COMPOSITIO MATHEMATICA

J. J. DUISTERMAAT

On first order elliptic equations for sections of complex line bundles

Compositio Mathematica, tome 25, nº 3 (1972), p. 237-243 <http://www.numdam.org/item?id=CM_1972_25_3_237_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON FIRST ORDER ELLIPTIC EQUATIONS FOR SECTIONS OF COMPLEX LINE BUNDLES

by

J. J. Duistermaat

Introduction

Let M be a real 2-dimensional C^{∞} manifold, E and F smooth vectorbundles over M with real 2-dimensional fibres. Then each linear first order elliptic partial differential operator L from C^{∞} sections of E to C^{∞} sections of F can locally be brought into a standard form, as follows.

THEOREM 1.

a) For each $x_0 \in M$ there is a neighborhood U of x_0 , a local coordinatization γ of U and local trivializations τ^E , resp. τ^F of E, resp. F over U in which L has the form:

(1)
$$Lu = \frac{1}{2}(\partial u/\partial x_1 + i\partial u/\partial x_2) + b(x) \cdot \bar{u}.$$

Here b(x) is a complex valued C^{∞} function and the fiber \mathbb{R}^2 is identified with C.

b) If γ_j , τ_j^E , τ_j^F , j = 1, 2 are local coordinatizations, resp. local trivializations of E and F as in a), then either $\gamma_1 \circ \gamma_2^{-1}$ is holomorphic and $\tau_1^E \cdot (\tau_2^E)^{-1}$, $\tau_1^F \cdot (\tau_2^F)^{-1}$ are multiplications with complex numbers in the fibers, $\tau_1^E \cdot (\tau_2^E)^{-1}$ depending holomorphically on x, or $\gamma_1 \circ \gamma_2^{-1}$ is anti-holomorphic and $\tau_1^E \cdot (\tau_2^E)^{-1}$, $\tau_1^F \cdot (\tau_2^F)^{-1}$ are multiplications with complex numbers followed by complex conjugation.

c) If L is a complex linear operator for some given complex structures on E and F, then the trivialisations τ^{E} , τ^{F} in a) can be chosen complex linear.

This theorem is classical, c.f. Vekua [13] or the supplement to Ch. IV in [4] of Bers. If M is orientable then this leads to a unique complex analytic structure on M, and an identification of E with a holomorphic complex line bundle ξ on M and of F with $\bar{\kappa} \cdot \xi$, such that:

(2)
$$Lu = \overline{\partial}u + b \cdot \overline{u}$$
 on sections u of ξ .

Here $b \in \Gamma(M, C^{\infty}(\bar{\kappa} \cdot (\bar{\xi})^{-1} \cdot \xi))$ and κ is the canonical bundle of M. If L is a complex linear operator then M is automatically orientable and L is reduced to $\overline{\partial}$ acting on ξ . If M is not orientable one can study L by changing to the 2-fold orientable covering of M.

If *M* is not compact then the elliptic theory of Malgrange [9], Ch. 3, combined with the theorem of unique continuation of solutions of $\overline{\partial}u + a \cdot u + b \cdot \overline{u} = 0$ of Carleman [3], implies that *L* is surjective: $\Gamma(M, C^{\infty}(E)) \rightarrow \Gamma(M, C^{\infty}(F))$. This can be generalized to the case that *L* is a first order operator on a higher dimensional manifold *M*, acting as an elliptic operator in the direction of the leaves of a 2-dimensional foliation in *M*. One obtains semi-global solvability for the equation Lu = f if no leaf is contained in a compact subset of *M*, and global solvability if in addition a convexity condition for the leaves is satisfied as in [5], Theorem 7.1.6. Application to the Hamilton operator H_p leads to corresponding results for general pseudo-differential operators acting on real 2-dimensional bundles with 2-dimensional bicharacteristic strips. See [5], Ch. 7.

If $L = L_1 + iL_2$ is a complex vector field acting on a trivial line bundle then semi-global solvability conversely implies that no leaf is contained in a compact subset of M ([5], Th. 7.1.5). However, in general one can even have global solvability if M is a compact surface. If more generally M is fibered by compact surfaces on which L acts, then global solvability on the fibers leads to global solvability on M.

So assume from now on that M is a compact and orientable surface, L as in (0.2). Then

(3)
$$\operatorname{index} L = \operatorname{index} \overline{\partial} = c(\xi) + 1 - g.$$

The first identity follows from general elliptic theory and the second one is the theorem of Riemann-Roch. $c(\xi)$ is the Chern class of ξ and g is the genus of M. (See Gunning [6] for the theory of compact Riemann surfaces used here.) In particular L can only by surjective if $c(\xi) \ge g-1$. Using the similarity principle of Bers [2], we obtain for each $v \in \Gamma(M, C^{\infty}(\kappa\xi^{-1}))$, ${}^{t}Lv = 0, v \neq 0$, a non-zero holomorphic section v' of some holomorphic line bundle $\kappa \cdot (\xi')^{-1}$ with $c(\xi') = c(\xi)$. From the results below it therefore follows that L is surjective if $c(\xi) > 2(g-1)$. So there remains a gap between the necessary and sufficient condition for global solvability if $g \ge 1, g-1 \le c(\xi) \le 2(g-1)$.

If L is complex linear then the reduction to $\overline{\partial}$ acting on ξ leads to a much more detailed description. In this case surjectivity is equivalent to the condition that $\kappa \cdot \xi^{-1} \cdot \zeta_q^{-n}$, considered as an element of the Jacobivariety J(M) of M, does not belong to the set W^n defined by:

(4)
$$W^{n} = \emptyset \text{ if } n < 0, W^{0} = \{0\}, \text{ and for } n \ge 1:$$
$$W^{n} = \{\zeta_{p_{1}} \cdot \zeta_{p_{2}} \cdots \zeta_{p_{n}} \cdot \zeta_{q}^{-n} \in J(M); p_{1}, \cdots, p_{n} \in M\}.$$

Here $n = c(\kappa \cdot \xi^{-1}) = 2(g-1) - c(\xi)$, ζ_p is the point bundle of $p \in M$. The point $q \in M$ is arbitrary but fixed. The W^n are known in algebraic geometry as the varieties of special divisors of M. They are algebraic subvarieties of J(M) of complex dimension n if $1 \leq n \leq g$. $W^n = J(M)$ for $n \geq g$ because of Riemann-Roch.

In Section 1 we give an elementary proof of Theorem 1, followed by a discussion in more detail of the identification of the operator $\overline{\partial} + a$ acting on the holomorphic line bundle ξ_0 (ξ_0 fixed, a varying) with $\overline{\partial}$ acting on the holomorphic line bundle ξ depending on a. In Section 2 we discuss the relation between the surjectivity of $\overline{\partial}$ and the algebraic varieties W^n mentioned above. Although this is only a standard application of the classical theory of Riemann surfaces, we like to present this here as an example of an elliptic equation on a compact manifold with a rather intricate global solvability condition on the lower order term a. We conclude by mentioning what is known about the singularities of the varieties W^n .

I am indebted to Lars Hörmander for the suggestion that [5], Ch. 7 should be generalized to to operators on line bundles, and to Lipman Bers and Frans Oort for helping me with the literature.

1. Reduction to $\overline{\partial}$ acting on a holomorphic line bundle

For arbitrary local trivializations of E and F over U, the principal symbol of L is a C^{∞} mapping: $(x, \xi) \mapsto A(x, \xi)$ from $T^*(U)$ to the space of real 2×2 -matrices, the mapping is linear in ξ . Here the principal symbol is defined such that $L = A(x, \partial/\partial x) + \text{zero order terms, on local coordinates.}$

Ellipticity means that det $A(x, \xi) \neq 0$ for $\xi \neq 0$, so det $A(x, \xi)$ is the principal symbol of a real second order elliptic operator P on U. According to a classical theorem on normal forms of such operators we can find local coordinates such that the second order part of P is equal to $c(x) \cdot \Delta$ for a smooth function $c(x) \neq 0$. Here $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$ on \mathbb{R}^2 . (See Courant and Hilbert [4], Ch. III, § 1.) So on these coordinates:

(1.1)
$$Lu = A_1(x) \cdot \frac{\partial u}{\partial x_1} + A_2(x) \cdot \frac{\partial u}{\partial x_2} + B(x) \cdot u,$$

where $A_1(x)$, $A_2(x)$, B(x) are real 2×2-matrices depending smoothly on x, and det $(A_1(x)\xi_1 + A_2(x)\xi_2) = c(x) \cdot (\xi_1^2 + \xi_2^2)$.

Now we retrivialize E and F, that is we write $u(x) = S(x) \cdot v(x)$, $f(x) = T(x) \cdot g(x)$ for some real 2×2-matrices S(x), T(x) depending smoothly on x. Then Lu = f becomes

(1.2)
$$g = T^{-1}A_1S\partial v/\partial x_1 + T^{-1}A_2S\partial v/\partial x_2 + \text{zero order terms.}$$

So we try to choose S, T such that $T^{-1}A_1S = \frac{1}{2}I$, $T^{-1}A_2S = \frac{1}{2}i$, here $i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. This means that $T = \frac{1}{2}S^{-1}A_1^{-1}$ and

(1.3)
$$S^{-1} A_1(x)^{-1} A_2(x) S = i.$$

The equation (1.3) is solvable if and only if $A_1^{-1}A_2$ has eigenvalues $\pm i$. Now

$$\det (A_1^{-1}A_2 - \lambda I) = \det A_1^{-1} \cdot \det (A_2 - \lambda A_1) = \det A_1^{-1} \cdot c(x) \cdot (1 + \lambda^2),$$

so for each $x \in U$ the equation (1.3) has a solution. The mapping $S \mapsto SiS^{-1}$ is a smooth fibration of $GL(2, \mathbb{R})$ over the manifold of real 2×2 matrices with eigenvalues $\pm i$, so the solution S can locally be chosen to depend smoothly on x.

We now have local coordinatizations and trivializations in which $Lu = \partial u/\partial \bar{z} + a(z) \cdot u + b(z) \cdot \bar{u}, z = x_1 + ix_2$. Here *a*, *b* are complex valued C^{∞} functions of *z*. Using Cauchy's integral formula we can find a local solution c(z) to $\partial c/\partial \bar{z} = a$. Writing $u = e^{-c} \cdot v, f = e^{-c} \cdot g$ the equation Lu = f can be written in the form $\partial v/\partial \bar{z} + b \cdot e^{c-c} \cdot \bar{v} = g$, which proves part a) of Theorem 1.

For part b) we remark that the equation

(1.4)
$$f = \frac{1}{2} (\partial u / \partial x_1 + i \cdot \partial u / \partial x_2) + b \cdot \bar{u}$$

in other local coordinatizations, resp. trivializations as in Theorem 1, a) has the form

(1.5)
$$g = \frac{1}{2} (\frac{\partial v}{\partial y_1} + i \cdot \frac{\partial v}{\partial y_2}) + c \cdot \bar{v}.$$

Here y = y(x), $u(x) = S(x) \cdot v(y(x))$, $f(x) = T(x) \cdot g(y(x))$. This leads to $T^{-1} \cdot (\partial/\partial x_1 + i \cdot \partial/\partial x_2)y_1 \cdot S = I$, $T^{-1} \cdot (\partial/\partial x_1 + i \cdot \partial/\partial x_2)y_2 \cdot S = i$, so both $T \circ S^{-1} = (\partial/\partial x_1 + i\partial/\partial x_2)y_1$ and $T \circ S^{-1}SiS^{-1} = (\partial/\partial x_1 + i\partial/\partial x_2)y_2$ are multiplications with complex numbers. Therefore SiS^{-1} is a multiplication with a complex number which only can be +i or -i.

If $SiS^{-1} = i$ then we obtain the Cauchy-Riemann equations for y_1, y_2 . Moreover S and therefore also T can only be a multiplication with a complex number. Looking at the zero order terms we obtain that $T^{-1}\partial S/\partial \bar{z} \cdot v + T^{-1} \cdot b \cdot \bar{S} \cdot \bar{v} = c \cdot \bar{v}$ for all v, so $\partial S/\partial \bar{z} = 0$, $c = T^{-1} \cdot b \cdot \bar{S}$. If finally $SiS^{-1} = -i$ then $x \mapsto y(x)$ is anti-holomorphic and S, T are multiplications by complex numbers followed by complex conjugation. This proves b).

For the statement c) in Theorem 1 we observe that A_1, A_2, B in (1.1) are multiplications by complex numbers if L is complex linear and we choose τ^E , τ^F complex linear. The formula $S^{-1}A_1^{-1}A_2S = i$ then implies that $A_1^{-1}A_2 = \pm i$. If $A_1^{-1}A_2 = +i$ it follows that S and T are

multiplications by complex numbers. If $A_1^{-1}A_2 = -i$ then the change of coordinates $(x_1, x_2) \mapsto (x_1, -x_2)$ leads to the above case.

We conclude this section by a discussion of the case that $L = \overline{\partial} + a$ acting on a fixed holomorphic line bundle ξ_0 over the compact Riemann surface M, with varying $a \in \Gamma(M, C^{\infty}(\overline{\kappa}))$. Let $U_{\alpha}, \alpha \in A$ be a covering with contractible coordinate neighborhoods in M such that a is given by local sections $a_{\alpha} \in \Gamma(U_{\alpha}, C^{\infty})$. Let $c_{\alpha} \in \Gamma(U_{\alpha}, C^{\infty})$ be solutions of

(1.6)
$$2\pi i \cdot \partial c_{\alpha} / \partial \bar{z} + a_{\alpha} = 0.$$

Then $c_{\beta}-c_{\alpha}$ is holomorphic in $U_{\alpha} \cap U_{\beta}$, so they define an element $\vartheta(a) \in H^{1}(M, \mathcal{O})$, which in fact is the element in $H^{1}(M, \mathcal{O})$ corresponding to $-(2\pi i)^{-1} \cdot a$ under the canonical isomorphism

(1.7)
$$\Gamma(M, C^{\infty}(\bar{\kappa}))/\overline{\partial}\Gamma(M, C^{\infty}) \to H^{1}(M, \mathcal{O})$$

given by the fine resolution $0 \to \mathcal{O} \to C^{\infty} \xrightarrow{\overline{\partial}} C^{\infty}(\overline{\kappa}) \to 0$ of the sheaf \mathcal{O} .

Writing $u_{\alpha} = e^{2\pi i \cdot c_{\alpha}} \cdot v_{\alpha}$, $f_{\alpha} = e^{2\pi i \cdot c_{\alpha}} \cdot g_{\alpha}$ the equation $\partial u_{\alpha} / \partial \bar{z} + a_{\alpha} \cdot u_{\alpha} = f_{\alpha}$ is equivalent to $\partial v_{\alpha} / \partial \bar{z} = g_{\alpha}$. The transition formula for the v_{α} is given by $v_{\alpha} = e^{2\pi i (c_{\beta} - c_{\alpha})} \cdot \xi_{\alpha\beta}^{(0)} \cdot v_{\beta}$, if $u_{\alpha} = \xi_{\alpha\beta}^{(0)} \cdot u_{\beta}$, the

$$\xi^{(0)}_{\alpha\beta} \in \Gamma(U_{\alpha} \cap U_{\beta}, \mathcal{O})$$

defining ξ_0 . In other words, $(\overline{\partial} + a)u = f$ for sections u of ξ_0 is equivalent to $\overline{\partial}v = g$ for sections v of $\xi = \xi(a) = e^{2\pi i \vartheta(a)} \cdot \xi_0$.

In view of the exact sequence

the Chern classes $c(\xi)$ and $c(\xi_0)$ of ξ and ξ_0 are equal. Conversely every $\xi \in H^1(M, \mathcal{O}^*)$ with $c(\xi) = c(\xi_0)$ is equal to $\xi(a)$ for some $a \in \Gamma(M, C^{\infty}(\bar{\kappa}))$. So the solvability properties of the operator $\overline{\partial} + a$ are completely determined by the element $\xi(a) \cdot \xi_0^{-1}$ in $J(M) = H^1(M, \mathcal{O})/H^1(M, \mathbb{Z})$. The complex g-dimensional torus J(M) is called the Jacobi variety of the compact Riemann surface M. Here g is the genus of M.

2. The surjectivity of $\overline{\partial}$: $\Gamma(M, C^{\infty}(\xi)) \to \Gamma(M, C^{\infty}(\bar{\kappa}\xi))$

Because $0 \to \mathcal{O}(\xi) \to C^{\infty}(\xi) \xrightarrow{\overline{\partial}} C^{\infty}(\overline{\kappa}\xi) \to 0$ is a fine resolution of the sheaf $\mathcal{O}(\xi)$, the surjectivity of $\overline{\partial}$ is equivalent to $H^1(M, \mathcal{O}(\xi)) = 0$, which in turn is equivalent to $\Gamma(M, \mathcal{O}(\kappa\xi^{-1})) = 0$ by Serre duality. Now for any $\zeta \in H^1(M, \mathcal{O}^*), \Gamma(M, \mathcal{O}(\zeta)) \neq 0$ if and only if ζ is trivial or a product of point bundles. Indeed, $\zeta = \zeta_p$ if and only if there exists a non-zero holomorphic section of ζ with precisely one zero at p. Because two

[5]

holomorphic line bundles ζ , ζ' are equal if there exist non-zero meromorphic sections of ζ , resp. ζ' with equal zeros and poles, the result follows immediately. Defining W^n as in (4), $n = c(\zeta) =$ the number of zeros minus the number of poles of meromorphic sections of ζ , we obtain that $\Gamma(M, \mathcal{O}(\zeta)) = 0$ if and only if $\zeta \cdot \zeta_q^{-n} \notin W^n$.

If γ is a curve from q to p then $h \mapsto \int_{\gamma} h$, $h \in \Gamma(M, \mathcal{O}(\kappa))$, is an element of $\Gamma(M, \mathcal{O}(\kappa))^* \cong H^1(M, \mathcal{O})$ (Serre duality), which according to Abel's theorem corresponds to $\zeta_p \zeta_q^{-1} \in J(M)$. Therefore $\Phi: p \mapsto \zeta_p \zeta_q^{-1}$ is an analytic mapping: $M \to J(M)$ with image W^1 . Φ is injective, hence an analytic embedding of M into J(M) if $g \ge 1$ (the case g = 0 is trivial). Because of Chow's lemma the image W^1 is even an algebraic subvariety (without singularities) of the algebraic variety J(M). So $W^n = W^1 + \cdots + W^1$ (n times) is also an algebraic subvariety of J(M). Because of Riemann-Roch, dim $\Gamma(M, \mathcal{O}(\zeta)) > 0$ if $c(\zeta) \ge g$, hence $W^n = J(M)$ for $n \ge g$. Since dim_c $W^{n+1} \le \dim_c W^n + 1$ it follows that dim_c $W^n = n$ for $1 \le n \le g$.

The possible singularities of W^n for $2 \le n \le g-1$ are studied quite extensively in algebraic geometry. Define

(2.1)
$$G_n^r = \{\zeta_{p_1} \cdots \zeta_{p_n} \cdot \zeta_q^{-n} \in W^n; \dim \Gamma(M, \mathcal{O}(\zeta_{p_1} \cdots \zeta_{p_n})) \ge r+1\}.$$

Alternative description: the mapping $(p_1, \dots, p_n) \mapsto \zeta_{p_1} \cdots \zeta_{p_n} \cdot \zeta_q^{-n}$: $M^n \to J(M)$ factors through the symmetric product of *n* copies of *M*, denoted by $M^{(n)}$, thus leading to a mapping $\Phi^{(n)} : M^{(n)} \to J(M)$. The variety $M^{(n)}$ has no singularities (cf. Andreotti [1]) and the mapping $\Phi^{(n)}$ is analytic. Then dim $\Gamma(M, \mathcal{O}(\zeta_{p_1} \cdots \zeta_{p_n})) = r+1$ if and only if the rank of the differential of $\Phi^{(n)}$ at (p_1, \dots, p_n) is equal to n-r (see Gunning [6], Lemma 17).

Now Weil [14] showed that G_n^1 is equal to the set of singularities of W^n for all $n \leq g-1$. In general G_n^{r+1} is contained in the set of singularities of G_n^r (Mayer [12]), but Martens [11] has given examples of singularities of G_{g-1}^1 not coming from G_{g-1}^2 . Martens [10] also proved that

(2.2)
$$d = (r+1)(n-r) - rg \leq \dim G_n^r \leq n-2r$$
 if $2 \leq n \leq g-1$.

Kleiman and Laksov [8] proved that $G_n^r \neq \emptyset$ if the number *d* in the left hand side of (2.2) is non-negative. Finally we mention the work of Kempf [7] containing an infinitesimal study of the singularities of the W^n .

REFERENCES

A. ANDREOTTI

[1] On a theorem of Torelli, Am. J. Math. 80 (1958), 801-828.

```
L. Bers
```

- [2] Article in: Contributions to the Theory of Partial Differential Equations, Princeton 1954.
- T. CARLEMAN
- [3] Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables, C. R. Acad. Sc. 197 (1933) 471-474.
- R. COURANT and D. HILBERT
- [4] Methods of Mathematical Physics, vol. II, Interscience, New York, 1962.
- J. J. DUISTERMAAT and L. HÖRMANDER
- [5] Fourier Integral Operators II, Acta Math., 128 (1972), 183-269.
- R. C. GUNNING
- [6] Lectures on Riemann Surfaces, Princeton, 1966.

G. Kempf

- [7] The singularities of certain varieties in the Jacobian of a curve, preprint.
- S. L. KLEIMAN and D. LAKSOV
- [8] On the existence of special divisors, preprint.
- **B.** MALGRANGE
- [9] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. de l'Inst. Fourier 6 (1955) 271–355.
- H. H. MARTENS
- [10] On the varieties of special divisors on a curve, Journal f.d. reine u. angew. Math., 227 (1967), 111–120.
- H. H. MARTENS
- [11] II, same journal, 233 (1968), 89-100.
- A. L. MAYER
- [12] Special divisors and the Jacobian variety, Math. Ann. 153 (1964), 163-167.
- I. N. VEKUA
- [13] Generalized Analytic Functions, Pergamon Press, Oxford-London-New York-Paris, 1962.
- A. Weil
- [14] Zum Beweis des Torellischen Satzes, Nachr. der Akad. der Wiss. in Göttingen 2 (1957), 33–53.

(Oblatum 14-I-1972)

Mathematical Institute of the University of Nijmegen Toernooiveld Nijmegen, Holland