Compositio Mathematica

JAN DE RUITER

An improvement of a result of I. N. Stewart

Compositio Mathematica, tome 25, no 3 (1972), p. 329-333
http://www.numdam.org/item?id=CM_1972__25_3_329_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

AN IMPROVEMENT OF A RESULT OF I. N. STEWART

by

Jan de Ruiter

1. Introduction

In this paper we shall present a sharpening of a theorem of I. N. Stewart [1] which states that if L is a Lie algebra over a field of arbitrary characteristic such that every subalgebra of L is an n-step subideal of L, then L is nilpotent of order $\leqq \mu(n)$ for some function $\mu: N \rightarrow N$, where N is the set of all positive integers. The dimension of L may be finite or infinite.

It turnes out to be possible to shorten Stewart's argument considerably by replacing lemma 3.3.14 [1] by a stronger one. Then some definitions and theorems can be omitted and we obtain a better bound for the order of nilpotency of L. Nevertheless our bound also takes astronomical values for $n=3,4, \cdots$ but in the case of $n=2$ the value of the bound is 7 , an improvement of which will be given in the last section.

In order to prove our result we shall first give an exposition of the requisite basic concepts in a preceding chapter. We remark that notation and terminology in the domain of infinite-dimensional Lie algebras are non-standard in part and sometimes we shall use other symbols than Stewart does.

2. Preliminary definitions

Let L be a Lie algebra (possibly of infinite dimension) over a field \boldsymbol{k} of arbitrary characteristic. If $x, y \in L$ we write $[x, y]$ for the Lie product of x and y.

If H, K are subspaces of L we write $H+K$ for the subspace of L consisting of all sums $h+k, h \in H, k \in K$ and $[H, K]$ for the subspace of L consisting of all finite sums $\Sigma\left[h_{i}, k_{i}\right], h_{i} \in H, k_{i} \in K$. A useful notation is [$H,{ }_{i} K$] instead of

$$
[\cdots[[H, \underbrace{K], K], \cdots, K}_{i \text { times } K}] .
$$

A subspace S of L is a subalgebra of L if $[S, S] \subset S$ and a subspace I of L is an ideal of L if $[I, L] \subset I$. We write respectively $S \leqq L$ and $I \triangleleft L$.
H is called an n-step subideal of L if we have

$$
H=H_{n} \triangleleft H_{n-1} \triangleleft \cdots \triangleleft H_{0}=L .
$$

In this case we write $H \triangleleft{ }^{n} L$.
Suppose $A, B \subset L .\langle A\rangle$ is the smallest subalgebra of L containing A and we say A generates $\langle A\rangle \cdot\left\langle A^{B}\right\rangle$ is the smallest subalgebra of L which contains A and which is invariant under multiplication by elements of B. L is finitely generated if $L=\langle X\rangle$ for some finite subset X of L.

The lower central series L^{1}, L^{2}, \cdots of L is inductively defined by $L^{1}=L, L^{n+1}=\left[L^{n}, L\right]$. We say L is nilpotent if $L^{n+1}=0$ for some n. The least such n is the order of nilpotency of L.

A concept which is weaker than the preceding one now follows. L is locally nilpotent if every finitely generated subalgebra of L is nilpotent.

The derived series $L^{(0)}, L^{(1)}, \cdots$ of L is inductively defined in a similar way by $L^{(0)}=L, L^{(n+1)}=\left[L^{(n)}, L^{(n)}\right]$ and L is solvable if $L^{(n)}=0$ for some n. In this case the least such n is called the derived length of L. It is a well-known fact (see [2] theorem 0.1) that $L^{(n)} \triangleleft L^{2^{n}}, n=0,1, \cdots$ and consequently

$$
L^{(\bar{n})} \triangleleft L^{n}, \quad n=1,2, \cdots
$$

where \bar{n} is the least integer $\geqq \log _{2} n$.
The upper central series $C(L)=C_{1}(L), C_{2}(L), \cdots$ of L is defined by

$$
C_{n}(L)=\left\{x \in L:\left[x,{ }_{n} L\right]=0\right\} .
$$

All $C_{n}(L)$ are characteristic ideals of L.
Finally we introduce a number of classes of Lie algebras which we shall need in the following.

The classes of Lie algebras we consider are

$$
\begin{aligned}
& F D_{r}=\text { the class of Lie algebras of dimension } \leqq r \\
& F G_{s}=\text { the class of Lie algebras generated by } \leqq s \text { elements } \\
& N I L_{c}=\text { the class of nilpotent Lie algebras of order } \leqq c \\
& S O L_{d}=\text { the class of solvable Lie algebras of derived length } \leqq d \\
& S I_{n}: L \in S I_{n} \text { iff } H \leqq L \Rightarrow H \triangleleft{ }^{n} L \\
& N C_{m}: L \in N C_{m} \text { iff } H \leqq L \Rightarrow\left\langle H^{L}\right\rangle^{m} \leqq H .
\end{aligned}
$$

3. A sharpening of Stewart's theorem

In this chapter we shall derive a result which yields a better bound for the order of nilpotency of a Lie algebra, all of whose subalgebras are n-step subideals. The fundamental step in our argument is theorem 1. All results of Stewart used by us will be called lemmas and proofs are to be found in [1].

Lemma 1. If $H \triangleleft L, H \in F D_{n}$ and L is locally nilpotent, then $H \triangleleft C_{n}(L)$.
Lemma 2. If $H \triangleleft L, H \in N I L_{c}$ and $L_{/ H^{2}} \in N I L_{d}$, then $L \in N I L_{M_{1}(c, d)}$ where $M_{1}(c, d)=c d+(c-1)(d-1)$.

We note that this bound is best possible. See [1] p. 318.
Lemma 3. If $L \in F G_{r} \cap N I L_{s}$ then $L \in F D_{M_{2}(r, s)}$ where $M_{2}(r, s)=$ $r+r^{2}+\cdots+r^{s}$.

We now state and prove an important theorem.
THEOREM 1. $N C_{n} \subset N I L_{M_{3}(n)}$ where $M_{3}(1)=1$ and $M_{3}(n)=n-1+$ $M_{2}\left(n, n^{2}-n\right)$ for $n=2,3, \cdots$.

Proof. Let $L \in N C_{1}$. If $H \leqq L$ then $\left\langle H^{L}\right\rangle \leqq H$ and therefore $H=\left\langle H^{L}\right\rangle \triangleleft L$. Hence $L \in S I_{1}$. The converse is also true and consequently $N C_{1}=S I_{1}$. We show that L is Abelian if $L \in S I_{1}$. Suppose $x, y \in L$ then $\boldsymbol{k} x, \boldsymbol{k} y \triangleleft L$ since $L \in S I_{1}$. If x and y are linearly independent then $[x, y] \in \boldsymbol{k} x \cap \boldsymbol{k} y=0$. If x and y are linearly dependent then $[x, y]=0$ by the definition of the Lie product.

Let now $L \in N C_{n}$ where $n>1$.
We assert $x \in L \Rightarrow\left\langle x^{L}\right\rangle \in N_{n-1}$.
The proof is as follows. If $x \in L$ then $k x \leqq L$ and consequently $\left\langle x^{L}\right\rangle^{n} \leqq k x$. Now suppose $\left\langle x^{L}\right\rangle^{n} \neq 0$, then we have $k x=\left\langle x^{L}\right\rangle^{n} \triangleleft L$ and therefore $k x=\left\langle x^{L}\right\rangle=\left\langle x^{L}\right\rangle^{n}$, but this is impossible. Hence we conclude $\left\langle x^{L}\right\rangle^{n}=0$.

Let $x_{1}, \cdots, x_{n} \in L$, then $X=\left\langle x_{1}, \cdots x_{n}\right\rangle \leqq\left\langle x_{1}^{L}\right\rangle+\cdots+\left\langle x_{n}^{L}\right\rangle \in N I L_{n^{2}-n}$ since $\left\langle x_{i}^{L}\right\rangle \in N I L_{n-1}$. By applying lemma 3 we obtain $X \in F D_{r}$ where $r=M_{2}\left(n, n^{2}-n\right)$.

Now we have $\left\langle\left[x_{1}, \cdots, x_{n}\right]^{L}\right\rangle \leqq\left\langle X^{L}\right\rangle^{n} \leqq X$ since $L \in N C_{n}$ and therefore $\left\langle\left[x_{1}, \cdots, x_{n}\right]^{L}\right\rangle \in F D_{r}$.

Since X is an arbitrary finitely generated subalgebra of L we have also proved L is locally nilpotent. Hence by lemma $1\left\langle\left[x_{1}, \cdots, x_{n}\right]^{L}\right\rangle \triangleleft C_{r}(L)$ and consequently $L^{n}=\Sigma_{x_{i} \in L}\left\langle\left[x_{1}, \cdots, x_{n}\right]^{L}\right\rangle \triangleleft C_{r}(L)$; thus $L^{n+r}=$ [$\left.L^{n},{ }_{r} L\right]=0$ and this concludes the proof of the theorem.

Lemma 4. $S O L_{2} \cap S I_{n} \subset N C_{n}$.
THEOREM 2. $S O L_{k} \cap S I_{n} \subset N I L_{M_{4}(k, n)}$ where $M_{4}(1, n)=1$ and $M_{4}(k+1, n)=M_{1}\left(M_{4}(k, n), M_{3}(n)\right)$.

Proof. This theorem is the same as lemma 3.3.10 of Stewart [1] p. 320, but our bound is something better because in our proof we can refer to theorem 1. For the sake of completeness the proof now follows.

We use induction on k.
$k=1: S O L_{1} \cap S I_{n} \subset N I L_{1}$
$k=2: S O L_{2} \cap S I_{n} \subset N C_{n} \subset N I L_{M_{3}(n)}$ by lemma 4 and theorem 1
$2 \leqq k \Rightarrow k+1$: If $L \in S O L_{k+1} \cap S I_{n}$ then $H=L^{(k-1)} \in S O L_{2} \cap S I_{n}$ and therefore $H \in N I L_{M_{3}(n)}$. But $L_{/ H^{2}} \in S O L_{k} \cap S I_{n}$ and consequently by induction $L_{/ H^{2}} \in N I L_{M_{4}(k, n)}$. Finally we apply lemma 2.
Suppose $H \leqq L$.
The series $L=H_{0} \triangleright H_{1} \triangleright \cdots$, inductively defined by $H_{0}=L$, $H_{i+1}=\left\langle H^{H_{i}}\right\rangle$, is called the ideal closure series of H.

Lemma 5. $H \triangleleft{ }^{n} L$ iff $H=H_{n}$.
Lemma 6. $H \leqq L \in S I_{n} \Rightarrow H_{i} / H_{i+1} \in S I_{n-i}$ for $i=0, \cdots, n-1$.
This lemma is of the first importance for the proof of the main theorem.

Theorem 3. $S I_{n} \subset N I L_{M(n)}$ where $M(1)=1$ and

$$
M(n+1)=M_{3}\left(M_{4}(n \overline{M(n)+1}, n+1)+1\right) .
$$

Proof. By induction on n.
$n=1: S I_{1}=N C_{1} \subset N I L_{1}$
$n \Rightarrow n+1$: Let $L \in S I_{n+1}$. If $H \leqq L$ then because of lemma 6 and by induction $H_{i} / H_{i+1} \in S I_{n+1-i} \subset S I_{n} \subset N I L_{M(n)}$ for $i=1, \cdots, n$. Therefore $H_{i} / H_{i+1} \in S O L_{M(n)+1}$. By lemma $5 H=H_{n} \triangleleft H_{n-1} \triangleleft \cdots \triangleleft H_{0}=L$ where $\left(H_{i}\right)$ is the ideal closure series of H and it follows now easily that $H_{1}^{(r)} \leqq H$ where $r=n \overline{M(n)+1}$. Moreover we have

$$
H_{1} / H_{1}^{(r)} \in S O L_{r} \cap S I_{n+1}
$$

since $S I_{n+1}$ is closed under taking subalgebras and quotient algebras. By applying theorem 2 we now obtain $H_{1} / H_{1}^{(r)} \in N I L_{s}$ where $s=M_{4}(r, n+1)$ and therefore $H_{1}^{s+1} \leqq H_{1}^{(r)} \leqq H$. Thus $\left\langle H^{L}\right\rangle^{s+1} \leqq H$. Hence $L \in N C_{s+1}$. We finish the proof by applying theorem 1.

4. The class SI_{2}

$$
M(2)=M_{3}\left(M_{4}(1,2)+1\right)=M_{3}(2)=1+M_{2}(2,2)=1+2+2^{2}=7
$$ but this bound can be improved still further.

For the following result I am indebted to my referee.
Proposition. If the characteristic of the field \boldsymbol{k} is not 3 , then $\mathrm{SI}_{2}=N I L_{2}$ and if the characteristic is 3 , then $N I L_{2} \subset S I_{2} \subset N I L_{3}$.

Proof. Let $x \in L \in S I_{2}$, then $\boldsymbol{k} x \triangleleft K \triangleleft L$ for some K. Therefore $\boldsymbol{k} x$ is a minimal ideal of $H=\left\langle x^{L}\right\rangle$, which we know already is nilpotent (theorem 3); so by Lemma $1 x \in C_{1}(H)$ which is a characteristic ideal in H and hence $\triangleleft L$. Therefore $H=C_{1}(H)$ is Abelian.

If now $y \in L$ it follows that $[[x, y], x]=0$, so L has Engel 2-condition. By a result of Higgins [3] we now conclude that $L \in N I L_{2}$, if char. $\neq 3$ and $L \in N I L_{3}$ if char. $=3$.

REFERENCES

I. N. Stewart
[1] Infinite-dimensional Lie algebras in the spirit of infinite group theory, Compositio Mathematica 22 (1970), pp. 313-331.
[2] Lie algebras, Lecture Notes in Mathematics Vol. 127 (1970).
P. J. Higgins
[3] Lie rings satisfying the Engel condition, Proc. Camb. Phil. Soc. 50 (1954), pp. 8-15.
(Oblatum 2-II-1972)
Mathematics Institute University of Groningen The Netherlands

