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THE INVERSE IMAGE OF A METRIC SPACE
UNDER A BIQUOTIENT COMPACT MAPPING

by

C. M. Pareek

1. Introduction

In this note we define the notion of a P,-space which is a generalization
of the notion of paracompact p-space by Arhangel’skii [1], and prove
that a regular space admits a biquotient compact mapping onto a metric
space if and only if it is a P;-space.

All maps are assumed continuous and onto. A regular space is also
a T,-space. For the definition of p-space, see [1]. The notation and
terminology which is not defined here will follow that of [4].

2. Preliminaries

We shall need the following definitions:
A topological space X is called a P,-space if there exists a sequence
{?";};2, of open covers of X satisfying the following conditions:

(a) 77,4 star refines ¥”; for each i;

(b) for each x € X, L(x) = ()%, st(x, ¥";) is compact;

(c) for each A = X and any x e X, if st(x, ¥";) n L(A) # ¢ for each i,
then L(x) n cl(L(A)) # ¢ where L(4) = u {L(x)|x e 4}.

The mapping f: X — Y is called:

quotient if the set M < Y is closed if and only if £~ 1M is closed (this
is equivalent to the condition: the set M < Y is open if and only if
f M is open);

pseudo-open (pre-closed or hereditarily quotient) if for an arbitrary
neighborhood U of the inverse f ~'y of an arbitrary point y from ¥, the
interior of the set fU contains the point.

open if images of open sets are open;

closed if images of closed sets are closed;

compact if the inverse image of any point is compact;

perfect if, it is simultaneously closed and compact;

biquotient if, for any point y in ¥ and any open cover % of f "'y there
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exists a finite number of members of % such that the point y is interior
to the image of their union.

ProposITION 2.1. A topological space X is a P;-space if and only if
there exist a sequence {¥";};2, of open covers of X satisfying the follow-
ing conditions:

(a) ¥ ;4 star refines ¥7; for each i;

(b) for each xe X, L(x) = (|2 st(x, ¥";) is compact;

(c) for each x € X and any neighborhood U of L(x), there is an i such
that st(x, ¥";) = L(U) where L(U) = U{L(x)|x e U}.

Proor. Let X be a P,-space. Then there exists a sequence {#";};>, of
open covers of X satisfying the required conditions. Let x be a fixed but
arbitrary point of X and let U be a neighborhood of L(x). Suppose
st(x, V")) n (X—L(U)) # ¢ for each i. Then by the hypothesis L(x) n
cl(L(X—L(U))) # ¢. Since it is easy to see that L(X—L(U)) = X—L(U),
therefore L(x) n cl(X—L(U)) # ¢. But L(x) n cl(X—L(U)) # ¢ implies
every neighborhood of L(x) has a nonempty intersection with X—L(U),
which is not true as U is a neighborhood of L(x) and U < L(U). Hence
for some i, st(x, V")) n X—L(U) = ¢, i.e., st(x, ¥";) = L(U).

Conversely, suppose there exists a sequence {¥";};2, of open covers
of X satisfying conditions (a), (b) and (c) of the hypothesis. Let x € X
and let A be any subset of X such that st(x, ¥";) " L(4) # ¢ for each i.
Suppose L(x) N cl(L(A4)) = ¢. Then X —cl(L(A)) is an open neighborhood
of L(x). Yence by the hypothesis there exists an i such that st(x, ¥";) <
L(X—cl(L(A))) <« L(X—L(A)) = X—L(A), a contradiction to the fact
that st(x, ¥";) " L(4) # ¢ for each i. Hence if st(x, ¥";) n L(A4) # ¢
for each i, then L(x) n c/(L(A)) # ¢. This proves the proposition.

The above proposition suggests the definition:

A topological space X is called a p,-space if there exists a sequence
{¥";}i%, open covers of X satisfying the following conditions

(@) 7 ;4 refines ¥7; for each i;
(b) for each x € X, L(x) = ()% st(x, ¥";) is compact;
(c) for each x € X and every neighborhood U of L(x), there is an i such
that st(x, ¥";) = L(U).
The following is an immediate consequence of Theorem 2.2 [3, p. 605].

ProrosiTIiON 2.2. Every strict p-space is a p,-space.

3. Biquotient mappings

THEOREM 3.1. Let f be a pseudo-open compact mapping of a regular space
X onto a paracompact Hausdorff space Y. Then X is a paracompact space.
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PrOOF. Let % = {U,|a € A} be an open cover of a space X. For each
yeY choose a finite cover Uy, -, U, of £~y from % and set
0,= )2, U,,;. Then # = {P,=int fO,|y € Y} is an open cover of Y.
Since Y is paracompact, there exists a locally finite refinement ¥~ =
{(WyiyeY'} of & where Y' < Y, ye W, and W, # W, for distinct
points p, Y of Y. Let Z={f"'W,n U, |lyeYand i=1,2,---,n,}.
Then it is easy to see that £ is a locally finite open refinement of %.
Consequently, X is a paracompact space. Hence the theorem is proved.

ProrosiTION 3.2. If f : X — Y is a compact mapping, then the following
statements are equivalent:

(i) f is biquotient.
(ii) fis pseudo-open.
(iii) for each M = Y and ye Y,y e cIM ifand only if f "'y n clf "' M # ¢.

PROOF. (i) <> (ii) This is trivial.
(ii) <>(iii) See lemma 1.3 of [5]. One may note that the compactness
of f'is not needed to show that (ii) <> (iii).

If f,: X, » Y, is a mapping of X, onto Y, for all a € A, then the
product map f = [[seafy from [J,es X, to [Juca Y, is defined by
Jx = (feXa)a-

ProposiTION 3.3. (E. Michael [6]) Any product (finite of infinite) of
biquotient maps is a biquotient map.

The following is the main theorem of this note.

THEOREM 3.4. A topological space X is a P,-space if and only if there
exists a biquotient compact mapping f of X onto some metric space Y.

We shall divide the proof of the theorem in two lemmas.

LemMMA 1. If there exists a biquotient compact mapping f of a space X
onto a metric space Y, then X is a P-space.

Proor. Let f: X — Y be a biquotient compact mapping of a space X
onto a metric space Y. Since Y is a metric space, Y is a T,-space and
‘here exists a sequence {#";}{2, of open covers of ¥ such that (1) ¥, ,
star refines #”; for each i, and (2) for each ye Y, {st(y,# ;)}i~, is a
base for the neighborhood system at y. Consider the sequence {¥";}2,
of open covers of X, where ¥", = f ~'#", for each i. Now it is easy to see
that ¥, star refines #7; for each i and f~1fx = (2, st(x, ¥";) for
each x in X. Because / ~'y is compact we have ()2, st(x, ¥";) is com-
pact for each x in X. Let M be a subset of X and let x be a point in X
such that st(x, ¥";) n L(M) # ¢ for each i. By the choice of the sequence
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{¥",}i2, of covers of X it is easy to see that fx = z is a limit point of
M = fL(M).
Now by proposition 3.2 we have f 'z nclf "'fM # ¢. But f "1z =
2 st(x, 7)) and clf "1 fM = clL(M); therefore L(x) N cIL(M) # ¢.
Consequently, {¥#";}i2 is the required sequence of open covers of X.
Hence X is a P,-space.

LeMMA 2. If X is a P,-space, then there exists a biquotient compact
mapping of X onto some metric space Y.

ProorF. Let X be a P;-space and let {#7;};2, be a sequence of open
covers of X satisfying the required conditions.

We shall denote by (X, 7) the topological space obtained from X by
taking {st(x, ¥";)};2, as a base for the neighborhood system at x € X.
Let X be the quotient space obtained from (X, ) by defining two points
x and y to be equivalent if and only if y € st(x, ¥”;) foreachi =1, 2, - - -.
Let ¢ be the quotient map of (X, 7) onto X. Lety be the identity map of X
onto (X, t). Then ¢ is obviously continuous. Let us define /= ¢ oy
and Y = X. Thenit is obvious that Yis a metric space and £ is a continuous
compact map. Now we need to show that fis a biquotient map. In view
of proposition 3.2, we need only show that y € Y belongs to ¢/M if and
only if f "'y~ clf~'M # ¢, where M is a subset of Y. Observe that for
any subset M of Y, f "*M = L(f ~'M). Then y e c/ M if and only if for
somezef "'y wehave st(z, ¥;) nf "M # ¢ for each i, i.e., st(z, ¥";) N
L(f~'M) # ¢ for each i. Since X is a P,-space we have

L) L(f~'M) # ¢.

But L(z) =f "'y implies f "'y nclf "*M # ¢. Hence the lemma is
proved.

The proof of the theorem 3.4 follows immediately from lemmas 1
and 2.

THEOREM 3.5. Let f be a pseudo-open mapping of a topological space X
onto a paracompact space Y satisfying the following condition:

(i) for each y €Y and C a closed subset of f 'y, if C < U where U is
open in X, then there is a V open in X such that C = V < clV < U.
Then X is a normal space.

Proor. To prove that X is normal it is enough to show that every
finite open cover of X has a locally finite closed refinement. Let % =
{U.}{-, be a finite open cover of X. It follows easily from condition (i)
that £ 'y is normal for each y in Y. Hence %|;-:, = {U;nf " 'y}i_,
has a closed refinement %, = {F, ;}i_;. Then by condition (i) we
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obtain an open cover ¥*, = {V, ;}i-; of f "'ysuch that F, ; c V, ;
cdV,,cUforalliand yeY. Let O, = U (V,;li = 1,2,--,n) and
let P, = int fO, for ye Y. Then & = {P,|y € Y} is an open cover of the
paracompact space Y. Therefore there exists a locally finite open refine-
ment ¥~ of &. For each W in #" we choose one point y in W and write
W = W,.Theset of these yis denoted by Y’ < Y, thus %" = {W,|yeY’}.
Let Z={f'W,nV,lyeY andi=1,- -, n}. It is easy to see that
% is an open locally finite cover of X. Also, we have f "W, NV, ; c
clV, ; = U, for each y and i. Therefore S = {c/(f ~'W,nV, )lyeY’
and i = 1, -+, n} is a locally finite closed refinement of %. Hence the
theorem is proved.

THEOREM 3.6. If a completely regular p-space X is an inverse image of
a metric space Y under an open finite-to-one mapping, then X is a metric
space.

Proor. It follows immediately from [2], [3] and theorem 3.1.

ReMARK 2. In [2] Arhangel’skii showed that the inverse image of a
metric space under an open finite-to-one mapping need not be metrizable.
In view of Arhangel’skii’s results and the results of this note it is obvious
that a regular P,-space need not be a p-space in the sense of Arhangel’skii.

PrOPOSITION 3.7. Let X; (i = 1,2, - + *) be a Py-space. Then the topologi-
cal product of the spaces X; (i = 1,2, - - *) is a P,-space.

Proor. From proposition 3.3 it is easy to conclude that any product
(finite or infinite) of biquotient compact maps is a biquotient compact
map. Now the proof follows immediately form theorem 3.4.

PROPOSITION 3.8. Every regular P,-space is a paracompact pi-space.

Proor. That every P,-space is a p;-space follows immediately from
the definition of P,-space and proposition 2.1. That every P,-space
is paracompact follows from theorem 3.1 and theorem 3.4.

QUESTION. Is the converse of proposition 3.8 true?
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