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ON FIRST ORDER ELLIPTIC EQUATIONS
FOR SECTIONS OF COMPLEX LINE BUNDLES

by

J. J. Duistermaat

Introduction

Let M be a real 2-dimensional C* manifold, E and F smooth vector-
bundles over M with real 2-dimensional fibres. Then each linear first order
elliptic partial differential operator L from C* sections of E to C®
sections of F can locally be brought into a standard form, as follows.

THEOREM 1.

a) For each xq € M there is a neighborhood U of x,, a local coordinati-
zation y of U and local trivializations <%, resp. ¥ of E, resp. F over U in
which L has the form:

1) Lu = 1(0u/0x,+i0u/dx,)+b(x) - 4.

Here b(x) is a complex valued C* function and the fiber R* is identified
with C.

b) Iy s rf, IJF. , j = 1,2 are local coordinatizations, resp. local triviali-
zations of E and F as in a), then either y, 07, " is holomorphic and
- (15)7 L, of - (75)7! are multiplications with complex numbers in the
fibers, ©% - (t5)™! depending holomorphically on x, or y, oy; ' is anti-
holomorphic and <% - (z5)™*, 1} - (15)™! are multiplications with complex
numbers followed by complex conjugation.

¢) If L is a complex linear operator for some given complex structures
on E and F, then the trivialisations t%, 1% in a) can be chosen complex
linear.

This theorem is classical, c.f. Vekua [13] or the supplement to Ch. IV
in [4] of Bers. If M is orientable then this leads to a unique complex
analytic structure on M, and an identification of E with a holomorphic
complex line bundle & on M and of F with i - £, such that:

#)) Lu = Qu+b - @ on sections u of &.

Here beI'(M, C*(i - (§)™" - £)) and « is the canonical bundle of M.
If L is a complex linear operator then M is automatically orientable and
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238 J. J. Duistermaat 2}

L is reduced to @ acting on . If M is not orientable one can study L by
changing to the 2-fold orientable covering of M.

If M is not compact then the elliptic theory of Malgrange [9], Ch. 3,
combined with the theorem of unique continuation of solutions of
Ou+a-u+b-ii =0 of Carleman [3], implies that L is surjective:
(M, C*(E)) » I'(M, C*(F)). This can be generalized to the case that
L is a first order operator on a higher dimensional manifold M, acting
as an elliptic operator in the direction of the leaves of a 2-dimensional
foliation in M. One obtains semi-global solvability for the equation
Lu = f if no leaf is contained in a compact subset of M, and global
solvability if in addition a convexity condition for the leaves is satisfied
as in [5], Theorem 7.1.6. Application to the Hamilton operator H,
leads to corresponding results for general pseudo-differential operators
acting on real 2-dimensional bundles with 2-dimensional bicharacteristic
strips. See [5], Ch. 7.

If L = L,+iL, is a complex vector field acting on a trivial line bundle
then semi-global solvability conversely implies that no leaf is contained
in a compact subset of M ([5], Th. 7.1.5). However, in general one can
even have global solvability if M is a compact surface. If more generally
M is fibered by compact surfaces on which L acts, then global solvability
on the fibers leads to global solvability on M.

So assume from now on that M is a compact and orientable surface,
L as in (0.2). Then

3) index L = index 8 = ¢(¢)+1—g.

The first identity follows from general elliptic theory and the second one
is the theorem of Riemann-Roch. ¢(£) is the Chern class of ¢ and g is
the genus of M. (See Gunning [6] for the theory of compact Riemann
surfaces used here.) In particular L can only by surjective if ¢(£) = g—1.
Using the similarity principle of Bers [2], we obtain for each v e I'(M,
C*(kE™ 1)), 'Lv = 0, v # 0, a non-zero holomorphic section v’ of some
holomorphic line bundle x - (¢')! with ¢(&') = c(&). From the results
below it therefore follows that L is surjective if ¢(£) > 2(g—1). So there
remains a gap between the necessary and sufficient condition for global
solvability if g = 1, g—1 < ¢(&) = 2(g9—1).

If L is complex linear then the reduction to 0 acting on & leads to a much
more detailed description. In this case surjectivity is equivalent to the
condition that x- &7t - 4 > considered as an element of the Jacobi-

variety J (M) of M, does not belong to the set W" defined by:

W' =0 if n <0, W° = {0}, and for n = 1:

4
“ W' =l L T (M) py -, pye M.
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Here n = c(k - €71) = 2(g—1)—c(&), ¢, is the point bundle of p € M.
The point g € M is arbitrary but fixed. The W" are known in algebraic
geometry as the varieties of special divisors of M. They are algebraic
subvarieties of J(M ) of complex dimension nif 1 < n < g. W"=J(M)
for n = g because of Riemann-Roch.

In Section 1 we give an elementary proof of Theorem 1, followed by
a discussion in more detail of the identification of the operator d+a
acting on the holomorphic line bundle &, (&, fixed, a varying) with 9
acting on the holomorphic line bundle ¢ depending on a. In Section 2 we
discuss the relation between the surjectivity of  and the algebraic varie-
ties W™ mentioned above. Although this is only a standard application of
the classical theory of Riemann surfaces, we like to present this here as
an example of an elliptic equation on a compact manifold with a rather
intricate global solvability condition on the lower order term a. We
conclude by mentioning what is known about the singularities of the
varieties W".

I am indebted to Lars Hormander for the suggestion that [5], Ch. 7
should be generalized to to operators on line bundles, and to Lipman
Bers and Frans Oort for helping me with the literature.

1. Reduction to & acting on a holomorphic line bundle

For arbitrary local trivializations of E and F over U, the principal
symbol of L is a C* mapping: (x, &) = A(x, &) from T*(U) to the space
of real 2x 2-matrices, the mapping is linear in &. Here the principal
symbol is defined such that L = A(x, /0x)+ zero order terms, on local
coordinates.

Ellipticity means that det A(x, &) # 0 for £ # 0, so det A(x, &) is the
principal symbol of a real second order elliptic operator P on U. Accord-
ing to a classical theorem on normal forms of such operators we can find
local coordinates such that the second order part of P is equal to ¢(x) - 4
for a smooth function c¢(x) # 0. Here 4 = 9%/0x?+ 0*/0x3 on RZ.
(See Courant and Hilbert [4], Ch. III, § 1.) So on these coordinates:

(L.1) Lu = A,(x)- 0u/0x,+ Ay(x) * 0u/0x,+ B(x) - u,

where A;(x), A,(x), B(x) are real 2 x 2-matrices depending smoothly on
x, and det (4 (x)&;+A4,(x)E,) = c(x) - (E2+E2).

Now we retrivialize £ and F, that is we write u(x) = S(x) - v(x),
f(x) = T(x) - g(x) for some real 2x2-matrices S(x), T(x) depending
smoothly on x. Then Lu = f becomes

(12) g =T"'4,S00/0x,+T '4,S0v/0x,+zero order terms.
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So we try to choose S, T such that T7'4,8 =4I, T™'4,S = }i,
here i = ((1) _(1)). This means that T = 1S~ '4; " and

(1.3) S™1 Ay (x) "1 4,(x)S = i

The equation (1.3) is solvable if and only if 47 '4, has eigenvalues +i.
Now

det (A7 'A,—AI)=det A7" - det (4, —AA4,) = det A7 - c(x)- (1+712%),

so for each xe U the equation (1.3) has a solution. The mapping
S+ SiS™! is a smooth fibration of GL(2, R) over the manifold of real
2 x 2 matrices with eigenvalues +i, so the solution S can locally be
chosen to depend smoothly on x.

We now have local coordinatizations and trivializations in which
Lu = 0u/0z+a(z) - u+b(z) 4,z = x,+ix,. Here a, b are complex
valued C* functions of z. Using Cauchy’s integral formula we can find
a local solution ¢(z) to 8c¢/0Z = a. Writing u = e - v, f = e+ g the
equation Lu = f can be written in the form dv/0Z+b-ec=c -5 = g,
which proves part a) of Theorem 1.

For part b) we remark that the equation

(1.4) f=%4(0u/ox,+i- 0ulox,)+b-u

in other local coordinatizations, resp. trivializations as in Theorem 1, a)
has the form

(1.5) g = 3(0v/dy,+i- dv/dy,)+c - b.

Here y = y(x), u(x) = S(x) - v(y(x)), f(x) = T(x) - g(¥(x)). This leads
to T71-(8/0xy+i-0/0xy)y, - S=1, T~ (0/0x,+i-0/0x,)y,* S = i,
so both To S™! = (8/0x,+i0/0x,)y, and To S™'SiS™' = (9/0x,+
i0/0x,)y, are multiplications with complex numbers. Therefore SiS™" is
a multiplication with a complex number which only can be +ior —i.

If SiS™! =i then we obtain the Cauchy-Riemann equations for
Y1, 2. Moreover S and therefore also T can only be a multiplication
with a complex number. Looking at the zero order terms we obtain that
T7198/0z-v4+T ' b-S-5=c-vforallv,so 8S/0Z2=0,c=T"1-b-5.
If finally SiS™! = —i then x — y(x) is anti-holomorphic and S, T are
multiplications by complex numbers followed by complex conjugation.
This proves b).

For the statement c) in Theorem 1 we observe that 4,, A,, Bin (1.1)
are multiplications by complex numbers if L is complex linear and we
choose 7%, 7F complex linear. The formula S~! A7' A4, S =i then
implies that A7* A, = +i. If A7' A, = +i it follows that S and T are



5] On first order elliptic equations 241

multiplications by complex numbers. If 4714, = —i then the change of
coordinates (x;, x,) ~ (x;, —X,) leads to the above case.

We conclude this section by a discussion of the case that L = 0+a
acting on a fixed holomorphic line bundle £, over the compact Riemann
surface M, with varying a € I'(M, C*(k)). Let U,, € A be a covering
with contractible coordinate neighborhoods in M such that a is given by
local sections a, e I'(U,, C*). Let ¢, e I'(U,, C®) be solutions of

(1.6) 2mi+ 0c,/0Z+a, = 0.

Then ¢;—c, is holomorphic in U, n U;, so they define an element
9(a) e H'(M, 0), which in fact is the element in H'(M, O) corresponding
to —(2ni)™! - a under the canonical isomorphism

(1.7) I'(M, C=(i))jar (M, C*) » H(M, 0)

given by the fine resolution 0 » @ - C* 5 C®(g) —» 0 of the sheaf 0.

Writing u, = ™' -v,, f, =e*™ .g, the equation 0u,/0z+
a, - u, = f, is equivalent to dv,/0Z = g,. The transition formula for the
v, is given by v, = 2™~ . £O .y ify, = EP - u,, the

EQer(U,n Uy, 0)

defining ¢, . In other words, (0+a)u = ffor sections u of ¢, is equivalent
to 9v = g for sections v of & = {(a) = 2™ . ¢,
In view of the exact sequence

(1.8) 0 H'(M,Z) - H'(M, 0) > H\(M, 0%) & H*(M, Z) > 0
iR
z

the Chern classes ¢(£) and ¢(&,) of ¢ and &, are equal. Conversely every
& e H' (M, 0*) with ¢(&) = c(&,) is equal to &é(a) for some ae I'(M,
C>(%)). So the solvability properties of the operator 0+ a are completely
determined by the element &(a)- &' in J(M) = HY(M, O)/H'(M, Z).
The complex g-dimensional torus J (M) is called the Jacobi variety of the
compact Riemann surface M. Here g is the genus of M.

2. The surjectivity of 0 : I'(M, C*(¢)) - I'(M, C*(k¢))

Because 0 —» O(¢) » C*(£) 5 C*(k¢) - 0 is a fine resolution of the
sheaf @(&), the surjectivity of 0 is equivalent to H*(M, O(¢)) = 0, which
in turn is equivalent to I'(M, O(xé~1)) = 0 by Serre duality. Now for any
{ e H (M, 0*), T (M, 0()) # 0 if and only if { is trivial or a product of
point bundles. Indeed, { = {, if and only if there exists a non-zero
holomorphic section of { with precisely one zero at p. Because two
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holomorphic line bundles {, {’ are equal if there exist non-zero meromor-
phic sections of {, resp. {" with equal zeros and poles, the result follows
immediately. Defining W" as in (4), n = ¢({) = the number of zeros
minus the number of poles of meromorphic sections of {, we obtain that
(M, 0()) = 0if and only if { - (" ¢ W™

If y is a curve from g to p then & > [, h, h e I'(M, O(k)), is an element
of I'(M, O(x))* ~ H'(M, 0) (Serre duality), which according to Abel’s
theorem corresponds to {,{, 'eJ(M). Therefore @ :p e ! is an
analytic mapping: M — J(M) with image W'. & is injective, hence an
analytic embedding of M into J(M)if g = 1 (the case g = 0 is trivial).
Because of Chow’s lemma the image W' is even an algebraic subvariety
(without singularities) of the algebraic variety J(M). So W" = W'+
<+ -+ W' (n times) is also an algebraic subvariety of J(M). Because
of Riemann-Roch, dim I'(M, €({)) > 0 if ¢({) = g, hence W" = J(M)
for n = g. Since dim¢g W"*! < dim¢g W"+1 it follows that dimg W" = n
forl=n<=gy.

The possible singularities of W” for 2 < n < g—1 are studied quite
extensively in algebraic geometry. Define

21) G, = (L LTme W dim T(M, O(C,, - L,.)) = r+1}.

Alternative description: the mapping (py, -, p.) > (p, - ({0 "
M" — J(M) factors through the symmetric product of n copies of M,
denoted by M™, thus leading to a mapping @™ : M™ — J(M). The
variety M™ has no singularities (cf. Andreotti [1]) and the mapping
®™ is analytic. Then dim I'(M, O((,, - - - {,,)) = r+1 if and only if the
rank of the differential of ™ at (p,, - - -, p,) is equal to n—r (see Gun-
ning [6], Lemma 17).

Now Weil [14] showed that G| is equal to the set of singularities of
W" for alln < g—1. In general G, ! is contained in the set of singulari-
ties of G, (Mayer [12]), but Martens [11] has given examples of singulari-
ties of G;_l not coming from Gj_ ;- Martens [10] also proved that

22) d=(@+1)(n-r)-rg <dimG, <n-2rif2<n<g-1

Kleiman and Laksov [8] proved that G, # 0 if the number d in the
left hand side of (2.2) is non-negative. Finally we mention the work
of Kempf [7] containing an infinitesimal study of the singularities of
the W™
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