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Introduction

In this paper we shall concern ourselves primarily with completely
primary finite rings and shall obtain results about other types of rings
by means of the Peirce decomposition and other methods. Recall that an
Artinian ring R with radical J is called primary if R/J is simple and is
called completely primary if R/J is a division ring The deepest study into
the nature of completely primary finite rings appears to have been made
by Raghavendran [5]. We first state some of his major results.

In what follows Z will denote the rational integers, and if S is a finite
set, #(S) will denote the number of elements in S.

THEOREM A. Let R be a completely primary finite ring with radical J
and let R/J ~ GF(pr). Then

(1) #(R) = p’ir and #(J) = p(n-1)r for some prime p and some positive
integer n,

(2) Jn = (0); 
(3) The characteristic of R is pk for some positive integer k ~ n.
This is essentially Theorem 2 of [5]. Of special interest is the case

k = n. To consider this case Raghavendran introduced the following
class of rings.

DEFINITION. Let f(x) E Z[x] be a monic polynomial of degree r which
is irreducible modulo p. Then the ring Z[x]/(pn, f ) is called the Galois
ring of order pur and characteristic pn, and will be denoted by Gn, r; the
prime p will be clear from the context. That Gn, r is well defined indepen-
dently of f the monic polynomial of degree r follows from §§ (3.4),
(3.5) of [5] where it is shown that any two completely primary rings R of
characteristic p" with radical J such that #(R) = pnr and #(R/J) = pr
are isomorphic. Note that GF(pr) ~ G1, r and Z/(pk) ~ Gk,1. The im-
portance of this class of rings is illustrated in

* Written while the author was an NSF Trainee at the University of California
at Santa Barbara, California, working on his dissertation under the direction of
Professor Adil Yaqub.
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THEOREM B. Let R, p, r, be as in Theorem A. Then

(1) R will contain a subring isomorphic to Gk,, if and only if the charac-
teristic of R is pk.

(2) If R2, R3 are any two subrings of R both isomorphic to Gk,r then
there will be an invertible element a in R such that R2 = a-1 R3 a. This is
Theorem 8 of [5].

In § 1 we obtain some alternate characterizations of Galois rings,
show that any Galois ring is the homomorphic image of a principal ideal
domain, and compute the tensor product of two Galois rings.

Since the additive group of a finite ring is a finite Abelian group, the
additive structure of a finite ring is in a sense completely determined by
the fundamental theorem of finite Abelian groups as a direct sum of cyclic
groups of prime power order. In § 2 we use the results from § 1 to es-

tablish a connection between the multiplicative structure of the ring and
the cyclic decomposition of its additive group.

In § 3 we prove that any completely primary finite ring for which p, n, r,
and k are as in Theorem A is the homomorphic image of a ring of m x m
matrices over Gk, r(p) for some m ~ n in which p divides all entries below
the main diagonal of each matrix. As a result we can also prove that any
finite nilpotent ring of characteristic pk is the homomorphic image of a
ring of matrices over Z/(pk) in which p divides all entries on and below
the main diagonal of each matrix. We thus obtain characterizations of
completely primary finite rings and finite nilpotent rings of prime power
characteristic. It should be pointed out here that some time ago Szele
[6] reduced all problems on the structure of nilpotent Artinian rings to
problems about nilpotent finite rings of prime power characteristic, and
therefore, our result taken together with [6] yields a characterization of
all nilpotent Artinian rings.

1. Remarks on Galois rings

We first remark that any finite ring is the direct sum of finite rings of
prime power characteristic. This follows from noticing that when we
decompose the additive group of the ring into a direct sum of subgroups
of distinct prime power orders, that the component subgroups are ideals.
See [2] for further information on this question.
So without loss of generality (up to direct sum formation), we need

only consider rings of prime power order. For the remainder of this paper
the letter p will denote an arbitrary fixed rational prime and unless other-
wise stated, all rings considered will be of characteristic pk for some pos-
itive integer k. If’ x is an element of such a ring we call the smallest positive
integer e such that pe x = 0 the order of x.
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In this section we prove some results on Galois rings which will be
used in what follows.

PROPOSITION 1.1. Any Galois ring is the homomorphic image of a
local PID whose unique maximal ideal is generated by the rational
prime p.

PROOF. Gn, r is a ring of Witt vectors of length n [5; p. 212, § (3.5)].
Hence Gn, r is the homomorphic image of the ring of Witt vectors W (K)
of infinite length, K = GF(pr), a discrete valuation ring whose unique
maximal ideal is generated by the rational prime p ([8], pp. 234-236).

COROLLARY 1. Any ideal of Gk, r is of the form piGk,r i = 0, l, ..., k.

COROLLARY 2. Any finite Gk,r-module M is a direct sum of cyclic
Gk,,-modules. If

are two decompositions of M into cyclic submodules then s = t and the
orders of the xi are (perhaps after reindexing) equal to the orders of the yJ .

PROOF. If W(K) is the PID mapping onto Gk,r by Proposition 1.1

then R possesses the structure of a torsion W(K)-module. As is well
known, the proof of the fundamental theorem of finite abelian groups (see
[3]) translates into a fundamental theorem for finitely generated torsion
modules over PID’S, and applying this latter theorem to the W(K)-
module structure of R we see that R is a direct sum of cyclic torsion
W(K)-modules. As pkW(K) annihilates R we conclu de that R is a direct
sum of cyclic Gk, r-modules.

REMARK. An important example of a finite ring of characteristic pk
which contains Gk, r is Gk,,- where m is a multiple of r by Proposition 1

of § (3.8) of [5]. As a consequence of Corollary 1 the elements of Gk,m of
order 1 for i  k are precisely the elements of pGk,m . If on the other

hand, we view Gk,m as a direct sum of cyclic Gm, r-modules and count ele-
ments of order pi for i  k we conclude that Gk, m is free over Gk,r on
m/r generators.
We shall make repeated use of

PROPOSITION 1.2. Let kl , k2, rl , r2 be positive integers. Let k = min

(ki, k2 ), and space d = gcd(r1, r2 ), and m = lcm (rl , r2). Then
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PROOF. We first note that

Now by Proposition 1, § (3.8) of [5] every subring of Gk,r is isomorphic
to Gk,s where s divides r and, conversely for every positive integer s which
divides r, Gk" contains a subring isomorphic to Gk, s. Therefore both

Gk, rl and Gk, r2 contain subrings isomorphic to Gk, d . We thus have Gk,r1
and Gk,’2 as left and right Gk,d-modules. Therefore

so we first seek to de termine Gk,d ~Z/(pk)Gk,d. It is straightforward to
show that

where f(x)~ (Zj(pk))[X] is the image of a polynomial of degree d,
f(x) E Z[x] which is irreducible mod p. Let f (x) be the image off(x) and
hence of J(x) in (Z/(p))[x]. As f(x) is supposed to be irreducible of
degree d mod p it follows that f(x) splits into distinct linear factors over
GF(P’). Therefore by Theorem 6 of [5] J(x) splits into d distinct linear
factors over Gk,d. Say (x-a1), ···, (X-âd). Then

From (2) we thus have

Thus to prove the lemma we need only show that
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We first prove (3) in case k = 1, i.e., for the case of fields. Since m =

lcm(’l, r2) it follows that GF(pm) contains a subfield isomorphic to
GF(pr1) and a subfield isomorphic to GF(p"2) so we may consider GF(pr1),
GF(pr2) c GF(pm) with GF(pri) n GF(pr2) = GF(pd). Let

F being a subring of finite field is a finite field with p’ elements for some
positive integer s. Since GF(prl), GF(pr2) ~ F we have that r, and r2
both divide s. Therefore m divides s. Since F c GF(pm) we conclude
that F = GF(pm) and hence any element in GF(pm) can be represented
in the form Liaibi with ai E GF(prl), bi E GF(pr2). We now define a
map from GF(p") Q9GF(pd) GF(pr2) to GF(pm) by

By the remarks above, this map is onto, and by counting dimensions
over GF(pd) we conclude that it is an isomorphism, and we conclude that

We now consider the diagram

where qJ(a, b) = 03C81(a) Q9 42(b) with t/1i being the map

Ji the radical of Gk, r1 i = 1, 2. It is clear that 9 is bilinear over Gk,d and
multiplicative in each variable so there exists an induced homomorphism
h from Gk.r1 ~ Gk, d Gk, r2 onto GF(pr). Gk,r1 O Gk, d Gk, r2 is thus a completely
primary ring homomorphic to GF(pm) of characteristic pk. Since Gk,r1
and Gk,,.2 are free over Gk,d on rl/d respectively r2/d generators, it follows
that Gk,r, C8JGktd Gk,r2 is free over Gk,d on (rl/d)(r2/d) = m/d generators
and hence 

and therefore (3) is established and the proposition is proved.
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2. The additive structure of finite rings

As in the last section, all rings will be of characteristic p’ for some
positive integer k.

In this section we delve deeper into the additive structure of completely
primary finite rings. In particular, we will later need information about
completely primary finite rings viewed as (Gk,r, Gk,r)-modules. As is well
known, if A and B are commutative rings, an abelian group M admits
an (A, B)-module structure if and only if it admits a left A ~Z B-module
structure: the scalar multiplications being related by the rule

We are thus led to consider the structure of a Gk1,r1 ~z Gk2, r2-module.

THEOREM 2.1. Let M be a Gk1,r1 ~Z Gk2,r2-module, and let k = min
(k1, k2), d = ged(rl, r2 ), m = lcm(r1, r2). Then M is a direct sum

of Gk1,r1 ~ Gk2,,.2-submodules which are cyclic left Gk,m-modules, and

given any two decompositions of M into Gk¡,rl Q9z Gk2,,.2-submodules.

s = t and the order of aq is (after a possible reordering of the bq) the order
of bq . 

PROOF. We know from Proposition 1.2 that

so we consider M as a L1. Gk, m-module. Let el , ..., ed be an orthogonal
system of primitive idempotents for L1. Gk,m, i.e.,

Then M = 1 M = (e1+···+ed)M = e1 M + ··· + ed M. We wish to show
that this sum is direct. Let m E ei M n ej M for i ~ j. Then m E ei M
implies that eim = m and m ~ ej M implies that ej m = m. Therefore

and the sum is direct.

But ei is the multiplicative identity of the ith component of the direct
sum 03A3di Gk, m and hence the structure of ei M as a 03A3d1 Gk,m-module is
the same as its structure as a Gk,m-module with scalar multiplication de-
fined by gei m = (g, ···, g)eim and the result now follows from Corol-
lary 2 of Proposition 1.1.
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COROLLARY. Let R be a finite ring with 1 of characteristic pk and let
e1, ···, em be a complete set of primitive idempotents for R. Let elrei
have characteristic pki and suppose that eiRei/eiJei ~ GF(pri). Let

kij = min (ki, kj), dij = gcd (rb rj) and mij = lcm(mi, mj). Then in
the Peirce decomposition of R [4; pp. 48, 50]

eiRej is isomorphic as a (Gki,ri’ Gkj,rj)-module to a direct sum of cyclic
left Gkij,mij-modules and the orders of the generators for one decomposi-
tion are the orders of the generators obtained in any other such decompo-
sition.

PROOF. Since eiRei is completely primary of characteristic pki and
radical eiJei such that eiRei/eiJei ~ GF(pri), it follows from Theorem

B that eiRei contains a subring isomorphic to Gki,ri. Since eiRej is a
(eirei, ejRej)-module it is thus a (Gki,ri’ Gkj,rj)-module and hence a
left Gkbri ~Z Gkj,rj-module. The result now follows from Theorem
2.1.

PROPOSITION 2.2. Let R be a completely primary finite ring of charac-
teristic pk with radical J such that R/J ~ GF(pr). Then there exists an
independent generating set bl, b2, ···, bm of R as a left Gk, r-module such
that:

PROOF. We first note that Gk, r · 1 is a (Gk, r, Gk, r)-submodule. More-
over, Gk, r . 1 is (Gk, r, Gk, r)-module isomorphic to a direct summand
of Gk,,. Q9 Z Gk, r by Proposition 1.2. Now Gk, r being the homomorphic
image of a PID is a quasi-Frobenius ring (Exercise 2c of § 58 of [1 ]). As
is well known and easy to see, a direct sum of quasi-Frobenius rings is
also quasi-Frobenius. Hence Gk, r ~Z Gk, r ~ 03A3r1 Gk, r is quasi-Frobenius.
Therefore Gk, r is a direct summand of Gk, r ~Z Gk,r and hence a pro-
jective Gk, r ~Z Gk,r-module. But projective modules over quasi-Frobe-
nius rings are also injective, so Gk,r is an injective Gk, r ~Z Gk, r-module,
hence an injective (Gk,,., Gk,r)-module, i.e., Gk,r  1 is a (Gk,r, Gk,r)-mo-
dule direct summand of R. Therefore there exists another (Gk, r’ Gk, r)-
submodule M of R such that R = Gk, r . 1 + M. We now need to show
that M can be generated by nilpotents. We first obtain a left Gk, r module
decomposition R = Gk, r . 1+L where L is generated by nilpotents. Let
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be a left Gk,r-module decomposition of R. Let ei be the order of bi. If
ei ~ k -1 then bi ~ {x ~ R|pk-1 x = 0} which is a proper ideal of R

and hence contained in the unique maximal ideal J. Thus we conclude
that if ei ~ k-1 then bi E J. Next suppose ei = k. Let (p : R - R/J
~ GF(pr) be the cannonical surjection. Since qJ takes Gk, ,. onto GF(pr)
it follows that there is a gi E Gk,r such that qJ(g i) = qJ(bi), i.e., qJ(bi - 9 i)
= 0 which implies that bi-gi ~ J. We thus obtain a new set {1, b’2 , ···,
b’m} where b’i = bi - gi if ei = k and b’i = bi if ei ~ k - 1 , and b’2 , ..., b’mm i 

= bi-gi if ei = k and b’i = bi if e - k - 1, and b’2 , ···, bm
E J. It is straightforward to verify that 1, b’2, ..., bm is an independent
generating set of R as a left Gk,r-module. We thus have that pGk,r +
03A3mi=2 Gk,rb’i is a decomposition of J. Next, since J is an ideal of R and
hence a (Gk,,., Gk, r)-submodule, we let J = 03A3si=1 Gx,rai be a decompo-
sition of J into a direct sum of (Gk,,, Gk, r)-submodules which are cyclic
left Gk, -modules as in Theorem 2.1. Then a fortiori the latter decompo-
sition is a left Gk, r-module decomposition of J so we know that s = m
and the orders of ai is the order of b’i after a possible reindexing. Let fi
be the order of ai. Assume that the ai are ordered such that fl - ’ ’ ’
= f = k, ft+1, ···, fm ~ k -1. We wish to prove that 1, al , ’ ’ ’, at are

independent over Gk,r . Suppose that there is a linear dependence relation
among them. Such a relation can be written

If go - 0 then the relation becomes

But the ai are supposed to be independent so giai = 0, i = 1, ···, t,
and the relation is trivial. So suppose that g0 ~ pfoGk,r but not in
hfo+10 Gk,r with fo ~ k -1. Then

and hence pk-f°giai = 0 i = 1, ···, t. and as f i = k for i = 1, ···, t
we condude that pk-fogi = 0 i = 1, ···, t. Thus gi ~ pfoGk,r i = 1, ···, t.
Let g = pfog’i i = 1, ···, t and let g o = pfog’0 . Since g0 ~ ffo+1Gk,r
we see that g’o ~ pGm,r and hence g’0 is a unit. We can thus rewrite the
intégrât dependence relation as

But al , ..., am ~ J so (1 - 03A3ti=1g’-10 g’iai) is a unit, and thus we have
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pfo = 0. Hence fo = k and g o = 0 which forces the relation to be trivial.
Therefore Gx,r + 03A3ti=1 Gk,rai is a (Gx,r, Gx, r)-module which is isomor-
phic to a direct sum of t+ 1 injective (Gk,r, Gx,r)-modules, and is hence it-
self injective. Therefore we can write R as a (Gx,r, Gk,r)-module direct sum

Now if we express M1 = 03A3m-t-1j=1 Gk,rCj as a direct sum of (Gk, r)-sub-
modules we have that

is a cyclic decomposition of R as a left Gk, r-module. But since the orders
of the ai’s are the same as the orders of the bÿ’s we conclude from the
uniqueness of a cyclic decomposition that there are only t + 1 generators
of order k in any decomposition and therefore all of the c/s have
order ~ k -1. Therefore Mi c {x ~ R|pk-1x = 01 c J and by setting
M = 03A3ti=1 Gk,rai + Ml we obtain the desired decomposition.

§ 3. Characterizations of completely primary and nilpotent finite rings

THEOREM 3.1. Let R be a completely primary finite ring of characteristic
pk with radical J such that R/J ~ GF(pr), and let R have an independent
generating set consisting of "1 generators over Gk,r. Then R is the homo-
morphic image of a ring T of m x m matrices over Gk, r in which every entry
below the main diagonal of every matrix in T is a multiple of p, and, more-
over, every main diagonal entry of every matrix of T which is in the pre-
image of J is also a multiple of p.

PROOF. We must first obtain the correct independent generating set
of R over Gk, r . Let e be the smallest positive integer such that Je = (0).
Let us consider the set of independent generating sets of R which sa-
tisfy the conditions of Proposition 2.2. Suppose that ql is the maximum
number of elements of any of these generating sets which are in Je -1.
Say b2 , ···, bq1 + 1 are in Je-1 and are elements of some generating set
satisfying Proposition 2.2. We now consider all such independent gen-
erating sets which include b2, - - -, bq1+1. Suppose q2 is the maximum
number of elements in any of these generating sets which are in Je- 2.
Say bq1 + 2 , ···, bq2+q1+1 are in Je - 2 and are elements of some generating
set satisfying Proposition 2.2 which also contain b2 ,···, bq1+1. We con-
tinue choosing elements or our generating set in this way: at the ith step
we have already chosen 1, b2 , ···, bqi-1 + ... +q2+ql + 1 and we suppose
that the maximum number of elements in je-1 in any generating set
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satisfying Proposition 2.2 which also includes b2 , ···, bqi-1 + ··· +qi+1
is qi . We choose bqi-1+ ... + q1 + a , ···, bqae + ... + qae + 1 ~ Je-i i which are

elements of some generating set satisfying the conditions of Propo-
sition 2.2 which also contain b2 , ’ ’ ’, bqi-1 + ··· +q1 + 1 · After e -1 steps
we have that p, b2 , ···, bqe-1+ ... + ql + 1 generate all of J and hence

1, b2 , ’ ’ ’, bm is a generating set satisfying the conditions of Proposition
2.2.

Next let M = 03A3mi=1 Gk,r ci be a free Gk,r-module on generators Ci, ..
cn . Let ei be the order of bi. We embed R into M by identifying bi -
pk-ei Ci , It is easy to check that this map is an isomorphism of R into M.
We next consider R as a subring of the ring of endomorphisms of R
considered as a left Gk, r-module HomGk,r(R, R) via the right regular
representation, i.e., we consider x ~ R to be the endomorphism defined
by x : a - ax for all a E R. We shall thus write all maps in HomGk, r(R, R)
and in HomGk,r(M, M) on the right. Let T = {03B1 E HomGk, r(M, M) there
exists an a E R such that for all x ~ R, (x)oc = xa}. Given an oc E HomGk, r
(M, M), if there exists an a E R such that (x)oc = xa for all x ~ R then
a is uniquely determined by the fact that (1)03B1 = 1 a = a. It is straight-
forward to check that T is a ring and that the map v : T ~ R defined by
v : oc - (1)03B1 is a ring homomorphism. Since R c M, we consider any
x e R to be a homomorphism over Gk, r into M by x : a ~ ax E R c M,
and since M is a free module over a quasi-Frobenius ring it is injective
and the homomorphism x can be extended to an endomorphism of M.
We conclude that v is onto. We want to prove that T satisfies the con-

ditions of the theorem.

The matrix representation we obtain for T is the matrix representation
obtained over M with respect to the basis el’ ..., c. i.e., if

then the map from T to Mm(Gk,r) given by a ~ [03B3ij(03B1)] is an isomorphism.
However, this matrix representation depends on the order in which we
index the ci . We index the ci by specifying the order of the bi. We take
bl - 1. We then assume that if ei is the order of bi that e2 ~ e3 ~ ···
~ em . Next let f be the positive integer such that b i ~ Jf but bi ~ Jfi+1.
We call fi the radical index of bi. We shall further assume that if ei = ej
with i ~ j then fi ~ f . We prove that the matrix representation of T with
respect to this ordering of the basis cl , ’ ’ ’, c. of M is of the desired type.

Let a E T. We must compute the action of a on each ci . pk-CiCi = bi E R
so let a = (1)03B1 ~ R. a = 03A3mq=1 gq bq . Hence
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Now bi E Gx,,,bi which is a (Gx,,., Gk,r) submodule of R. Hence bigq
G b. say bigq = g(i)qbi for some (i) G So (pk-eici)03B1 = 03A3mq=1
gq (i) bibq. 
We now let bi bq = 03A3mj=103B3(q)ijbj. Then

Now suppose that i ~ j. Then ei ~ ej . If ei &#x3E; ej then pk-ei properly
divides pk-e’. We conclude that if 1 &#x3E; j so that ei &#x3E; ej then the i, jth
entry of the matrix representation of oc is a multiple of p for all ce E T. So
we restrict our attention to those i, j such that i ~ j but ei = ej. In this
case

and thus 03B3ij(03B1) - 03A3mq=1 g(i)q03B3(q)ij is a multiple of pej. Therefore if 03A3mq=1 g (i) 03B3(q)ij
E pGk, r then so is 03B3ij(03B1). To show then that every entry below the main dia-
gonal of each matrix on T is a multiple of p, it will sufhce to show that
for all q = 1, ···, m, 03B3(q)ij is a multiple of p for all i &#x3E; j such that ei = ej .
Moreover if a E T is in the preimage of J then g(i)1 = 0 for all i = 1, ···, m,
and, tberefore, to show that the main diagonal entries yi(ce) are all

multiples of p it will sufhce to show that 03B3(q)jj is a multiple of p for all
q = 2, ..., m. .

If q = 1 then bibI = bi and so 03B3(1)ij = 03B4ij and thus 03B3(1)ij is a multiple
of p for all i &#x3E; j. So the proof of the theorem will be complete if we can
show that for all q = 2, ···, m 03B3(q)ij is a multiple of p for all i ~j such that
ei = ej.
We shall assume that there is a q ~ 2 for which there exists an i ~ j

such that ei = ej but 03B3(q)ij is not a multiple of p, and we shall derive a
contradiction. Since q ~ 2 bq E J so the radical index of bibq is strictly
greater than the radical index of bi which is, by hypothesis, greater than
or equal to the radical index of bJ . So from the construction of the gener-
ating set 1, b2, ..., bm of R over Gk,r we will have our contradiction if
we can show that 1, b2 , ···, bj-1, bibq, bj+1, ···, bm is a generating set
of R over Gk, r satisfying the conditions of Proposition 2.2.

and p does not divide 03B3(q)ij so it follows that 1, b2, - - -, b-1, bibq, bj+1,
···, bm is a generating set of R over Gk,r. To show independence, we
first note that pej(bibq) = pei(bibq) = 0 so the order of bibq is less than
or equal to ej. However, 03B3(q)ij is not a multiple of p and so we conclude
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that ps(bibq) = 03A3mt=1 y1i)psbt ¥= 0 if s  ej and thus the order of b1 bq
is the order of bj. Now since 1, b2 , ···, bj-1, bibq , bj+1, ···, bm is a
generating set the map from the external direct sum

to R given by

is onto. But as the order of bibq is ej we conclude that

which is equivalent to saying that 1, b2 , ···, bj-1, bibq, bj+1 , ···, bm
are independent. Moreover, if g E Gk, r , then since Gk,rbq is a (Gk,,. , Gk, r)-
submodule, there exists a g’ E Gk, r such that bq g = g’ bq . Similarly given
g’ there exists a g" E Gk,,. such that big’ = g"bi. Hence (bibq)g = g",
(bibq) and we conclude that Gk,rbibq is a (Gk,r, Gx,r)-submodule of R
and, therefore, 1, b2, ···, bj-1, bibq, bj+1, ···, bm satisfies the conditions
of Proposition 2.2 and the proof is complete.
As a consequence of this result we obtain the following classification

of finite nilpotent rings.

THEOREM 3.2. Let R be a finite nilpotent ring with characteristic n,
and let n = pii ... prr be the prime power factorization of n. Then R is a
direct sum

where Ri is a homomorphic image of a ring Ti of matrices over Z/(pkii)
in which every entry on or below the main diagonal of each matrix in Ti
is a multiple of pi .

PROOF. As was noted at the beginning of § 1, a finite ring with charac-
teristic n is a direct sum of rings of characteristic pkii. Moreover, each
direct summand of a finite nilpotent ring must itself be nilpotent. So
we need only consider the case where n = pk for some prime p.
We embed R into the radical of a completely primary finite ring as

follows. Let R = Z/(pk) + R be the usual embedding of R as an ideal
into a ring with 1, i.e., the elements of R are ordered pairs (n, r) n ~ Z/(pk),
r e R with addition defined coordinate-wise and multiplication defined by
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(nI’ r1)(n2, r2) = (nl n2 , n1 r2 + n2 r1 + r1 r2). It is easy to see that (n, r)
is a unit in R if and only if n is not a multiple of p. Hence the nonunits of
R form an ideal J and R is completely primary with R isomorphic to a
subring of J. R is of characteristic pk and R/J ~ Z/(p) and the result
follows immediately from Theorem 3.1.

NOTE. The special cases of Theorem 3.1 in which k = 1 and either

J2 = (0) or Jn-1 ~ (0) where #R = pnr have been proved in Theorems 3
and 4 of [5]. The special case of Theoi em 3.2 in which n = p for some
prime p follows from a very old result which can be found on page 202
of [4].

In [6] Szele essentially reduced all questions about nilpotent Artinian
rings to questions about finite nilpotent rings of prime power charac-
teristic. Let p be a prime. A nilpotent Artinian p-ring is a nilpotent Ar-
tinian ring R in which for every x E R there exists a positive integer k(x)
such that pk(x) x = 0. Szele proved that any nilpotent Artinian ring is a
direct sum of a finite number of nilpotent Artinian p-rings and that a nil-
potent Artinian p-ring is a direct sum of a finite nilpotent ring of charac-
teristic pk for some positive integer k and a null ring whose additive group
is a direct sum of a finite number of quasi-cyclic groups, i.e., groups iso-
morphic to the additive group mod 1 of all rationals with p-power denomi-
nators. If we combine this result with Theorem 3.2 we obtain the following

COROLLARY. Any nilpotent Artinian ring is isomorphic to a direct

sum of a ring of the type described in Theorem 3.2 and a null ring whose
additive group is a direct sum of quasi-cyclic groups.

REMARK. It could be asked whether completely primary and nilpotent
finite rings are in general not only homomorphic images of subrings of
matrix rings as described in Theorems 3.1 and 3.2 but in fact isomorphic
to subrings of such matrix rings. If the ring is of prime characteristic
(or of square free characteristic in the case of nilpotent rings) the answer
is yes. If pk = p then G1,r ~ GF(pr) and R itself is thus a free module over
Gl,, so we could take both M and T in the proof of Theorem 3.1 to be
R. However, in general, the answer to this question is negative as the fol-
lowing example shows.

Let 9 : Z/(4) ~ Z(2) be the usual homomorphism; i.e., ~(0) = ~(2)
= 0, ~(1) = ç(3) = 1 e Z/(2). We consider the set of matrices with en-
tries in both Z/(4) and Z/(2) of the form
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as a, b, c, d, e, f, g, h, 1 E Z(4). Call this set of mixed matrices R and define
addition in R coordinatewise and multiplication by

The reader can check that these operations are well defined and that R
with these operations is a completely primary finite ring of characteristic
4 whose radical J consists of all matrices of the form

such that R/J ~ GF(2), and that J is a nilpotent finite ring of character-
istic 4. Consider the element

Note that

so if R or J were isomorphic to a subring of Mn(Z/(4)) for some n then
we would have

and hence
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But

a contradiction.

NOTE. The author wishes to thank the referee for his helpful suggestions.
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