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The results presented here are a continuation of [1 ] and are best
viewed as a generalisation of the classic work of Von-Neumann [2],
Halmos and Von-Neumann [3] and Abramov [4]. In [1] we classified
ergodic unipotent affine transformations of nilmanifolds; for it turned
out that metric (measure theoretic) isomorphisms and homomorphisms
between two such systems are necessarily (a.e.) affine and therefore

algebraic. Having clarified the relationships between ergodic unipotent
affine transformations of nilmanifolds, we propose to use these systems
as models for general metric dynamical systems. We do this in analogy
with the work of [2], [3] concerning discrete spectra which is based on
the simple model of a translation of a torus, or even of a circle. Abramov’s
theory is likewise based on the model of a unipotent affine transformation
of a torus. (It is not usually formulated this way; for an account of this
point of view c.f. [5].) The theory of entropy can be formulated in a
similar way as a theory based on the Bernoulli transformations as models,
but in this case considerable effort is required to show this for it dépendus
on Sinai’s result [6] concerning Bernoulli factors of transformations with
positive entropy and its further elaboration requires Ornstein’s results
[7], [8], [9] on isomorphy, factors and limits of Bernoulli transformations.
Of course the best example of a structure theory based on models is

that of group representations. We shall be concerned with metric dynami-
cal systems and representations of them as unipotent affine transformations
on nilmanifolds. It is in this sense that we speak of dynamical representa-
tions in nilmanifolds. Our main results state that the class of ergodic
unipotent affine transformations on nilmanifolds is closed under reason-
able finite operations:

If T is a totally ergodic dynamical sytem on a Lebesgue space with
sufficiently many representations in nilmanifolds, then T is the projective
limit of a sequence of unipotent affines.
If a finite number of unipotent affines on nilmanifolds are sufficient, then

T is a unipotent affine on a nilmanifold.
If Tl, T2 are metrically isomorphic ergodic unipotent affines on compact

homogeneous spaces of locally compact connected nilpotent groups, then
each such isomorphism is essentially affine.
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Every metric factor of an ergodic unipotent affine transformation on a
nilmanifold is also a unipotent affine transformation on a nilmanifold.

It should be stated that our principal results remain valid if unipotent
affines are replaced by a nilflow. Indeed the proofs go over virtually
word for word. Specifically if ’unipotent affine’ is replaced by ’nilflow’ in
(2.2), (3.1), (3.3), (5.1) these statements remain valid. We should also
mention that the same theorems (with unipotent affine or with nilflow)
remain valid in the topological category, i.e. if (single or flows of) ergodic
measure preserving transformations are replaced by (single or flows of) top-
ologically transitive homeomorphisms of a compact connected metric space
and if metric homomorphisms are replaced by continuous surjective maps.

1. Preliminaries

Let N be a connected separable locally compact nilpotent group, and
let Fbe a closed subgroup such that N/F is compact. N/Fis called a nilspace.
If N is a Lie group then N/F is called a nilmanifold. In the latter case Fo,
the connected component of the identity, is a normal subgroup of N and
F/Fo is discrete in N/Fo so that every nilmanifold is the quotient of a Lie
group by a uniform discrete group. [10].

If N/F is a nilspace there is a unique normalised Haar measure m

(defined on the Borel sets) which is invariant under left translations.
Measure theoretic statements will always refer to this measure.

If Ni /Fi , N2lF2 are two nilspaces and A is a continuous endomorphism
of N, onto N2 such that AFI c F2 and if a E Nl then T(xF1) = aA (x) F2
is called an affine transformation, sometimes abbreviated to T = aA.
Affine transformations preserve Haar measure. If A is surjective with
AF1 = F2 then T is an invertible affine. An affine transformation T = aA
of a nilspace N/F onto itself is called unipotent if nn B n(N) = e where
Bx - x-1 A(x).

Let N be a connected separable locally compact nilpotent group and
let .K be a compact normal subgroup of N such that N/K is a Lie group.
Let A be a unipotent automorphism of N. Then for some integer n,
A(K n A-1 K n... n A-(n-1)K = K n A-1 K n ... n A-(n-1)K.
For if K- =KnA-1 K~A-2K~··· then AK- ~ K-. However,
B nK- 1 e and therefore Bn(K)AK- -+ AK- when 03BA~K-. But B"(K)z4K- =
K(-l)nAK- so that x E AK-. In other words AK- = K- and AK n K- =
K- i.e. K ~ A-1K~A-2K~··· Since N/K is a Lie group and therefore
has no small subgroups, there exists a neighbourhood U of K with the
property that if H is a closed subgroup with U ~ H ~ K, then K ~ H.
For some n, K. (A-1 K n A-2K ~ ··· n A-nK) c U, hence

which proves our assertion.
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As an easy consequence of the above we have :

(1.2) If T = aA is a unipotent affine transformation of the nilspace NIF,
then there exists a sequence of compact normal subgroups Kn! e with
AKn = Kn and N/Kn a Lie group. T is a projective limit of the unipotent
affines induced on the nilmanifolds N/Kn. F ~ N/Kn/(KnF/Kn).

In the last chapter we shall need the following, no doubt standard, result:

(1.3) If N is a connected separable nilpotent locally compact group and
K is a compact subgroup then K is central.
The result follows from the corresponding fact for Lie groups. When

N is Lie, N = MIF where M is the nilpotent universal covering group of
N and F is discrete and central. We may suppose that K = H/F is a maxi-
mal compact subgroup of N and therefore connected. It follows that H
is connected. F is uniform discrete in some central connected subgroup
L and therefore H. LIF = HIF since HIF is maximal compact. Conse-
quently H ~ L and H/F ~ L/F are torii with the same fundamental group
F i.e. H = L, H is central and K is central.
We shall need the following theorem proved in [1]:

(1.4) If Tl, T2 are ergodic unipotent affine transformations of the nilmani-
folds Xl, X2 and if F is a measure preserving transformation of Xl onto
almost all X2 such that F Tl = T2 F a.e. then there exists an affine trans-
formation F’ of Xl onto X2 such that F = F’ a.e.

Throughout the paper equations and inequalities between measure

theoretic objects will be understood to hold up to sets of measure zero.
If Ti are measure preserving transformations of Lebesgue spaces

(Xi, ei, mi) i = 1,2 and if F is a measure preserving transformation of
Xl onto almost all (a - a) X2 where F Tl = T2 F a.e., we shall say that F
is a representation of the system (Xl, Tl) on (X2, T2) (or in X2) and write
(Xl , T1)  (X2, T2) or Tl F T2. The representation F is called invertible
(or a metric isomorphism) if there is a representation T2  Tl, such that
F’ 0 F is the identity a. e. Whenever we speak of representations in nilmani-
folds in this paper we shall mean representations as unipotent affine
transformations on nilmanifolds.

In the following we assume F-1 B’ = (F’)-1B’.
As a consequence of (1.4) we have:

(1.5) If F and F’ are representations of (X, T) on the same unipotent
affine transformation T’ of the nilmanifold X’, where T is ergodic, then
there exists an invertible affine transformation qJ of X’ such that F’ = ~ o F
a.e. and ~T’ = T’~.

This statement is analogous to the well known result that eigenfunctions
with the same eigenvalue are constant multiples of one another. For
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the proof we note that the map x’ ~ F’ 0 F-1 x’ is a well defined measure
preserving transformation which commutes with T’. By (1.4) there

exists an affine transformation qJ of X’ with F’ 0 F-1 = qJ a.e. i.e. F’ =

qJ 0 F a.e. ~-1 = F 0 (F’)-1 is clearly well defined and also affine.
We shall find the following proposition useful in supplementing

measure theoretic structures with topological structures. (For a similar
proposition c.f. Appendix to part 1 of [11].)

PROPOSITION 1.6. Let T be a measure preserving transformation of the
Lesbesgue space (X, e, m), and let Ti be measure preserving homeomor-
phisms of (Xi, Bi, mi) i = 1, 2 where each Xi is a compact metric space,
Bi are the a-algebras of Borel sets and mi are normalised measures.
Let Fi be measure preserving maps of X onto a.a. Xi such that B =

F-11B1 v F-1B2. Then there exists a measure preserving homeo-

morphism T’of (X’, PÃ’, m’) (where X’ is a compact metric space) and
there exists an invertible measure preserving transformation F of (X, B, m)
onto (X’, B’, m’) and continuous measure preserving maps Fi of (X’,
e’, m’) onto (Xi, Bi, mi) such that

Moreover, Fl’, F2 separate points of X’.

PROOF. Let d

Since C(Xi), C(X2) are separable algebras so is A in the topology of
L~(X). Thus the closure A is a separable commutative T invariant C*
sub-algebra of L~(X), and there exists a compact metric space X’ with
C(X’) isometrically isomorphic to A, by an isometry U. If UT is the
isometric automorphism of A induced by T, then there exists an isome-
tric automorphism UT, of C(X’), where T’ is a homeomorphism of X’,
such that

(C(X’), UT’)  (A, UT).
Moreover, for each i - 1, 2, Upl.fi = fi 0 Fi defines an isometric isomor-
phism of C(Xi) into A, and therefore we have isometric isomorphisms
UF1, such that
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where F’i is a continuous map of X’ onto Xi. The invertible isometry U
induces an invertible set mapping of B’ to go, where go’ is the Borel
a-algebra of X’ which will pull back the measure m to a measure m’on
B’. Since (X, e, m), (X’, go’, m’) are Lebesgue spaces, this set mapping
is induced by an invertible measure preserving transformation F such
that (X, T)  (X’, T’). Thus we have

Since UFi C (Xi), i = 1, 2, generate C(X’), Fl’, F2 separate points of
(Y’). 

2. Comparison of representations

If T is a measure preserving transformation of a measure space
(X, B, m) then T is called ergodic if B E fil, T-1B = B implies mB = 0
or mBC = 0 and is called totally ergodic if Tn is ergodic for n = 1, 2, ...

If T is a homeomorphism of a compact metric space X then T is called
minimal if K c X, K closed and TK = K implies K = Ø or K = X and
is called totally minimal if Tn is minimal for n = 1, 2, ... T is called distal
if for each x, y E X, x ~ y, there exists B &#x3E; 0 with d (Tnx, T"y) &#x3E; e for

all n. If T is distal with a dense orbit, then T is minimal i.e. every orbit is
dense [12].

THEOREM 2. l. Let T be a totally ergodic measure preserving homeomor-
phism of the compact metric space (X, fil, m) where e is the u-algebra of
Borel sets and m is a normalised measure which is positive on non-empty
open sets. Let (Xi, Ti) i = 1, 2 be unipotent affine transformations of
nilmanifolds Xi = NilDi where Di is discrete and Tl (gxl) = gT1xl for
g E G a compact central subgroup of Nl. If we have the commutative
dia.qram
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where fl f2 are continuous measure preserving maps onto Xl, X2, which
separate points of X and if P is affine and PG is the natural map of Xl onto
X1/G then (X, T) can be given the structure of a unipotent transformation
of a nilmanifold, whereupon fl , f2 become affine.

PROOF. We first show that T is distal from which, together with the
existence of a dense orbit (T is ergodic and m is positive on non-empty
open sets), we conclude that T is minimal. If Tmnx ~ z ~ Tmny then
Tmni fi(x) ~ fi(z) ~ Tmnifi(y). Since Tl, T2 are distal c.f [13] we see that
fi(x) = fi(y) i = 1, 2 i.e. x = y.

Let B, E1, B2 denote the partitions of X, Xl, X2 into points and let
03B11 = f 1 1 ’E 1 , OC2 = f-12 B2 so that a = 03B11 V OC2, T03B11 = 03B11, Ta2 - (X 2 .
If Ai ~ 03B1i, Ai = fi- ’xi define for n E Ni
nAi = f-1inxi. TnAi = Tf-1imxi = f-1iTinxi
= f-1i03C4i(n)Tixi = 03C4i(n)TiAi where Ti (nxi) - 03C4i(n)Tixi and ri is a uni-
potent automorphism of Ni.
Let 03B11/G = {GA1 : Al E oc, 1 then 03B11/G is a partition and the commutative
diagram in the hypothesis asserts that oc,IG :9 a2 i.e. if GA, n A2 ~ 0,
Al E Otj, A2 E a2 then GA1 ~ A2 .

1. If gAI n A2 f= 0, Al n A2 =1= 0 and A’1 nA’ 2 :00, g E G, Ai,
A E 03B1i then gA’1 n A’ :0 0.
(Note that these non-empty sets are necessarily single points.) Since T
is minimal there is a sequence such that Tmn(A1 ~ A2) ~ A’1 ~ A’2 and
therefore 0 :0 T mn (gA 1 n A2) = gT mn Ai n TmnA2 ~ gA’1 n A2 since

T-n Ai , Ai .
2. If A, n A2 :0 then {g E G : gAI n A2 Ø} = H is a closed sub-
group of G. For if gAi n A2 =1= Ø, hAi n A2 ~ Ø then by 1.

ghAl n A2 =1= 0.

It is clear that H is closed and a semi-group. H is therefore a group.

3. If Al E oc,, A2 E OE2, HA1 n A2 ~ Ø then HA1 ~ A2. Evidently by
definition of H, the condition HA1 n A2 ~ Ø is the same as the condition
A1 n A2 =1= Ø and therefore we have GA1 ~ A 2 . But

and for g ~ H, gAl n A2 = Ø. Therefore GA1 ~ A2 implies HA1 ~ A2.

4. The map X2  X1/H given by x2 ~ G. fl  f-12 x2 is well defined (by 3.)
and sends T2 to TIIH (the affine induced by ri) and since T2 , T1/H are
unipotent, by (1.4) P’ is affine. In other words the conditions of the

theorem remain valid with G replaced by H so that:
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There is no loss in generality in assuming that gAl r) A2 Ø whenever
A1 ~ A2 ~ Ø i.e. G = H.

5. The following conditions on (m, n) E NI x N2 are equivalent (when
we assume, as we may G = H) :

(i) mAl r) nA2 :0 0 whenever Ai ~ A2 ~ 0.
(ii) mGA1 ~ nA2 when Al n A2 0 i.e. GA1 ~ A2.
(iii) mGA, = nGAl for all Al’

(i) (ii). If A1 n A2 ~ Ø then mA1 n nA2 ~ Ø and therefore
mGA1 m) nA2.

(ii) ~ (iii). Let GA1 ~ A2 then mGA1 = GmA1 ~ nA 2 . Hence

(iii) ~ (i ). If A1 n A2 ~ Ø then GA1 ~ A2 and GmA l = m GA l =

nGA1 ~ nA2. Hence mAl n nA2 ~ 0. M = {(m, n) E NI x N2 : either
(i), (ii), (iii) hold} is a closed subgroup of NI x N2, (since (iii) defines a
closed group) and M ~ G x e. As a closed subgroup of a Lie group, M is
a Lie group.

5 (i) of course defines an action of M on X, since Ctl v a2 - 8. If x =

Al n A2 define (m, n)x = mAl n nA2 if (m, n) E M.

7. M acts transitively on X and the homomorphisms 03C01, n2 defined by
03C01(m, n) = m and 7r2 (m, n) = n are surjective. Since Ni acts transitively
on Xi we need only show that some element of M carries Al n A2 ~ Ø to
mA1 ~ nA2 ~ Ø. Certainly there exists m’ E Nl with m’GA 1 = nGA1
for all A 1 E a 1 i . e. (m’,n) ~ M. Furthermore nGA1 ~ nA2. Hence

m’gAi n nA2 ~ 0 for some and therefore all g E G. But m’GA, :D nA2
and mGA, :D nA2 implies m’GA1 = mGAI i.e.
m’gA l = mAi for some g E G. (m’g, n) E M and carries Ai n A2 to
mA 1 n nA2.
The surjectivity of 03C01, n2 follows from the definition of M according to
5 (iii).

8. Since T«m, n)x) = (03C41(m), 03C42(n))Tx where 03C41, 03C42 are unipotent, it

follows that T is a unipotent affine. fl , f2 are affine since fl (m, n)x =
mf1(x) and f2 (m, n)x = nf2 (x).
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9. The connected component Mo of the identity of M acts transitively
on X and 1tlIMo, 1t21Mo are surjective.

In fact X is partitioned into closed Mo orbits and since MI Mois
countable and M is transitive (and measure preserving) X is partitioned
into a finite number of Mo orbits which are permuted by T. Since T is
totally ergodic, X must be a single Mo orbit i.e. Mo acts transitively.
03C01(M0), 1t2(M 0) are open subgroups of Nl , N2 and therefore

In the following theorem all maps are assumed to be measure preserv-
ing. Maps which are not specified as affine are assumed to be onto almost
all of the target space whereas affine maps are assumed to be surjective.
Moreover parts of a diagram involving such maps commute a.e.

(X, T)  (X1, Tl ) means F1T = TIFl a.e. and Fl maps X onto Xi a.e.

THEOREM 2.2. Let T be a totally ergodic transformation of the Lebesgue
space X and suppose

where Ti are unipotent affines on nilmanifolds Xi. Then there exists a
unipotent affine transformation T3 on a nilmanifold X3 and there exist
maps F3 , qJ l , qJ 2 where ~1, qJ 2 are affine such that the following diagram
commutes:

Moreover among the systems (X3, T3) there is an unique ’smallest’ (up
to an invertible affine) (X3, T3) such that F3T3 = T3F 3 for some affine
F3.

PROOF. If (X3, T3) is any system (affine or not) for which the above
diagram commutes (X3, T3) factors through the system (X3, T3 ) where
(X3, T3) is the factor system of (X, T) defined by the sub-u-algebra
F-11BF-12B2 ~ B. (B, B1, B2 are or-algebras of X, Xl , X2 respecti-
vely). To prove the theorem then, we need only impose a transitive con-
nected nilpotent Lie group action on X3 such that T3 is a unipotent
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afhne. (X 3, T3) will then be affinely related to any other candidate
(X3, T3) by (1.4).
In other words, by replacing (X, T) by (X 3, T3), if necessary, we need

to prove:
If T is totally ergodic and (Xi, Ti) (i = 1, 2) are unipotent affines on
nilmanifolds and if Fi T = TiFi a.e. and F-1B1  F-12B2 = B then
(X, T) is metrically isomorphic to a unipotent affine on a nilmanifold.
(With this representation, Fi, F2 become affine by (1.4).)
PROPOSTIION 1.6. allows us to assume that T is a homeomorphism of a

compact metric space and Fi, F2 are continuous separating surjective
maps. However, the Borel measure m which is preserved by T may not be
positive on some non-empty open set. But the support of m (the comple-
ment of the largest open set on which m is zero) is T invariant and com-
pact, and its image by Fi is Ti invariant. Since Ti is minimal this means
that Fi maps the support of m onto Xi . Thus we may replace X by the
support of m. In other words there is no loss in generality in assuming that
m is positive on non-empty open sets.
The proof of the theorem is inductive on the length of the lower central

series Ni :D N11 ~ ··· ~ Ni =1= Nk+11 = e, where Xi = N1/D1 (Dl a

uniform discrete subgroup of Ni and Tl - a1A1, A1D1 = Dl). Evidently
X i = N1/D1 ~ (Ni IN kn D1)/(D1/Nk1 n D1) and Nf n D1 is normal

since Ni is central. By replacing Ni by N1/Nk1 n Dl we may suppose that
G - Ni is a torus. (Ni n Dl is a uniform discrete subgroup of Nk1).
Moreover Tl (gxl ) = 03C41 (g)Tl xi for some unipotent automorphism of
G. The unimodular matrix representing 03C41 is a nilpotent matrix plus the
identity. Hence G = Go n G1 ~ ··· ~ G,+l = e where Gi/Gi+1 is a

torus 03C41Gi = G and 03C41 induces the identity on Gi/Gi+1. At this stage,
the proof is inductive on the length of the series

G0 ~ G1 ~ ··· ~ Gl ~ Gl+1 = e,

Since the last stage of the proof is typical, it will suffice to suppose:
K = G1 is a torus subgroup of Ni such that Tl(gxl) = gtxl for all
g E K, xi E X1 = N1IDI’ Into the diagram

the inductive hypothesis allows us to introduce a unipotent affine

(X2 , T’2) and affine maps qJl, qJ2 such that
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commutes. In particular, we have the commutative diagram:

where Fl, F2 separate points. The hypotheses of Theorem 2.1 are there-
fore satisfied and (X, T) can be given a unipotent affine structure where-
upon Fl , F2’ become affine i.e. Fl, F2 become afhne. The proof of the
theorem is complete.

3. Projective limits

We say that Fa is a unipotent representation of (X, T) (a measure
preserving transformation T of a Lebesgue space (X, e, m)) in a nil-
manifold Xa if Fa is a measure preserving transformation of X onto a.a.
Xa and Fa T = Ta Fa a.e. where Ta is a unipotent affine transformation of
Xa.

Let B, B03B1 be the a-algebras of X, X03B1. (X, T) is said to have suffzciently
many (unipotent) representations (in nilmanifolds) if
{F-103B1 03B203B1:F03B1 is a representation of (X, T)} generates B.
THEOREM 3.1. If (X, T) is a totally ergodic measure preserving transfor-

mation with sufficiently many representations then (X, T) is metrically
isomorphic to a projective limit of a sequence of unipotent affine trans-
formations on nilmanifolds.

PROOF. Let !7 be the set of unipotent affine transformations represent-
ing (X, T). For each a, fi with (Xa , Ta), (X03B2, T.) E J there is an unique
(up to an invertible affine) (Xy, Ty,) E J which minimises all others

through which (Xa, Ta), (X03B2, Tq) factor. If we select one (Xa, Ta) E J in
each affine equivalence class, it follows that the opération’ v ’ defined by
a  03B2 = y is unambiguous. Let J’ denote the set of selections. Putting
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oc ~ 03B2 when 03B1  03B2 = 03B1, J’ becornes a directed family. J’ = {(X03B1, T03B1) :
03B1 ~ I}. We note that A = ~03B1~IF-103B1 B03B1 is a sub-algebra of 31 since if
Ba e F-103B1 B03B1, B03B2 e F-103B2 B03B2 then Ba ~ B03B2 e F-103B3 B03B3 where y = rx v j8. More-
over A generates 31. There is a dense sequence {Bn} in 31 since (X, f!4, m)
is separable. Inductively choose 03B1n ~ 03B1n-1 ~ ··· &#x3E; al so that

B1, ··· Bn can be approximated to within 1/n by sets in F-103B1n B03B1n, and
abbreviate rxn to n. Clearly F-1a Bn ~ F-1n-1 Bn-1 and ~nF-1n Bn generates
31. Moreover we have affine maps qJn with (Xn, Tn)  (Xn-1, Tn-1). The
inverse or projective limit, lim~n(Xn, Tn) = (X~, T (0) is defined by:

and T~(x1, X2, ...) = (T1x1, T2x2, ...) and it is a standard result

that (X, T) is metrically isomorphic to (X 00’ T~) with the given pr opcr-
ties of qJn’

THEOREM 3.2. If T is an ergodic unipotent affine transformation of a
nilspace then T is a projective limit of unipotent affine transformations of
nilmanifolds.

PROOF. Let T = aA on X = NIF where F is closed and AF = F, A
unipotent. We have seen that there exist compact normal subgroups
Kn 1 e with AKn = Kn and NIKN Lie. Therefore N/Kn · F are nilmanifolds
and T is the projective limit of the induced affines on N/Kn · F. Standard
considerations (c.f. for example [14]) of inverse limits of groups complete
the details.

THEOREM 3.3. If Ti are ergodic unipotent affine transformations of
nilspaces Xi (i - 1, 2) and if F is a measure preserving transformation of
Xl onto a.a. X2 such that FT, = T2F a.e. then there exists an affine
transformations F’ of Xl onto X2 such that F’TI = T2F’ and F = F’ a.e.

PROOF. Let (Xl, T1) be a projective limit of (Xï, Ti ) and let (X2, T2)
be a projective limit of (X2, T2 ) where (Xn1, Tn1), (X2, Tn2) are unipotent
affine transformations of nilmanifolds. Using Theorem 2.2 and the lattice
structure of the family of all representations of (Xl , Tl ) we sec that
(Xl, T1) is also the projective limit of (Xn1, Tn1) where
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is commutative, {~n} are affine and {03C0n1} {03C0n2} are affine and separating
for Xl, X2. F is thus seen to be equivalent to a projective limit of affines
and is therefore afhne.

4. Invariant sub-a-algebras
This section is devoted to results which will be needed in § 5.
Let T be a measure preserving transformation of the Lebesgue space

(X, B, m) and let A ~ B be a T invariant sub-03C3-algebra. If 57 =

{f:f is measurable, |f| = 1, fT/f is A measurable}. We define D(A) as
the smallest u-algebra with respect to which the functions of F are
measurable, and we define Dn(A) = D(Dn-1(A)) where D0(A) =
D(
T is said to have generalised discrete spectrum [mod A] of finite type

if for some positive integer n, Dn(N)[Dn(A)] is B, where X is the
trivial Q-algebra of null sets and their complements. Since Dn(A) ~ Dn( %)
we see that generalised discrete spectrum of finite type implies generalised
discrete spectrum modA of finite type. The qualification ’generalised’ is
dropped when n = 1.

(4.1) We shall need the following [15]:
If T is ergodic with discrete spectrum mod A then there exists a compact

abelian group G of measure preserving transformations (acting measurably)
such that T(gx) = gTx for g E G and A = {B ~ B : gB = B for all

g ~ G}.
If T is a unipotent affine transformation of a nilmanifold X we have

seen how there exists a torus group G which acts on X in such a way that

XIG is another nilmanifold of lower dimension and Tgx = gTx.Using a
Borel section of the G action one can construct for each y E 6 (the
character group of G) a Borel function/y, If yi = 1, such that fy (gx) =
03B3(g)f(x). Clearly fy T also enjoys this property. ThusfyTffy is G invariant.
Hence (X, T) has discrete spectrum modA where A = {B ~ B : gB =
B for all g E G.} By induction we have:

(4.2) A unipotent affine transformation of a nilmanifold has generalised
discrete spectrum of finite type.
THEOREM (4.3). If T is an ergodic uniporent affine transformation of a

nilmanifold N/D (D discrete) and if G is a compact group of measure
preserving transformations Tg (acting measurably and effectively on X)
such that TT, = TgT, then G is a central group of translations i.e. there
is an isomorphic copy G’ of G in ZIZ r) D (where Z is the centre of N)
such that Tg is translation by an element of G’.

PROOF. By factoring N by Z n D we may assume Z is compact. By
(1.4) each T. is affine and since Tg commutes with T, Tg is unipotent. G is
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compact so that Tmng converges to the identity for some sequence mn .
Therefore the automorphism part of T, is the identity i.e. each Tg is a
translation. Hence we have an isomorphism of G into N. (N acts effective-
ly on N/D since Z n D has been factored out). The measurability of the
G action implies that {Tg : g E G} acts continuously. We may suppose
then that G c N and T(gx) = gTx. By (1.3) G is central.
We conclude this section with a result which has independent interest.

We shall use it in much the same way that Rohlin used and Hahn and
the author used the special case of a compact abelian group in [16] and
[17] respectively. An analogous result for locally compact abelian groups
was proved in [18].

PROPOSITION 4.4. Let G/H be a compact homogeneous space of a locally
compact separable group G, with a G invariant normalised Borel measure
m. If fELoo(X) (X = G/H) and |f(gx)-f(x)| ~ 03C1(g) a.e. for each

g E G where p(g) is continuous and 03C1(g) ~ 0 as g ~ e, then there is a

continuous function f’ such that f = f’ a.e. Consequently if A is a sub-a-
algebra of the Borel u-algebra B, invariant under G then there exists
a closed subgroup H’ ~ H such that d = n -1 ÇÃ’ where B’ is the Borel
03C3-algebra of G/H’ and 03C0 : G/H ~ GIH’ is the natural map.

PROOF. We shall deal with the second statement first. In fact by the
first part of the theorem if f ~ C(G/H) then for almost all x,
|E(f/A)(gx)-E(f/A)| ~ ~f(gx)-f(x)~~ = 03C1(g)
so that there exists f’ E C (G/H) with E(f/A) = f’ a.e. Therefore A =
smallest 03C3-algebra with respect to which V = {f ~ C(G/H) : f is -W
measurable} are measurable. But the smallest a-algebra with respect to
which the functions of V are measurable consists of the Borel sets made

up of elements of 03B6 where 03B6 is the smallest partition on elements of which
V functions are constant. V is G invariant so that 03B6 is G invariant. Let
Zo ~ 03B6 be the element of Ç to which H E G/H belongs. Obviously hZo = Zo
for all h E H. Define H’ = {g E G : gZo = Z0} ~ H. H’ is a closed sub-
group. Since G acts transitively Zo = H’xo if xo - H E Zo and every
element of 03B6 has the form gH’xo. But gH’xo = gH’ is a typical inverse
image of 7r i.e. A consists of sets made up of inverse images of 03C0. In

other words A = 03C0-1 B’.
We proceed to the proof of the first statement of the Proposition. Let

f ~ L~ (GIH) satisfy |f(gx)-f(x)| ~ p(g) a.e. for each g E G where

p(g) is continuous and 03C1(g) ~ 0 as g - e.

{(g, x) : |f(gx)-f(x)| &#x3E; 03C1(g)} ~ G x X
is measurable and by Fubini’s theorem is null. Therefore there exists a
null set N c X such that if x 0 N then |f(gx)-f(x)| ~ p(g) for all

9 ft Nx where Nx c G is a null set depending on x. UE - {g : p(g)  03B5/2}
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is an open neighbourhood of e, and UEx is a neighbourhood of x. Since
N is null, X-N is dense, and {U03B5x:x E X-N} is a covering of X, since
{U03B5g : gH ~ X-N} is a covering of G. Hence there exists x1, ··· xk E
X - N such that U03B5x1, ··· UExk cover X. Moreover

|f(gxi)-f(hxi)|  8 if g, h E Ue - NXi’
In other words

If(x)-f(Y)1  8 if x, y E (Ue-NxJXi’
If we consider these inequalities for 8 = 1, 1/2, ··· we see that there is a
null set M c X and a finite open covering U1n, ··· Un n such that
|f(x)-f(y)|  1/n if x, y ~ Un - M. Hence f ’ is uniformly continuous on
X-M and f|X-M extends uniquely to a continuous function f’.
Obviously f = f’ a.e.

5. Factors

In order to show that the class of unipotent affine transformations on
nilmanifolds is fully satisfactory as a class of models it is désirable that
the class of transformations based on them should be closed under the

operation of factoring. Unfortunately, as yet we have not been able to
achieve this result in its full generality. Nevertheless our concluding
result shows that factors of unipotent affine transformations are uni-
potent affine. It is a partial generalisation of the corresponding fact for
transformations with quasidiscrete spectra [16].

THEOREM 5.1. Let T be an ergodic unipotent affine transformation of a
ni/manifold X and let T’be a measure preserving transformation of a
Lebesgue space X’. Let F be a measure preserving transformation of X
onto a.a. X’ such that FT = T’F a.e. Then T’ is metrically isomorphic to a
unipotent affine transformation of a nilmanifold.

PROOF. Let B, B’ be the 6-algebras of measurable subsets of X, X’.
We need only show that A = F-I fJ1J’ is a u-algebra defined by cosets of
some closed subgroup of N (N/D = X). To do this, by virtue of Propo-
sition 4.4, we need to prove that A is N invariant (i.e. nA = A for
all n E N) given that TA = A.
By (4.2) T has generalised discrete spectrum of finite type. Therefore T

has generalised discrete spectrum mod A of finite type. Hence
A c D1(A) c ... c Dn(A) = fJ1J. Of course nfJ1J = fJ1J for all n E N.
We prove that A is N invariant by induction.

If Dk(A) is N invariant then TIDk(d) acts as a unipotent afhne. We
then need to prove Dk - l (d) is N invariant. In other words, there is no
loss in generality if we assume the above series has length one i.e.

D1(A) = e.
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In this case by (4.1 ) there is a compact group G of measure preserving
transformations acting measurably on X such that TTgx = TgTx and
A = {B : gB = B for all g E G}. By Theorem 4.3 each Tg , g E G is a
translation by a central element g’ of N. If B E J3/ and n E N then

TgnB = g’nB = ng’B = nB. Hence nB E A. We have therefore proved
that A is N invariant and the proof of the theorem is complete.
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