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Introduction

Let M be a real 2-dimensional COO manifold, E and F smooth vector-
bundles over M with real 2-dimensional fibres. Then each linear first order

elliptic partial differential operator L from Coo sections of E to C’

sections of F can locally be brought into a standard form, as follows.

THEOREM 1.

a) For each xo E M there is a neighborhood U of xo , a local coordinati-
zation y of U and local trivializations TE , resp. rF of E, resp. F over U in
which L has the form :

Here b(x) is a complex valued COO function and the fiber R’ is identified
with C.

b) If 03B3j, -rJ, 03C4Fj, j = 1, 2 are local coordinatizations, resp. local triviali-
zations of E and F as in a), then either y 1 o 03B3-12 is holomorphic and
TE . (03C4E2)-1, 03C4F1. (03C4F2)-1 are multiplications with complex numbers in the
fibers, rE _ (03C4E2)-1 depending holomorphically on x, or y 1 o 03B3-12 is anti-

holomorphic and 03C4E1. (03C4E2)-1, 03C4F1. (03C4F2)-1 are multiplications with complex
numbers followed by complex conjugation.

c) If L is a complex linear operator for some given complex structures
on E and F, then the trivialisations 03C4E, iF in a) can be chosen complex
linear.

This theorem is classical, c.f. Vekua [13] or the supplement to Ch. IV
in [4] ] of Bers. If M is orientable then this leads to a unique complex
analytic structure on M, and an identification of E with a holomorphic
complex line bundle 03BE on M and of F with K . ç, such that:

Here b e r(M, COO(K . (03BE)-1. 03BE)) and x is the canonical bundle of M.
If L is a complex linear operator then M is automatically orientable and
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L is reduced to a acting on 03BE. If M is not orientable one can study L by
changing to the 2-fold orientable covering of M.

If M is not compact then the elliptic theory of Malgrange [9], Ch. 3,
combined with the theorem of unique continuation of solutions of
~u + a · u + b · u = 0 of Carleman [3 ], implies that L is surjective:
0393(M, C~ (E)) ~ 0393(M, C~(F)). This can be generalized to the case that
L is a first order operator on a higher dimensional manifold M, acting
as an elliptic operator in the direction of the leaves of a 2-dimensional
foliation in M. One obtains semi-global solvability for the equation
Lu = .f’ if no leaf is contained in a compact subset of M, and global
solvability if in addition a convexity condition for the leaves is satisfied
as in [5], Theorem 7.1.6. Application to the Hamilton operator Hp
leads to corresponding results for general pseudo-differential operators
acting on real 2-dimensional bundles with 2-dimensional bicharacteristic
strips. See [5], Ch. 7.

If L = L1 + iL2 is a complex vector field acting on a trivial line bundle
then semi-global solvability conversely implies that no leaf is contained
in a compact subset of M ([5], Th. 7.1.5). However, in general one can
even have global solvability if M is a compact surface. If more generally
M is fibered by compact surfaces on which L acts, then global solvability
on the fibers leads to global solvability on M.
So assume from now on that M is a compact and orientable surface,

L as in (0.2). Then

The first identity follows from general elliptic theory and the second one
is the theorem of Riemann-Roch. c(03BE) is the Chern class of 03BE and g is
the genus of M. (See Gunning [6] for the theory of compact Riemann
surfaces used here.) In particular L can only by surjective if c(03BE) ~ g-1.
Using the similarity principle of Bers [2], we obtain for each v E r(M,
C~(03BA03BE-1)), tLv = 0, v e 0, a non-zero holomorphic section v’ of some
holomorphic line bundle K - (03BE’)-1 with c(03BE’) = c(03BE). From the results
below it therefore follows that L is surjective if c(03BE) &#x3E; 2(g-1). So there
remains a gap between the necessary and sufficient condition for global
solvability if g~1. g-1 ~ c(03BE) ~ 2(g-1).

If L is complex linear then the reduction to ~ acting on 03BE leads to a much
more detailed description. In this case surjectivity is equivalent to the
condition that 03BA·03BE-1. ,;n, considered as an element of the Jacobi-
variety J(M) of M, does not belong to the set Wn defined by:
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Here n = c(03BA·03BE-1) = 2(g-1)-c(03BE), 03BEp is the point bundle of p E M.
The point q E M is arbitrary but fixed. The Wn are known in algebraic
geometry as the varieties of special divisors of M. They are algebraic
subvarieties of J(M) of complex dimension n if 1 ~ n ~ g. W n = J(M)
for n ~ g because of Riemann-Roch.

In Section 1 we give an elementary proof of Theorem 1, followed by
a discussion in more detail of the identification of the operator 7+a
acting on the holomorphic line bundle jo (03BE0 fixed, a varying) with T
acting on the holomorphic line bundle 03BE depending on a. In Section 2 we
discuss the relation between the surjectivity of ~ and the algebraic varie-
ties W n mentioned above. Although this is only a standard application of
the classical theory of Riemann surfaces, we like to present this here as
an example of an elliptic equation on a compact manifold with a rather
intricate global solvability condition on the lower order term a. We

conclude by mentioning what is known about the singularities of the
varieties Wn.

1 am indebted to Lars Hôrmander for the suggestion that [5], Ch. 7
should be generalized to to operators on line bundles, and to Lipman
Bers and Frans Oort for helping me with the literature.

1. Réduction to ô acting on a holomorphic line bundle

For arbitrary local trivializations of E and F over U, the principal
symbol of L is a Coo mapping: (x, 03BE) H A(x, 03BE) from T*(U) to the space
of real 2 x 2-matrices, the mapping is linear in 03BE. Here the principal
symbol is defined such that L = A (x, DI ôx) + zero order terms, on local
coordinates.

Ellipticity means that det A(x, j) ~ 0 for 03BE ~ 0, so det A (x, 03BE) is the
principal symbol of a real second order elliptic operator P on U. Accord-
ing to a classical theorem on normal forms of such operators we can find
local coordinates such that the second order part of P is equal to c(x) · Li
for a smooth function c(x) ~ 0. Here d = ~2/~x21+~2/~x22 on R2.

(See Courant and Hilbert [4], Ch. III, § 1.) So on these coordinates:

where A1(x), A2(x), B(x) are real 2 x 2-matrices depending smoothly on
x, and det (A1(x)03BE1+ A2(X)03BE2) = c(x)’ (03BE21 + 03BE22).
Now we retrivialize E and F, that is we write u(x) = S(x) · v(x),

f(x) = T(x) · g(x) for some real 2 x 2-matrices S(x), T(x) depending
smoothly on x. Then Lu = f becomes
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So we try to choose S, T such that T-1A1S = 2I, T-1A2S = 1 2i,
here i = (01 -1 0). This means that T = 1 2 S-1 A-11 and

The equation (1.3) is solvable if and only if Ai 1 A2 has eigenvalues ±i.
Now

det (A-11A2-03BBI) = det A-11·det (Az -ÀA1) = det A-11·c(x)· (1 + 03BB2),

so for each x ~ U the equation (1.3) has a solution. The mapping
S H SiS-1 is a smooth fibration of GL(2, R) over the manifold of real
2 x 2 matrices with eigenvalues ± i, so the solution S can locally be
chosen to depend smoothly on x.
We now have local coordinatizations and trivializations in which

Lu = ~u/~z+a(z) · u + b(z) · ù, z = x1+ix2. Here a, b are complex
valued C°° functions of z. Using Cauchy’s integral formula we can find
a local solution c(z) to ôclôi = a. Writing u=e-c·v, f=e-c·g the
equation Lu = f can be written in the form ~v/~z+b · ec-c·v = g,
which proves part a) of Theorem 1.
For part b) we remark that the equation

in other local coordinatizations, resp. trivializations as in Theorem 1, a)
has the form

Here y = y(x), u(x) = S(x) · v(y(x)), f(x) = T(x) . g(y(x)). This leads
to T - 1 . (~/~x1+i· DIDX2)Yl S = I, T-1 · (~/~x1 + i · ÔIÔX2)Y2 - S = i,
so both T o S-1 = (DIDX1 + i~/~x2)y1 and T o s- lsis-1 - (Dlôxl +
i~/~x2)y2 are multiplications with complex numbers. Therefore sis -1 is
a multiplication with a complex number which only can be + i or - i.

If SiS - 1 = i then we obtain the Cauchy-Riemann equations for
yl , y2 . Moreover S and therefore also T can only be a multiplication
with a complex number. Looking at the zero order terms we obtain that
T-1~S/~z·v+T-1·b·S·v=c·v for all v, so ~S/~z=0, c=T-1·b·S.
If finally SiS -1 = - i then x H y(x) is anti-holomorphic and S, T are
multiplications by complex numbers followed by complex conjugation.
This proves b).
For the statement c) in Theorem 1 we observe that A1, A2, B in (1.1)

are multiplications by complex numbers if L is complex linear and we
choose 03C4E, 03C4F complex linear. The formula S-1A-11A2S=i then
implies that A 1 1 A2 = ± i. If A-11 A2 = + i it follows that S and T are
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multiplications by complex numbers. If A-11 A2 = - i then the change of
coordinates (x1, x2) H (xl , -x2) leads to the above case. 
We conclude this section by a discussion of the case that L = a + a

acting on a fixed holomorphic line bundle 03BE0 over the compact Riemann
surface M, with varying a E 0393(M, C~(03BA)). Let Ua, a E A be a covering
with contractible coordinate neighborhoods in M such that a is given by
local sections aa E 0393(U03B1 C~). Let c03B1 E r(Ua, COO) be solutions of

Then c03B2-c03B1 is holomorphic in Ua n U03B2, so they define an element

9(a) E H1(M, (9), which in fact is the element in H1(M, (g) corresponding
to - (2ni) -1 . a under the canonical isomorphism

given by the fine resolution 0 ~ (9 - C~ C~(03BA) ~ 0 of the sheaf (9.
Writing Ua. = e203C0i·c03B1· Va., f« = e203C0i·c03B1· g03B1 the equation oUa./oz+

a03B1 · u03B1 = f03B1 is equivalent to oVa./ oz = ga.. The transition formula for the
v03B1 is given by v03B1 = e203C0i(c03B2-c03B1)· 03BE(0)03B103B2 ·v03B2, lf u = 03BE(0)03B103B2 · u03B2, the

defining ç o. In other words, (8 + a)u = f for sections u of 03BE0 is equivalent
to av = g for sections v of 03BE=03BE(a) = e203C0i(a)·03BE0.

In view of the exact sequence

the Chern classes c(03BE) and c(03BE0) of 03BE and 03BE0 are equal. Conversely every
ç E Hl (M, O*) with c(03BE) = c(ço) is equal to 03BE(a) for some a E reM,
C~(03BA)). So the solvability properties of the operator ~+a are completely
determined by the element 03BE(a) · 03BE-10 in J(M) = Hl(M, O)/H1(M, Z).
The complex g-dimensional torus J(M) is called the Jacobi variety of the
compact Riemann surface M. Here g is the genus of M.

2. The surjectivity of ~: 0393(M, C~(~)) ~ reM, COO(KÇ))

Because 0 ~ O(03BE) - C~(03BE) C~(03BA03BE) ~ 0 is a fine resolution of the
sheaf O(03BE), the surjectivity ofZ is equivalent to Hl(M, O(03BE) = 0, which
in turn is equivalent to l’(M, O(03BA03BE-1)) = 0 by Serre duality. Now for any
( e Hl(M, 0*), reM, O(03B6)) ~ 0 if and only if 03B6 is trivial or a product of
point bundles. Indeed, Ç = 03B6p if and only if there exists a non-zero
holomorphic section of Ç with precisely one zero at p. Because two
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holomorphic line bundles 03B6, 03B6’ are equal if there exist non-zero meromor-
phic sections of 03B6, resp. 03B6’ with equal zeros and poles, the result follows
immediately. Defining Wn as in (4), n = c(03B6) = the number of zeros
minus the number of poles of meromorphic sections of C, we obtain that

h(M, O(03B6)) = 0 if and only if 03B6 · ne Wn.
If y is a curve from q to p then h H 03B3 h, h E 0393(M, O(03BA)), is an element

of reM, O(03BA))* ~ Hl (M, O) (Serre duality), which according to Abel’s
theorem corresponds to 03B6p03B6q-1 ~ J(M). Therefore 03A6 : p ~ 03B6p03B6-1q is an

analytic mapping: M ~ J(M) with image W1. q, is injective, hence an
analytic embedding of M into J(M) if g ~ 1 (the case g = 0 is trivial).
Because of Chow’s lemma the image Wl is even an algebraic subvariety
(without singularities) of the algebraic variety J(M). So wn = W1 +
... + W1 (n times) is also an algebraic subvariety of J(M). Because
of Riemann-Roch, dim r(M, (0«» &#x3E; 0 if c(03B6) ~ g, hence Wn = J(M)
for n ~ g. Since dimc Wn +1 ~ dimc Wn+1 it follows that dimc W n = n
for 1 ~n~g.
The possible singularities of Wn for 2~n~ g -1 are studied quite

extensively in algebraic geometry. Define

Alternative description: the mapping (p1,···pn) H 03B6p1·· 03BEpn·03B6-nq:
Mn ~ J(M) factors through the symmetric product of n copies of M,
denoted by M(n), thus leading to a mapping 03A6(n) : M(n) --+ J(M). The
variety M(n) has no singularities (cf. Andreotti [1]) and the mapping
03A6(n) is analytic. Then dim 0393(M, O(03B6p1 ··· 03B6pn)) = r + 1 if and only if the
rank of the differential of 0(n) at (p1, ···, pn) is equal to n - r (see Gun-
ning [6], Lemma 17).
Now Weil [14] showed that G’ is equal to the set of singularities of

W n for all n ~ g - 1. In general Gr+1 n is contained in the set of singulari-
ties of Gn (Mayer [12]), but Martens [11] has given examples of singulari-
ties of G1g-1 not coming from G. 2 Martens [10] also proved that

Kleiman and Laksov [8] ] proved that Grn ~ 0 if the number d in the
left hand side of (2.2) is non-negative. Finally we mention the work
of Kempf [7] containing an infinitesimal study of the singularities of
the W n.
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