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A spectral operator is said to be of finite type if it is the sum of a scalar
and a nilpotent operator. In this paper, these operators are characterized
as operators which can be expressed as the product of a generalized scalar
A-unitary operator with a regular generalized scalar whose spectrum is
contained in the nonnegative real axis.
Using results of S. R. Foguel [3] and some properties of semi-inner

products, T. V. Pachapagesan [6] obtained a decomposition of scalar
operators into the product of a unitary operator (under some equivalent
norm) and a scalar operator with nonnegative spectrum. In the present
paper, it is shown that spectral operators of finite type can be expressed
in the same way with scalar replace by regular generalized scalar.
Most of the theorems and definitions used in this paper can be found

in the book, ’Theory of Generalized Spectral Operators’, by I. Colojoara
and C. Foias [1 ]. Some of the definitions are stated below for easy
reference.

Throughout the rest of the paper, X will denote a fixed Banach space
and B(X) the space of bounded linear operators on X. The algebra of all
infinitely differentiable functions on R2 ( = C ) with the topology of
uniform convergence of the functions and all their derivates, will be de-
noted by Coo. The functions F(À) = À, (À = s + it), and/(A) ~ 1 will be

shortened top and 1 respectively.

DEFINITION (1). A continuous algebraic homomorphism U from Coo
into B(X) such that U1 = 7 (identity operator) is called a spectral distri-
bution.

DEFINITION (2). Let A be an algebra of functions defined on a set D in
the complex plane. If U is an algebraic homomorphism from d into
B(X) such that Ul - I and the B(X) valued function j - Uf. is analytic

1 This paper was written at the U. S. A. F. Aerospace Research Laboratories while
in the capacity of an Ohio State University Research Foundation Visiting Research
Associate under contract F 33615 67 C 1758. AMS Subject Classification: Primary 47
B 40, Secondary 46 F 99 (1970).
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on CBsupp (f), where

then the operator T = U03BB is called an A-scalar operator. If A = C*
and U is continuous, then T is a generalized scalar operator. The operator
T is .-W-unitary if D is the unit circle.
For an operator T, C(T, T)A will denote the operator TA - AT.

DEFINITION (3). A spectral distribution U is called regular if

C(U;., UA)A = 0 implies C( Uf , Uf)A = 0 for allfeCoo. A generalized
scalar operator is regular if it has a regular spectral distribution.
To see that every spectral operator T = P+ Q, with P scalar and Q

nilpotent of order n, is a regular generalized scalar operator, define
U : C~ ~ B(X) by,

where the operator D = 1 2(~/~s-i~/~t), (À = s + it), and E is the resolu-
tion of the identity corresponding to T. It follows that T is regular since
any operator which commutes with T also commutes with E(03C3) for any
Borel set a (cf: [2], theorem 5), and hence commutes with f(03BB)dE(03BB)
for all f~C~.

THEOREM (1). Let T be a spectral operator of finite type. Then there
exists operators R and S satisfying,

i) S is a generalized scalar d-unitary operator
ii) R is a regular generalized scalar with its spectrum contained in the

nonnegative real axis

iii) T = RS = SR.

PROOF. There exists operators P and Q such that T = P + Q, PQ = QP,
Q is nilpotent and P is scalar. According to lemma 2 ([3], page 60) there
exist two commuting scalar operators Tl, T2 such that P = Tl T2 and
03C3(T1) is a subset of positive real axis, 03C3(T2) is a subset of the unit circle.

It follows from the construction of T2 that QT2 = T2 Q and hence
QT2-l = T2 1 Q. Since Q is a nilpotent operator, so is T2 1 Q. Thus the
operator R = Tl + T-12 Q is a spectral operator of finite type and it fol-
lows that Tis a regular generalized scalar (cf: [1 ], theorem 3.6, page 107)
and 03C3(R) = 03C3(T1) is a subset of positive real axis.

Finally note that T = T2R = RT2 and T2 is a generalized scalar
A-unitary operator. Thus letting S = T2, properties i), ii) and iii) are
satisfied.
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COROLLARY (1). If T is a spectral operator, then there exists operators
R and ,S’ such that S is a generalized scalar A-unitary operator, R is a
spectral operator with spectrum contained in the nonnegative real axis, and
T = RS = SR.

PROOF. If T = P + Q, P scalar and Q quasi-nilpotent, then T = SR1 + Q
where SR, is the decomposition of P from theorem 1. Thus T = S(R1 +
S-1 Q) and since S commutes with Q, S-1 Q is quasi-nilpotent which im-
plies that a(R) = u(Rl + S-’Q) = Q(R1 ) is contained in the nonnegative
real axis.

Using the fact that a scalar operator is unitary under some equivalent
norm iff its spectrum is contained in the unit circle, we obtain the follow-
ing decomposition.

COROLLARY (2). If T is a spectral operator of finite type, then T = RS
= SR where S is unitary under some equivalent norm and R is a regular
generalized scalar operator with spectrum contained in the nonnegative
real axis. Further, if T is scalar, then R is also scalar.

Before obtaining the converse to theorem 1, we first establish the fol-
lowing lemma.

LEMMA (1). Let T be an operator in B(X) such that T = P + Q where P
is a regular generalized scalar which commutes with every operator A that
commutes with T and Q is quasi-nilpotent. If T = RS = SR where R and
S are generalized scalar operators with commuting spectral distributions,
then Q is nilpotent.

PROOF. If U, V are commuting spectral distribution for R, S respective-
ly, then there exists a sepctral distribution W such that W03BB = UA VÂ = T.
Letting Y be a regular spectral distribution for P, it follows that Wf
commutes with Y03BB = P for every f ~ Coo and hence Yg for every g E C * .
Therefore, W, Y are commuting spectral distributions and thus Q =
W03BB-Y03BB is a generalized scalar which implies it is nilpotent (cf: [1],
page 106).
THEOREM (2). Let T be a spectral operator such that T = RS = SR

with S a generalized scalar A-unitary and R a regular generalized scalar.
Then T is of finite type.

PROOF. Let U and V be spectral distributions of R and S respectively
with U regular. Since the spectrum of S is contained in the unit circle and
hence thin, S is regular (cf: [1], theorem 1.11, page 100). We may assume
that V is a regular spectral distribution for S. Since U03BB VÂ = VÂ UÂ,
C(U)., U03BB)V03BB = 0 and thus C(Uf, Uf)V03BB = 0 for all f ~ Coo because
U is regular. Similarly C(Vf, Vf)U03BB = 0, f E C 00. Let g E C~, then
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C(Vg, Vg)U03BB = 0 implies C(U)., U03BB)Vg = 0 and hence C(Uf, Uf) Vg = 0,
fe COO. Therefore U and V are commuting spectral distributions and since
T is spectral, it follows from the lemma that T is of finite type.
An operator having the above decomposition does not have to be

spectral. For example, consider the operator T defined on Lp(0, 1) by

Kantorovitz [5] has shown that T is not spectral. However, letting U be
the spectral distribution defined by

We see that T is a generalized scalar and since its spectrum is contained
in [0, 1 ], the operators T and 1 satisfy the conditions of theorem 1.

Further, since the operator Qf(x) = *0f(t)dt for f~Lp(0, 1) is quasi-
nilpotent (cf: [4], page 668), it follows that the condition that P commute
with every operator which commutes with T is necessary in lemma 1.

In some cases, we can find a decomposition without using the fact that
they are spectral.

THEOREM (3). Let E be a Banach space of complex-valued functions con-
tained in C 00 (Q) with the property that fg E E for each bounded function
g on 03A9 and each f E E. If T is a bounded linear operator on E defined by
Tf(x) = f(x)h(x) for some bounded function h, then there exists operators
R and S satisfying properties i), ii), iii) of theorem 1.

PROOF. For each qJ E Coo, let Ulp be the operator defined by U~f(x)=
~(h(x))f(x), then U is a spectral distribution for T. Let Cl be the unit
circle in complex plane, then define V : C~(C1) ~ B(X) by

for each BE C~(C1).
Then V03BB is a generalized scalar A-unitary operator and Vj U03BBf(x) =

|h(x)|f(x). Letting W. = V03BBU03BB, it follows that T = V03BBW03BB and V)., W).
satisfy properties i), ii), iii) of theorem 1.
The author wishes to give credit to the referee for suggesting a shorter

proof of theorem 1.
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