COMPOSITIO MATHEMATICA

JOHN MITCHEM

The point-outercoarseness of complete *n*-partite graphs

Compositio Mathematica, tome 26, nº 2 (1973), p. 101-110

http://www.numdam.org/item?id=CM 1973 26 2 101 0>

© Foundation Compositio Mathematica, 1973, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE POINT-OUTERCOARSENESS OF COMPLETE *n*-PARTITE GRAPHS

by

John Mitchem

Introduction

A subdivision of a graph G is a graph G_1 obtained from G by replacing an edge x = uv of G with a new vertex w together with edges uw and vw. Graph H is said to be homeomorphic from graph G if H can be obtained from G by a finite sequence of subdivisions. The subgraph of G induced by a set W of vertices has vertex set W and its edge set is the set of edges of G which are incident with two vertices of W. The subgraph of G induced by an edge set Y has Y as its edge set and contains all vertices incident with at least one edge of Y. For a real number F, F denotes the greatest integer not exceeding F, and F is the least integer not less than F.

Let $p_1 \leq p_2 \leq \cdots \leq p_n$ be positive integers. Then the *complete* n-partite graph $K(p_1, \cdots, p_n)$ has $p = \sum_{i=1}^n p_i$ vertices, its vertex set can be partitioned into subsets V_i , $1 \leq i \leq n$, such that $|V_i| = p_i$, and two vertices are adjacent if and only if they are in different V_i . The sets V_1, \cdots, V_n are called the partite sets of $K(p_1, \cdots, p_n)$. If each $p_1 = 1$, $K(p_1, \cdots, p_n)$ is denoted by K_n and called the complete graph on n vertices.

An outerplanar graph is a graph which can be embedded in the plane so that every vertex of G lies on the exterior region. In [5] Chartrand and Harary have characterized outerplanar graphs as those graphs which contain no subgraph homeomorphic from K_4 or K(2,3).

We define, for each positive integer n, the vertex partition number of a graph G, denoted by $\pi_n(G)$, as the maximum number of subsets into which the vertex set of G can be partitioned so that each set induces a graph which contains a subgraph homeomorphic from K_{n+1} or the complete 2-partite graph K([n+2)/2], $\{(n+2)/2\}$). This general parameter was first introduced by Chartrand, Geller and Hedetniemi in [4].

For i = 1, 2, 3, 4, $\pi_i(g)$ is the maximum number of point induced disjoint subgraphs of G which are totally disconnected, acyclic, outerplanar, and planar, respectively.

The edge partition number $\pi'_n(G)$ is defined analogously to $\pi_n(G)$ with the word 'vertex' replaced by 'edge'. Then $\pi'_1(G)$ is simply the number

of lines of G. The only line partition number which has been given considerable study is $\pi'_4(G)$, which is called the coarseness of G. This has been investigated by Beineke [1], Beineke and Chartrand [2], Guy [9], and Beineke and Guy [3], with the last paper giving a partial formula for $\pi'_4(K(m,n))$.

The number $\pi_1(G)$ is the well-known line independence number, see Harary [10]. The number $\pi_2(G)$ has been studied by Corrádi and Hajnal [7], Dirac and Erdös [8], and Chartrand, Kronk, and Wall [6]. In this paper we investigate $\pi_3(G)$ which is called the point-outercoarseness of G and is now denoted simply $\pi(G)$.

Preliminary results

We make two easy observations and then commence the development of the formula for $\pi(K(p_1, \dots, p_n))$. Any non-outerplanar graph has at least 4 vertices and 6 edges. This implies

REMARK 1. If G is a graph with p points and q edges, then $\pi(G) \leq \lfloor p/4 \rfloor$ and $\pi(G) \leq \lfloor q/6 \rfloor$.

The maximum number of vertices in any complete subgraph of G is denoted $\omega(G)$ and is called the *clique number* of G.

REMARK 2. If G has p vertices and $\omega(G) \leq 3$, then $\pi(G) \leq \lfloor p/5 \rfloor$.

THEOREM 1. Let $G = K(p_1, \dots, p_n)$ with $n \ge 2$. If $p_n \ge (\frac{3}{2})(p-p_n)$, then $\pi(G) = [(p-p_n)/2]$.

PROOF. In any decomposition of G into non-outerplanar subgraphs, each subgraph must include at least two vertices from $\bigcup_{1}^{n-1} V_{i}$. There are $p-p_{n}$ vertices in this set so that $\pi(G) \leq [(p-p_{n})/2]$.

Any subgraph induced by a set consisting of three vertices from V_n and two vertices from $\bigcup_{1}^{n-1} V_i$ is not outerplanar. From the hypothesis that $p-p_n \leq (\frac{2}{3})p_n$ it follows that there are $[(p-p_n)/2]$ disjoint induced non-outerplanar subgraphs of G. Thus $\pi(G) = [(p-p_n)/2]$.

THEOREM 2. If $G = K(p_1, \dots, p_n)$ where n = 2 or 3, and $p_n \leq (\frac{3}{2})$ $(p-p_n)$, then $\pi(G) = [p/5]$.

PROOF. Since $\omega(G) \leq 3$, Remark 2 implies that $\pi(G) \leq \lfloor p/5 \rfloor$. In order to show that $\lfloor p/5 \rfloor$ non-outerplanar, mutually disjoint, induced subgraphs of G exist we consider two cases.

Case (i). n=2. Since $p_1 \le p_2 \le {3 \choose 2} p_1$, there are p_2-p_1 mutually disjoint sets of vertices such that each set contains three vertices from V_2 and two vertices from V_1 . Each of these sets induces a non-outerplanar

copy of K(2,3). There are $p_1-2(p_2-p_1)=3p_1-2p_2\geq 0$ other vertices in V_1 and $p_2-3(p_2-p_1)=3p_1-2p_2\geq 0$ other vertices in V_2 . Call these sets V_1' and V_2' respectively. If $3p_1-2p_2=0$, 1, or 2, then we have partitioned G into [p/5] non-outerplanar subgraphs. If $3p_1-2p_2\geq 3$, then by alternating the use of three vertices from V_2' and two vertices from V_1' with two from V_2' and three from V_1' , we can complete the partition of V(G) into [p/5] sets of cardinality five, each of which induces a non-outerplanar graph. Thus $\pi(G)=[p/5]$ in this case.

CASE (ii). n=3. If $p_1+p_2 \leq p_3$ we consider graph H which is G minus all edges joining V_1 to V_2 . From case (i). $\pi(G) \geq \pi(H) \geq \lfloor p/5 \rfloor$. Thus we suppose $p_3 < p_1+p_2$. For i=1,2,3, let $V_i^0 = V_i$. Form one copy of K(2,3) with three vertices v_1,v_2,v_3 , of V_3^0 and two vertices v_4,v_5 of V_2^0 . Let V_1^1,V_2^1 be an ordering of V_1 and $V_2-\{v_4,v_5\}$ so that $|V_1^1| \leq |V_2^1|$, and let $V_3^1 = V_3-\{v_1,v_2,v_3\}$. Then repeat this procedure with V_1^1,V_2^1 , and V_3^1 , and continue this procedure until reaching a nonnegative integer j such that $V_3^1 \leq V_2^1$. (Note that j may be zero.) Let

$$V_1^{j+1}, V_2^{j+1}, V_3^{j+1}$$

be a reordering of V_1^j , V_2^j , V_3^j such that

$$|V_1^{j+1}| \le |V_2^{j+1}| \le |V_3^{j+1}|$$

and observe that

$$0 \le |V_3^{j+1}| - |V_2^{j+1}| \le 2.$$

Continue the partition of G into copies of K(2, 3) by using three vertices w_1, w_2, w_3 , from V_3^{j+1} and two vertices w_4, w_5 from V_2^{j+1} . Let

$$V_1^{j+1}, \, V_2^{j+1} - \big\{w_4 \,, \, w_5\big\}, \, V_3^{j+1} - \big\{w_1 \,, \, w_2 \,, \, w_3\big\}$$

be reordered by

$$V_1^{j+2}, V_2^{j+2}, V_3^{j+2}$$

so that

$$|V_1^{j+2}| \le |V_2^{j+2}| \le |V_3^{j+2}|.$$

We stop this procedure when $|V_3^k| \le 3$ for some $k \ge j+1$. If

$$|V_1^k| + |V_2^k| + |V_3^k| \le 4$$
,

then G has been partitioned into [p/5] non-outerplanar graphs. Otherwise induce one more non-outerplanar graph with the remaining vertices. Thus $\pi(G) \ge [p/5]$, which completes the proof of the theorem.

COROLLARY 3. If $G = K(p_1, \dots, p_n)$ where n = 2 or 3 then $\pi(G) = \min\{[p/5], [(p-p_n)/2]\}$.

Theorem 4. Let $G = K(p_1, \dots, p_n)$ where $p_n \leq (\frac{3}{2})(p-p_n)$. Then $\pi(G) \geq [p/5]$.

PROOF. We use induction and observe that Theorem 2 verifies the result for n=2 or 3. Assume Theorem 4 holds for $n \ge 3$ and let $G=K(p_1,\cdots,p_{n+1})$ where $p_{n+1} \le (\frac{3}{2})(p-p_{n+1})$. The subgraph of G formed by removing all edges joining V_1 with V_2 is a complete n-partite graph $H=K(p'_1,\cdots,p'_n)$ where $p'_n=\max\{p_{n+1},p_1+p_2\}$. Since $p'_n \le (3/2)(p'_1+\cdots+p'_{n-1})$, the inductive assumption applies and we have $\pi(G) \ge \pi(H) \ge [p/5]$.

The following lemma will be helpful.

LEMMA 1. Let c be an integer such that $1 < c \le n$. If $p_n - p_{n-c+1} \le 1$, then the complete n-partite graph $G = K(p_1, \dots, p_n)$ contains [p/c] mutually disjoint copies of K_c .

PROOF. We use induction on p. If the order of G is less than n+c, then $p_{n-c+1}=1$. We form one copy of K_c by selecting one vertex from each V_i , $i=n-c+1, \dots, n$. The remaining vertices of G induce a complete graph on p-c vertices. Thus G contains [p/c] mutually disjoint copies of K_c .

Let the order of G be $p \ge n+c$ and suppose the lemma is true for all complete n-partite graphs with less than p vertices. Form one copy of K_c by selecting one vertex from each of $V_{n-c+1,...},V_n$. The graph H induced by the remaining vertices of G is a complete n-partite graph with $p'_n-p'_{n-c+1} \le 1$ where p'_i is the order of the ith partite set of H. By the induction hypothesis H contains [(p-c)/c] mutually disjoint copies of K_c and the lemma is proved.

Theorem 5. Let $G = K(p_1, \dots, p_n)$ where $n \ge 4$. If $p \ge 4 p_n$, then $\pi(G) = \lfloor p/4 \rfloor$.

PROOF. We use induction on p_n . If $p_n = 1$, G is the complete graph with p = n vertices and $\pi(G) = \lfloor p/4 \rfloor$. Suppose the theorem holds if $p_n = k \ge 1$ and let $p_n = k+1$. Remove one vertex from each V_n , V_{n-1} , V_{n-2} , and V_{n-3} . The resulting graph H is a complete m-partite graph with $n \ge m \ge 4$ and the largest partite set in H has $p_{n-1} = k$ or p_n vertices. The latter case implies that $p_n - p_{n-3} = 0$, and Lemma 1 proves the theorem. In the former case the inductive assumption implies $\pi(H) = \lfloor (p-4)/4 \rfloor$ and thus $\pi(G) = \lfloor p/4 \rfloor$.

The principal result

Before stating the main theorem, we prove another lemma.

LEMMA 2. Let $G = K(p_1, \dots, p_n)$ with $n \ge 3$. If r is a positive integer such that $p \ge 3r$, $p_1 + \dots + p_{n-1} \ge 2r$, and $p_1 + \dots + p_{n-2} \ge r$, then G contains at least r mutually disjoint triangles.

PROOF. For $i = 1, \dots, n$, let $V_i^0 = V_i$. Form one triangle with vertices

$$v_{n-2}, v_{n-1}, v_n \text{ of } V_{n-2}^0, V_{n-1}^0, V_n^0$$

respectively. Let

$$V_n^1 = V_n^0 - \{v_n\} \text{ and } V_1^1, \dots, V_{n-1}^1$$

be a recordering of

$$V_1^0, \cdots V_{n-3}^0, V_{n-2}^0 - \{v_{n-2}\}, V_{n-1}^0 - \{v_{n-1}\}$$

such that

$$|V_i^1| \le |V_{i+1}^1|$$
 for $i = 1, 2, \dots, n-2$.

Repeat this procedure until either

$$|V_n^k| - |V_{n-2}^k| \le 1$$
 and $|V_{n-2}^k| \ne 0$

for some k or $|V_{n-2}^k| = 0$ for some k. If the former occurs first, then from Lemma 1, it follows that G contains at least r mutually disjoint triangles. Thus suppose $|V_{n-2}^k| = 0$ for some j and consider two cases.

Case (i) $|V_{n-1}^i| - |V_{n-2}^i| \le 1$ for some i < k. Each of the k triangles which have been formed contain one vertex of V_n and two vertices from distinct V_j , $j = 1, \dots, n-1$. Since $|V_{n-1}^i| - |V_{n-2}^i| \le |$, Lemma 1 implies that at most one vertex of $\bigcup_{1}^{n-1} V_j$ is not included in one of the triangles. Thus $k = [(p_1 + \dots + p_{n-1})/2] \ge r$.

CASE (ii).
$$|V_{n-1}^i| - |V_{n-2}^i| > |$$
 for all $i > k$. In this case $V_{n-1}^i \subset V_{n-1}$ for $i = 1, \dots, k-1$.

Hence each of the k triangles contains exactly one vertex from $\bigcup_{1}^{n-2} V_j$. This implies

$$k = |\bigcup_{1}^{n-2} V_j| \ge r$$

and completes the proof.

Theorem 6. Let $G = K(p_1, \dots, p_n)$ with $n \ge 2$, then

$$\pi(G) = \begin{cases} \left[(p-p_n)/2 \right] & \text{if } p \leq \left(\frac{5}{3}\right) p_n \\ \left[p/4 \right] & \text{if } p \geq 4p_n \\ \left[(p+r)/5 \right] & \text{if } \left(\frac{5}{3}\right) p_n$$

where

$$r = \min \{ (p - p_n - p_{n-1} - p_{n-2}), [(p - p_n - p_{n-1})/2], [(3p - 5p_n)/7] \}.$$

PROOF. If $p \le (\frac{5}{3})p_n$ or $p \ge 4p_n$, the result follows from Theorems 1 and 5. Thus we consider only $(\frac{5}{3})p_n and distinguish three cases depending on <math>r$.

Case (i). $r = p - p_n - p_{n-1} - p_{n-2}$. Since

$$p-p_n-p_{n-1}-p_{n-2} \le (p-p_n-p_{n-1})/2$$

we have

$$p-p_n-p_{n-1}-p_{n-2} \leq p_{n-2} \leq p_{n-1} \leq p_n$$

That is the cardinality of $\bigcup_{i=1}^{n-3} V_i$ does not exceed the cardinality of V_{n-2} . Thus there are r mutually disjoint copies of K_4 with one vertex in each of the sets

$$V_n, V_{n-1}, V_{n-2}, \bigcup_{i=1}^{n-3} V_i.$$

Let G minus these r copies of K_4 be denoted by H. Graph H has p-4r vertices, and we let $V_i^1 = V_i \cap V(H)$ for i = n-2, n-1, n. Since $r \le (3p-5p_n)/7$ we have $\frac{2}{3}(p_n-r) \le p-p_n-3r$, where $p_n-r = |V_n'|$ and

$$p-p_n-3r=|V'_{n-1}\cup V'_{n-2}|.$$

Theorem 2 implies that $\pi(H) = [(p-4r)/5]$. Hence

$$\pi(G) \ge r + [(p-4r)/5] = [(p+r)/5].$$

Since G does not contain more than r copies of K_4 , it is clear that $\pi(G) = [(p+r)/5]$.

Case (ii). $r = [(p-p_n-p_{n-1})/2] < [(3p-5p_n)/7]$. In this case we consider the complete (n-1)-partite graph $H = G - V_n$. By hypothesis

$$(1) r \leq p - p_n - p_{n-1} - p_{n-2}$$

and

$$(2) 2r \leq p - p_n - p_{n-1}$$

Inequality (2) together with $[(p-p_n-p_{n-1})/2] < [(3p-5p_n)/7]$ imply

$$(3) r \leq p_{n-1}.$$

Adding (2) and (3) we obtain

$$(4) 3r \leq \sum_{i=1}^{n-1} p_i.$$

Since (1), (2), and (4) hold, Lemma 2 implies that H contains at least r mutually disjoint triangles. The set V_n contains $p_n \ge p_{n-1} \ge r$ vertices. Thus, G contains r mutually disjoint copies of K_4 , each of which has one vertex from V_n and three vertices from $\bigcup_{1}^{n-1} V_i$. There are $p-p_n-3r$ other vertices in $\bigcup_{1}^{n-1} V_i$ and p_n-r other vertices in V_n .

The graph G' induced by the remaining vertices of G is a complete m-partite graph, $m \le n$. Since $r < (3p - 5p_n)/7$, we have

(5)
$$p - p_n - 3r > \frac{2}{3}(p_n - r).$$

That is the number of vertices in $V(G') - V_n$ is more than two-thirds the number of vertices in $V(G') \cap V_n$. From $r = [(p-p_n-p_{n-1})/2]$ it follows that

(6)
$$p_n - r + 1 \ge p - p_n - 3r$$
.

If a maximum partite set of G' is $V(G') \cap V_n$, then (5) together with Theorem 4 imply that $\pi(G') \geq [(p-4r)/5]$, and thus $\pi(G) \geq r + \pi(G') \geq [(p+r)/5]$. From (6) and the fact that $|V(G') - V_n| = p - p_n - 3r$ it follows that if $V(G') \cap V_n$ is not a largest partite set of G', then a largest partite set contains exactly $p_n - r + 1 = p - p_n - 3r$. Thus G' is a bipartite graph with partite sets V'_1 and V'_2 where $|V'_2| = p - p_n - 3r$ and $|V'_1| = p_n - r$. According to Theorem 4, $\pi(G') \geq [(p-4r)/5]$ and $\pi(G) \geq [(p+r)/5]$.

In order to show that equality holds suppose $\pi(G) > [(p+r)/5]$. Then there are more than r mutually disjoint copies of K_4 in G. Each copy of K_4 must contain two vertices from $\bigcup_{1}^{n-2} V_i$, so that $p-p_n-p_{n-1} \ge 2(r+1)$. This implies that $[(p-p_n-p_{n-1})/2] > r$ which contradicts the hypothesis for this case. Hence $\pi(G) = [(p+r)/5]$.

CASE (iii). $r = [(3p - 5p_n)/7]$. In this case we let $H = G - V_n$. From the hypothesis for this case we have

(7)
$$r \le p - p_n - p_{n-1} - p_{n-2} \text{ and }$$

$$(8) 2r \leq p - p_n - p_{n-1}$$

Furthermore, $p-p_n-3r \ge p-p_n-3((3p-5p_n)/7)=(\frac{8}{7})p_n-(\frac{2}{7})p>0$. Thus $p-p_n>3r$ which together with (7), (8) and Lemma 2 imply that H contains r mutually disjoint triangles.

Since $4p_n > p$, we have that $3p_n > p - p_n > 3r$. Thus V_n contains more than r vertices. Graph G has at least r mutually disjoint copies of K_4 each consisting of one vertex of V_n and three vertices of $\bigcup_{n=1}^{n-1} V_i$. There are p-4r other vertices in G. These vertices induce a complete m-partite subgraph G' of G with precisely p_n-r vertices of V_n and $p-p_n-3r$ vertices of $\bigcup_{n=1}^{n-1} V_i$. Since $r \leq (3p-5p_n)/7$ we have

(9)
$$(\frac{3}{2})(p-p_n-3r) \ge p_n-r > 0.$$

Let W be a maximum partite set of G'. If $W = V_n \cap V(G')$, then (9) together with Theorem 4 imply that $\pi(G') \ge [(p-4r)/5]$, and $\pi(G) \ge [(p+r)/5]$.

Suppose $W \neq V_n \cap V(G')$; then let $k = 4p_n - p$. Thus,

$$r = [(3p - 5p_n)/7] = [p_n - 3k/7] = p_n - \{3k/7\}$$

where $\{x\}$ is the least integer not less than x. We have

(10)
$$p_n - r = \{3k/7\} \text{ and }$$

$$(11) p-p_n-3r=3p_n-k-3(p_n-\{3k/7\})=-k+3\{3k/7\}.$$

If k = 1, then the number of vertices in G' is $p - 4r = p - 4p_n + 4\{3k/7\} = -1 + 4 = 3$, and $\pi(G) \ge r + [(p - 4r)/5] = [(p + r)/5]$. If $k \ge 2$, then from (10) and (11) we have $p_n - r \ge (\frac{2}{3})(p - p_n - 3r)$. This implies that

$$|V(G')-W| \ge |V_n|-r = p_n-r \ge (\frac{2}{3})(p-p_n-3r) \ge (\frac{2}{3})|W|.$$

Hence, according to Theorem 4,

$$\pi(G') \ge [(p-4r)/5]$$
 and $\pi(G) \ge r + [(p-4r)/5] = [(p+r)/5]$.

Suppose $\pi(G) > [(p+r)/5]$. Any decomposition of G into more than [(p+r)/5] non-outerplanar graphs will necessarily contain r+t mutually disjoint copies of K_4 , t > 0. Let V_1^1 , V_2^1 , \cdots , V_m^1 be the partite sets of the complete m-partite graph H^1 which remains after deleting these r+t copies of K_4 from G. The order of H^1 is p-4r-4t and $|V_m^1| \ge |V_c^1|$ where $V_c^1 = V_n \cap V(H^1)$. We have $r+t \le p/4 < p_n$, and thus

(12)
$$|V_m^1| \ge |V_c^1| \ge p_n - r - t > 0.$$

Then

(13)
$$|\bigcup_{i=1}^{m-1} V_i^1| \leq |V(H^1)| - (p_n - r - t) = p - p_n - 3r - 3t.$$

From the fact that $r > (3p - 5p_n)/7 - t$ we obtain

(14)
$$p - p_n - 3r - 3t < (\frac{2}{3})(p_n - r - t).$$

Using (12), (13), and (14) we have

$$|\bigcup_{i=1}^{m-1} V_{i}^{1}| \leq p - p_{n} - 3r - 3t < \left(\frac{2}{3}\right) (p_{n} - r - t) \leq \left(\frac{2}{3}\right) |V_{m}^{1}|.$$

According to Theorem 1,

$$\pi(H^1) = [|\bigcup_{1}^{m-1} V_i^1|/2] = s.$$

Suppose $t \ge 2$. Since $s \le [(p-p_n-3r-3t)/2]$, the number of mutually disjoint non-outerplanar subgraphs in this decomposition does not exceed $r+t+[(p-p_n-3r-3t)/2] \le [p-p_n-r-t)/2]$.

However, $r+2 > (3p-5p_n)/7+1$, which implies

$$(15) \quad \left[\frac{p-p_n-(r+2)}{2}\right] \leq \left[\frac{p-p_n-(3p-5p_n+7)/7}{2}\right] = \left[\frac{2p-p_n}{7} - \frac{1}{2}\right].$$

Also

(16)
$$\left[\frac{p+r}{5}\right] \ge \left[\frac{(10p-5p_n-6)/7}{5}\right] = \left[\frac{2p-p_n}{7} - \frac{6}{35}\right].$$

Since the right side of (15) is not more than the right side of (16), we have $r+t+s \le [(p-p_n-r-2)/2] \le [(p+r)/5]$. That is this decomposition yields at most [(p+r)/5] mutually disjoint non-outerplanar subgraphs of G.

If t = 1 and s = 0, other this decomposition yields r+1 mutually disjoint non-outerplanar graphs and since $|V_m^1| > 0$ there is at least one vertex which is not included in any of the r+1 copies of K_4 . Thus $r+1 \le r+[(p-r)/5] = [(p+r)/5]$.

Finally, we suppose t = 1 and s > 0. Each of these s graphs has at least five vertices with two vertices in $\bigcup_{i=1}^{m-1} V_i^1$. Since

$$|\bigcup_{i=1}^{m-1} V_i^1| < \frac{2}{3} |V_m^1|,$$

one of these s graphs has six or more vertices. That is in the decomposition of G into r+t+s non-outerplanar mutually disjoint graphs one graph has more than 5 points. Thus there are r+t copies of K_4 , one non-outerplanar graph with at least six vertices and at most [(p-4r-4t-6)/5] other non-outerplanar graphs. Since t=1, this decomposition has at most r+2+[(p-4r-10)/5]=[(p+r)/5] non-outerplanar graphs.

Thus, in this case, $\pi(G) = [(p+r)/5]$ and the theorem is proved.

REFERENCES

- L. W. BEINEKE
 - [1] Genus, thickness, coarseness, and a crossing number, Proc. 1966 Symp. on Graph Theory, Tihany, Acad. Sci. Hung., 1967.
- L. W. BEINEKE and G. CHARTRAND
- [2] The coarseness of a graph, Comp. Math. 19 (1969), 290-298.
- L. W. BEINEKE and R. K. GUY
- [3] The coarseness of the complete bigraph, Canad. J. Math. 21 (1969), 1086-1096.
- G. CHARTRAND, D. GELLER and S. HEDETNIEMI
- [4] Graphs with forbidden subgraphs, J. Combinatorial Theory, 10 (1971), 12-41.
- G. CHARTRAND and F. HARARY
- [5] Planar permutation graphs, Ann. Inst. H. Poincaré (Sect. B), 3 (1967), 433-438.
- G. CHARTRAND, H. V. KRONK and C. E. WALL
- [6] The point-arboricity of a graph. Israel J. Math., 6 (1968) 168-175.
- K. Corrádi and A. Hajnal
 - [7] On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
- G. DIRAC and P. ERDÖS
 - [8] On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963), 79-93.

R. K. GUY

[9] A coarseness conjecture of Erdös, J. Comb. Theory, 3 (1967), 38-42.

F. Harary

[10] Graph Theory, Addison-Wesley, Reading, Mass., 1969, 94-97.

(Oblatum 3-I-1972)

California State University Department of Mathematics 125 South Seventh Street SAN JOSE, Calif. 95192 USA