(y) we
mean (~z E )f(x)+z = f(y)). In [3 ] we showed

THEOREM: If (P, ~) is a partially ordered set then the following condi-
tions are equivalent. (i) P is countable, (ii) (P, ~) can be embedded in the
cosimple isols (llz), (iii) (P, ~) can be embedded in the cosimple regres-
sive isols (ARz).

In this paper we shall try to extend the preceding result and charac-
terize those uncountable partial orderings which can be embedded in
the isols and in the regressive isols, respectively. We shall find that these
classes are quite different. In the regressive case we use methods that are
almost entirely from isol theory (cf. [1 ]). However, for the case of em-
beddings in the isols we rely on [6]. Since the material in [6] is also con-
tained in [7], and the latter is easily accessible, [7] will be used as our
reference source.

2. Embeddings

Let 03C9 be the non-negative integers, and j the pairing with k, 1 as first,
second inverse. For any set a we let x na be the n-fold direct power of oc,

lai = the cardinality of a, and ~03B1~ the recursive equivalence type of oc.
M will be the cardinality of the continuum. We say that a partially ordered
set (P, ~) is regular if (i) every x E P has at most countable many pre-
decessors, and the set S consisting of all those x E P having uncountable
many successors satisfies (ii) S is linearly ordered by ~ and each x E S
has finitely many predecessors, and (iii) if x E S, y E P-S then x ~ y.
THEOREM 1 : A partially ordered set (P, ~) can be embedded in the re-

gressive isols if and only if it is regular and has cardinality at most N.
* Supported by grants from The Institute for Advanced Study and The New

Jersey Research Council.
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PROOF: (a) Suppose (P, ~) can be embedded in R. W.l.g. we can
assume that P - R. Clearly |P| ~ N. In [1 ] a unique degree of unsolv-
ability is associated with each x E R. lt is the degree of any retraceable
set contained in x and it is least among the degrees of all sets contained in
x. We denote this degree by 0394(x). By P 17 (c) of [1] if x, y ~ R, x is infi-
nite, and x ~ y then 0394(x) = 0394(y). Now any isol has at most countably
many predecessors, afortiori the same is true of (P,  ). Let S be as in the
definition of regular. Then by P17(c) each x E S is finite, i.e. S ~ 03C9 ~ R.
The elements of S must be linearly ordered by , if x E S, y E P-S then
x ~ y, and each x ~ S has only finitely many predecessors. Thus (P, ~)
is regular.

(b) Let (P, ~) be a regularpartially ordered set having cardinality at most
X. Say that a function f : 03C9 ~ o dominates partial recursive functions if for
every partial recursive function g we can find an m such that n e 03B4g or
g(n)  f(n), for all n &#x3E; m. By an unpublished result of S. Tennenbaum a
degree d contains a function which dominates partial recursive functions
if and only if d ~ 0’. Now let f be any such function. W.l.g. we may as-
sume that f(0) ~ 0. In [4] it is shown that if we define t(O) = 0 and
t(n +1) = j(t(n),f(n)) then t is a T-retraceable function retraced by k. By
theorem 4, chapter 3 of [7] there is a set of x pairwise incomparable de-
grees, each greater that 0’. Let D be a set of x functions each dominating
partial recursive functions and having pairwise incomparable degrees.
For each f ~ D let t f be the T-retraceable function constructed above and
let 03C4f = pt f . It is not hard to set that f, t f and -rf have the same degree. Let
S ~ P be as in the definition of regular. S contains at most countably
many elements and is linearly ordered by ~ as an initial segment (per-
haps improper) of 03C9. We will embed S as this segment. Since x E S,
y E P-S implies x ~ y it will suffice to embed P-S in R-03C9. For each
A g P let A’ = {y~P-S|(~x~A)(y ~ x v x ~ y)} and let A0 = A,
An+1 = (An)’ and A03C9 = ~n03C9An. Define an equivalence relation - on
P-S by x - y if x ~ {y}03C9 and y E {x}03C9. We let E be the set of all equiva-
lence classes. E is a partition of P-S into at most M sets each containing at
most countably many elements. Elements of P-S belonging to different
equivalence classes are incomparable with one another. Thus it will suf-
fice to embed an equivalence class in a set of isols having a fixed degree,
different classes corresponding to différent degrees. Let u E E and f ~ D.
We will embed u in a class of regressive isols each having the degree of
f. Let t f and 03C4f be as above (in the following drop the subscript f). By a
result of [5] there is a reflexive recursive R z x 2W which partially orders
ce in such a way that every countable partial ordering can be embedded
in (ce, R). Since (u, ~) can be embedded in (w, R) it will suffice to embed
(co, R) in AR. Recall that i is retraced by k and let k*(x) be the least n
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such that k°(x) = k"+1(x) where the superscript denotes iteration. Let
Il (n) = {x|k*(x) = n} and for any set oc z co let oc (n) = a n 03BC(n). Our em-
bedding will be defined by h(n) = u {03C4(m)|mRn}. To show that h(n) is
retraceable note that h(n) is separated from a-h(n) by the recursive set
u {03BC(m)|mRn} By P5 of [1 ], h(n) is a retraceable set and by P17(c) of [1] it
has the same degree as i. Since h(n) g i, it is clear that h(n) is immune
and consequently h(n)&#x3E; E R. If xRy then h(x) z h(y) and h(x) is

separated from h(y)-h(x) by the recursive set u {03BC(n)|nRx}. Therefore
~h(x)&#x3E; ~ h(y)&#x3E; in the isol ordering. By lemma 4 of [3] if 03B1, 03B2 ~ l’

are infinite recursively equivalent sets, then a ~ 03B2 ~ Ø (T-retraceability
implies this). If -xRy but h(x)&#x3E; ~ h(y)&#x3E; then for some one-one par-
tial recursive function p, 03C4(x) ~ 03B4p and p maps 03C4(x) into u {03C4(n)|n ~ x}.
But this contradicts lemma 4. Thus if ~ xRy then - h(x)&#x3E; ~ h(y)&#x3E;
and h embeds (co, R) into ilR. q.e.d.
A set A of functions is independent if no function in A is recursive in

the function theoretic join of finitely many other functions in A. By
theorem 4, chapter 3 of [7] we may actually take the set D used in the
proof of theorem 1 to be an independent set of functions.

LEMMA 1: If xi ~ AR for i ~ n and x0 ~ x1 + ··· +x" then 0394(x0) ~
0394(x1) ~ ... u 0394(xn).
PROOF: Let i; e xi for i ~ n where 03C4i is retraceable for 1 ~ i ~ n.

W.l.g. we may assume that 03C4i ~ ai for 1 ~ i ~ n where the 03B1i are recur-

sive and form a partition of co. Let r = 03C41 ~ ··· ~ t’n. We also assume
that 03C40 ~ 03C4 and there are disjoint r.e. sets y, à such that io s y and

03C4-03C40 ~ ô. Now consider any 1 ~ i ~ n. io n ai z i; and, io n a; and

03C4i-(03C40 ~ ai) are separated by y, ô. By P15 of [1], 4 (io n 03B1i) ~ d(zi)
and by another application of P15, 0394(03C40) ~ 0394(03C41) ~ ··· ~ 0394(03C4n). But
0394(x0) ~ 0394(03C40)(recall that 0394(x0) is the least degree of a set in xo) and
d (xi) = 0394(03C4i) for 1 ~ i ~ n. q.e.d.

THEOREM 2: If (P, ~) is a partially ordered set of cardinality at most N
and every x E P has at most finitely many predecessors then (P, ~) can
be embedded in the isols.

PROOF. Let D be a set of x independent functions and let E = {03C4f&#x3E;|
f e D}. Let g : P ~ E be a one-one function and for y E P let h(y) =
03A3{g(x)|x ~ P ^ x ~ y} where the sum is taken in the isols. If x, y E P
and x ~ y it is clear that h(x) ~ h(y). If ~x ~ y and h(x) ~ h(y) then
g(x) ~ h(y) which contradicts lemma 1. q.e.d.

In particular, if we take A to be a set of cardinality M and P to be the
set of all finite subsets of A, then (P, ~) can be embedded in the isols by
theorem 2 but not in the regressive imls because every element of P has
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uncountably many successors. Our next goal is to find necessary and suf-
ficient conditions for a partial ordering to be embeddable in the isols.
We shall only be able to do this under the assumption of the continuum
hypothesis (CH). Without this assumption our conditions will only be
sufficient and will not include the embedding of theorem 2.

First, we state theorem 1, chapter 3 of [7]. (*) Let (P, ~) be a partially
ordered set, and let M and N be disjoint subsets of P such that M has car-
dinality less than X, N is countable, and no member of N is less than any
member of M. For each n E N the set Mn = {m E Mlm  nl is countable
and any two members of Mn have an upper bound in Mn . Let A be a set of
degrees order isomorphic to M. Then there exists a set B of degrees such
that A u B is order isomorphic to M ~ N by means of an extension of
the given order isomorphism between A and M.

THEOREM 3: The same as (*) except A and B are sets of isols, and we
are given that each element of A has a representative of degree ~ 0’ whose
degree ordering is isomorphic to the corresponding isol ordering, and we
conclude that the same is true of A u B.

PROOF. Our argument is a direct modification of the proof of (*) which
the reader is expected to be familiar with. First we state theorem 59 of
[2]. If 03B1&#x3E; ~ 03B2&#x3E; and 0’ ~ 0394(03B2) then 0394(03B1) ~ 0394(03B2). Now let M =
{mt|t E V}, A = {03B1t&#x3E;|t E V}, and N = {ni|i  col. Here we assume that
0’ ~ d (at) and the degree ordering of the oc, is isomorphic to the isol or-
dering of the 03B1t&#x3E;. Also assume that the order isomorphism between A
and M is such that if s, t E V then 03B1s&#x3E; ~ 03B1t&#x3E; if and only if ms ~ mt.
Let at be the characteristic function of at . Then in [7] a sequence of func-
tipns {bi|i  col is constructed so as to satisfy

(R1) bj is recursive in bi if nj ~ ni,
(R2) at is recursive in bi if mt ~ ni,
(R3) bk is not recursive in bi if ~nk ~ ni,
(R4) at is not recursive in b i if ~mt ~ n i ,

(R5) bi is not recursive in at if t E V.

The construction of the bi amounts to a proof of (*). We modify this
construction by requiring that each bi be a characteristic function, adding
extra steps so as to insure 0’ ~ 0394(bi), and if 03B2i = {n|bi(n) = 11 then 03B2i
is immune. It is not hard to see that this does not interfere with the con-
struction in [7]. Let {pi|i  m) be an enumeration of the primes in increas-
ing order. (RI) is effected by finding a number r such that bJ(x) =
hi(pj+X) for all x, i.e., x E Pj if and only if pj+xE 03B2i. By the obvious sep-
aration this gives 03B2j&#x3E; ~ (Pi). For each ni E N let Mn, = {mij|j  col,
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cf. (*) for the definition of Mn, and let 03B1ij&#x3E; be the corresponding ele-
ment of A under the order isomorphism between A and M where 03B1ij is

one of the OE,. Let aij be the characteristic function of 03B1ij. Then (R2) is
effected by finding a number r such that aij(x) = hi(6pj+X) for all x, i.e.,
x e ay if and only if 6pr+xj ~ 03B2i. Again by the obvious separation this
gives 03B1ij&#x3E; ~ 03B2i&#x3E;. (R3) says that bk is not recursive in bi . Since 0’ 
0394(bj) for all j we may use theorem 59 to conclude that - 03B2k&#x3E; ~ 03B2i&#x3E;.
(R4) and (R5) are treated in the same way. q.e.d.
The following definition is from [7]. A partially ordered set (P, ~) is

completely normal if there exists an ordinal a and a collection {B03B3| y  03B1}
of subsets of P such that P = u {B03B3|03B3  03B1} and such that for each or-
dinal y  a : (1) u {B03B4|03B4  yl has cardinality less than x, (2) By is at
most countable and disjoint from u {B03B4|03B4  03B3}, (3) no member of BY
is less than any member of u {B03B4|03B4  03B3}, (4) for each n ~ B, the set
Ln = {x|x  n ^ x E u {B03B4|03B4  yll is at most countable and every two
elements of Ln have an upper bound in L.1.
A partially ordered set (P, ~) is normal if there exists a completely

normal partially ordered set (Q, ~’) in which (P, ~) can be embedded.
Notice that if (P, ~) is normal that each x c- P has at most countably
many predecessors and |P| ~ X.

THEOREM 4: If (P, ~) is a partially ordered set then normality is a
sufficient condition for (P,  ) to be embeddable in the isols. If CH then
it is also a necessary condition. Moreover, it is a necessary condition only
if CH.

PROOF: (a) By iterated application of theorem 3 it follows that every
completely normal partially ordered set can be embedded in the isols.

(b) We show that if CH then (A, ~) is normal and consequently so
must any (P, ~) embeddable in (A, ~). Lemma 2, chapter 3 of [7] says
that if (P, ~) is a partially ordered set of cardinality ~ N, then (P, ~) is
normal if and only if each x E P has at most countably many predecessors.
But (A, ~) certainly has the latter property.

(c) Lemma 5, chapter 3 of [7] says that if (P, ~) is a partially ordered
set of cardinality x such that any two elements of P have an upper bound
in P and any x E P has at most countably many predecessors, then (P, ~)
is normal if and only if CH. The example given immediately after theorem
2 meets these conditions, is embeddable in (A, ~), and is normal only
if CH. q.e.d.

We conclude our paper by giving some sufficient conditions for em-
bedding a partial ordering in (A, ~).
COROLLARY 1: If (P, ~) is a partially ordered set of cardinality ~ N1
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then (P, ~) is embeddable in the isols if and only if each x E P has at most
a countable number ofpredecessors.

COROLLARY 2: If (P, ~) is a partially ordered set of cardinality ~ N
such that each x E P has at most Ni successors then (P, ~) is embeddable
in the isols if and only if each x E P has at most countably many predeces-
sors.

See corollary 2, theorem 3, chapter 3 of [7] for proofs.
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