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1. Introduction

In this note we define the notion of a P1-space which is a generalization
of the notion of paracompact p-space by Arhangel’skii [1 ], and prove
that a regular space admits a biquotient compact mapping onto a metric
space if and only if it is a P1-space.

All maps are assumed continuous and onto. A regular space is also
a Tl-space. For the definition of p-space, see [1 ]. The notation and
terminology which is not defined here will follow that of [4].

2. Preliminaries

We shall need the following définitions :
A topological space X is called a P1-space if there exists a sequence

{Vi}~i=1 of open covers of X satisfying the following conditions:

(a) Vi+1 star refines Vi for each i;
(b) for each x E X, L(x) = ~i=1 st(x, j/"i) is compact;
(c) for each A c X and any x E X, if st(x, j/"i) n L(A) ~ ~ for each i,

then L (x) n cl(L(A)) ~ ~ where L(A) =  {L(x)|x E A}.
The mapping f : X - Y is called:
quotient if the set M c Y is closed if and only if f -1M is closed (this

is equivalent to the condition: the set M c Y is open if and only if
(-lM is open);

pseudo-open (pre-closed or hereditarily quotient) if for an arbitrary
neighborhood U of the inverse f -1 y of an arbitrary point y from Y, the
interior of the set f U contains the point.

open if images of open sets are open;
closed if images of closed sets are closed;
compact if the inverse image of any point is compact;
perfectif, it is simultaneously closed and compact;
biquotient if, for any point y in Y and any open cover ’W of f -1 y there
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exists a finite number of members of e such that the point y is interior
to the image of their union.

PROPOSITION 2.1. A topological space X is a Pl-space if and only if
there exist a sequence {Vi)a~i=1 of open covers of X satisfying the follow-
ing conditions:

(a) ri+ 1 star refines Vi for each i;
(b) for each x E X, L(x) = ~i=1 st(x, Y’i) is compact;
(c) for each x E X and any neighborhood U of L(x), there is an i such

that st(x, ri) c L(U) where L(U) = ~{L(x)|x e U}.
PROOF. Let X be a Pl-space. Then there exists a sequence {Vi}~i=1 of

open covers of X satisfying the required conditions. Let x be a fixed but
arbitrary point of X and let U be a neighborhood of L(x). Suppose
st(x, ri) n (X-L(U)) ~ ~ for each i. Then by the hypothesis L(x) n
cl(L(X-L(U))) ~ 0. Since it is easy to see that L(X-L(U)) = X-L(U),
therefore L(x) n cl(X-L(U)) ~ 0. But L(x) n cl(X-L(U))~~ implies
every neighborhood of L(x) has a nonempty intersection with X-L(U),
which is not true as U is a neighborhood of L(x) and U c L(U). Hence
for some i, st(x, Vi) n X-L(U) = ~, i.e., st(x, ri) c L(U).

Conversely, suppose there exists a sequence {Vi}~i=1 of open covers
of X satisfying conditions (a), (b) and (c) of the hypothesis. Let x G X
and let A be any subset of X such that st(x, Y’i) m L(A) =1 cp for each i.
Suppose L(x) n cl(L(A)) = 0. Then X-cl(L(A)) is an open neighborhood
of L(x). Yence by the hypothesis there exists an i such that st(x, Vi) c
L(X-cl(L(A))) c L(X-L(A)) = X-L(A), a contradiction to the fact
that st(x, ri) n L(A) =1 cp for each i. Hence if st(x, ri) n L(A) ~ ~
for each i, then L(x) n cl(L(A)) ~ ~. This proves the proposition.
The above proposition suggests the definition:
A topological space X is called a pl-space if there exists a sequence
1 1 open covers of X satisfying the following conditions

(a) ri+ 1 refines Vi for each i;
(b) for each x E X, L(x) = ~i=1 st(x, Vi) is compact;
(c) for each x E X and every neighborhood U of L(x), there is an i such

that st(x, Vi) c L(U).
The following is an immediate consequence of Theorem 2.2 [3, p. 605].

PROPOSITION 2.2. Every strict p-space is a pl-space.

3. Biquotient mappings

THEOREM 3.1. Let f be a pseudo-open compact mapping of a regular space
X onto a paracompact Hausdorff space Y. Then X is a paracompact space.
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PROOF. Let u = {U03B1|a E AI be an open cover of a space X. For each
y E Y choose a finite cover U1,···, Uny of f-1 y from u and set

Oy = ny i=1 Uy, i . Then Y = {Py = intfOyly E Y} is an open cover of Y.
Since Y is paracompact, there exists a locally finite refinement iF =

{Wy|y E Y’l of Y where Y’ c Y, y E Wy and Wy :0 W00FF for distinct

points y, y’ of Y’. Let R={f-1 Wy n Uy, i 1 y E Y and i = 1, 2, ..., ny 1.
Then it is easy to see that R is a locally finite open refinement of u.

Consequently, X is a paracompact space. Hence the theorem is proved.

PROPOSITION 3.2. If f : X ~ Y is a compact mapping, then the following
statements are equivalent:

(i) f is biquotient.
(ii) f is pseudo-open.
(iii)for each M c Y and y E Y, y E clM if and only iff-ly n Clf-l M =1= 0.

PROOF. (i) ~ (ii) This is trivial.
(ii) ~(iii) See lemma 1.3 of [5]. One may note that the compactness

of f is not needed to show that (ii) ~ (iii).
If fa : X03B1 ~ Ya is a mapping of Xa onto Ya for all a E A, then the

product map f = 03A003B1~039Bf03B1 from 03A003B1~039B Xa to 03A003B1~039B Ya is defined by
fx = (f03B1x03B1)03B1.

PROPOSITION 3.3. (E. Michael [6]) Any product (finie of infinite) of
biquotient maps is a biquotient map.
The following is the main theorem of this note.

THEOREM 3.4. A topological space X is a P1-space if and only if there
exists a biquotient compact mapping f of X onto some metric space Y.

We shall divide the proof of the theorem in two lemmas.

LEMMA 1. If there exists a biquotient compact mapping f of a space X
onto a metric space Y, then X is a P1-space.

PROOF. Let f : X ~ Y be a biquotient compact mapping of a space X
onto a metric space Y. Since Y is a metric space, Y is a Tl-space and
there exists a sequence {Wi}~i= 1 of open covers of Y such that (1) Wi+ 1

star refines YFi for each i, and (2) for each y E Y, {st(y, IF 1 is a

base for the neighborhood system at y. Consider the sequence {Vi}~i=1
of open covers of X, where ri = f-1 IF for each i. Now it is easy to see
that Vi+1 star refines ri for each i and f -1 fx = ~i=1 st (x, ri) for
each x in X. Because f -1 y is compact we have ~i=1 st (x, ri) is com-
pact for each x in X. Let M be a subset of X and let x be a point in X
such that st (x, i/ i) n L(M) ~ ~ for each i. By the choice of the sequence
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{Vi}~i=1 of covers of X it is easy to see that fx = z is a limit point of
fM = fL(M).
Now by proposition 3.2 we have f-1z n clf-1fM~ 0. But f - lz =

~i=1 st(x, ri) and clf-1fM = clL(M); therefore L(x) n CIL(M) :0 ~.
Consequently, {Vi}~i=1 is the required sequence of open covers of X.
Hence X is a P1-space.

LEMMA 2. If X is a P1-space, then there exists a biquotient compact
mapping of X onto some metric space Y.

PROOF. Let X be a P1-space and let {Vi}~i=1 be a sequence of open
covers of X satisfying the required conditions.
We shall denote by (X, r) the topological space obtained from X by

taking {st(x, 1 as a base for the neighborhood system at x E X.
Let X be the quotient space obtained from (X, r) by defining two points
x and y to be equivalent if and only if y ~ st(x, Vi) for each i = 1, 2,···,
Let 0 be the quotient map of (X, r) onto X. Let g/ be the identity map of X
onto (X, 03C4). Then 03C8 is obviously continuous. Let us define f = ~ o 03C8
and Y = X. Then it is obvious that Yis a metric space and f is a continuous
compact map. Now we need to show that f is a biquotient map. In view
of proposition 3.2, we need only show that y E Y belongs to clM if and
only if f -1 y n clf-1 M ~ ~, where M is a subset of Y. Observe that for
any subset M of Y, f-l M = L(f-1M). Then y ~- clM if and only if for
some z ~ f -1y we have st(z, Vi) ~ f-1M ~ ~ for each i, i.e., st(z, Vi) n
L(f-1M) ~ ~ for each i. Since X is a P1-space we have

But L(z) = f -1 y implies f-ly n clf-1M~~. Hence the lemma is

proved.
The proof of the theorem 3.4 follows immediately from lemmas 1

and 2.

THEOREM 3.5. Let f be a pseudo-open mapping of a topological space X
onto a paracompact space Y satisfying the following condition:

(i) for each y E Y and C a closed subset of f -1 y, if C c U where U is
open in X, then there is a V open in X such that C c V c cl V c U.

Then X is a normal space.

PROOF. To prove that X is normal it is enough to show that every
finite open cover of X has a locally finite closed refinement. Let e =

{Ui}ni=1 be a finite open cover of X. It follows easily from condition (i)
that f -1 y is normal for each y in Y. Hence U|f-1 y = {Ui ~f-1y}ni=1
has a closed refinement 57y = {Fy, i}ni=1. Then by condition (i) we
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obtain an open cover Vy = {Vy,i}ni=1 of f-1 y such that Fy, i ~ Vy, i c
cl Yy, i ~ Ui for all i and y e Y. Let Oy = u (Vy,i|i = 1, 2,··, n) and
let Py = int fOy for y E Y. Then 9 = {Py|y E YI is an open cover of the
paracompact space Y. Therefore there exists a locally finite open refine-
ment 3i’ of 9. For each W in ir we choose one point y in W and write
W = Wy . The set of these y is denoted by Y’ c Y, thus W = {Wy|y~Y’}.
Let R={f-1 Wy n Vy, i|y E Y’ and i = 1, ···, n}. It is easy to see that
R is an open locally finite cover of X. Also, we have f-1 Wy n Vy, i c
cl Vy, i c Ui for each y and i. Therefore S = {cl(f-1Wy n Vy,i)|y E Y’
and i = 1,···,n} is a locally finite closed refinement of W. Hence the
theorem is proved.

THEOREM 3.6. If a completely regular p-space X is an inverse image of
a metric space Y under an open finite-to-one mapping, then X is a metric
space.

PROOF. It follows immediately from [2], [3 ] and theorem 3.1.

REMARK 2. In [2] ] Arhangel’skii showed that the inverse image of a
metric space under an open finite-to-one mapping need not be metrizable.
In view of Arhangel’skii’s results and the results of this note it is obvious
that a regular P1-space need not be a p-space in the sense of Arhangel’skii.

PROPOSITION 3.7. Let Xi (i = 1, 2, ... ) be a P1-space. Then the topologi-
cal product of the spaces Xi (i = 1, 2,···) is a P1-space.

PROOF. From proposition 3.3 it is easy to conclude that any product
(finite or infinite) of biquotient compact maps is a biquotient compact
map. Now the proof follows immediately form theorem 3.4.

PROPOSITION 3.8. Every regular P1-space is a paracompact p1-space.

PROOF. That every P1-space is a pl-space follows immediately from
the definition of P1-space and proposition 2.1. That every Pl-space
is paracompact follows from theorem 3.1 and theorem 3.4.

QUESTION. Is the converse of proposition 3.8 true?
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