Compositio Mathematica

J. J. DUISTERMAAT

On first order elliptic equations for sections of complex line bundles

Compositio Mathematica, tome 25, no 3 (1972), p. 237-243
http://www.numdam.org/item?id=CM_1972__25_3_237_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

ON FIRST ORDER ELLIPTIC EQUATIONS FOR SECTIONS OF COMPLEX LINE BUNDLES

by

J. J. Duistermaat

Introduction

Let M be a real 2-dimensional C^{∞} manifold, E and F smooth vectorbundles over M with real 2-dimensional fibres. Then each linear first order elliptic partial differential operator L from C^{∞} sections of E to C^{∞} sections of F can locally be brought into a standard form, as follows.

Theorem 1.

a) For each $x_{0} \in M$ there is a neighborhood U of x_{0}, a local coordinatization γ of U and local trivializations τ^{E}, resp. τ^{F} of E, resp. F over U in which L has the form:

$$
\begin{equation*}
L u=\frac{1}{2}\left(\partial u / \partial x_{1}+i \partial u / \partial x_{2}\right)+b(x) \cdot \bar{u} . \tag{1}
\end{equation*}
$$

Here $b(x)$ is a complex valued C^{∞} function and the fiber \boldsymbol{R}^{2} is identified with C.
b) If $\gamma_{j}, \tau_{j}^{E}, \tau_{j}^{F}, j=1,2$ are local coordinatizations, resp. local trivializations of E and F as in a), then either $\gamma_{1} \circ \gamma_{2}^{-1}$ is holomorphic and $\tau_{1}^{E} \cdot\left(\tau_{2}^{E}\right)^{-1}, \tau_{1}^{F} \cdot\left(\tau_{2}^{F}\right)^{-1}$ are multiplications with complex numbers in the fibers, $\tau_{1}^{E} \cdot\left(\tau_{2}^{E}\right)^{-1}$ depending holomorphically on x, or $\gamma_{1} \circ \gamma_{2}^{-1}$ is antiholomorphic and $\tau_{1}^{E} \cdot\left(\tau_{2}^{E}\right)^{-1}, \tau_{1}^{F} \cdot\left(\tau_{2}^{F}\right)^{-1}$ are multiplications with complex numbers followed by complex conjugation.
c) If L is a complex linear operator for some given complex structures on E and F, then the trivialisations τ^{E}, τ^{F} in a) can be chosen complex linear.

This theorem is classical, c.f. Vekua [13] or the supplement to Ch. IV in [4] of Bers. If M is orientable then this leads to a unique complex analytic structure on M, and an identification of E with a holomorphic complex line bundle ξ on M and of F with $\bar{\kappa} \cdot \xi$, such that:

$$
\begin{equation*}
L u=\bar{\partial} u+b \cdot \bar{u} \text { on sections } u \text { of } \xi \tag{2}
\end{equation*}
$$

Here $b \in \Gamma\left(M, C^{\infty}\left(\bar{\kappa} \cdot(\bar{\xi})^{-1} \cdot \xi\right)\right)$ and κ is the canonical bundle of M. If L is a complex linear operator then M is automatically orientable and
L is reduced to $\bar{\partial}$ acting on ξ. If M is not orientable one can study L by changing to the 2 -fold orientable covering of M.

If M is not compact then the elliptic theory of Malgrange [9], Ch. 3, combined with the theorem of unique continuation of solutions of $\bar{\partial} u+a \cdot u+b \cdot \bar{u}=0$ of Carleman [3], implies that L is surjective: $\Gamma\left(M, C^{\infty}(E)\right) \rightarrow \Gamma\left(M, C^{\infty}(F)\right)$. This can be generalized to the case that L is a first order operator on a higher dimensional manifold M, acting as an elliptic operator in the direction of the leaves of a 2-dimensional foliation in M. One obtains semi-global solvability for the equation $L u=f$ if no leaf is contained in a compact subset of M, and global solvability if in addition a convexity condition for the leaves is satisfied as in [5], Theorem 7.1.6. Application to the Hamilton operator H_{p} leads to corresponding results for general pseudo-differential operators acting on real 2-dimensional bundles with 2-dimensional bicharacteristic strips. See [5], Ch. 7.

If $L=L_{1}+i L_{2}$ is a complex vector field acting on a trivial line bundle then semi-global solvability conversely implies that no leaf is contained in a compact subset of M ([5], Th. 7.1.5). However, in general one can even have global solvability if M is a compact surface. If more generally M is fibered by compact surfaces on which L acts, then global solvability on the fibers leads to global solvability on M.

So assume from now on that M is a compact and orientable surface, L as in (0.2). Then

$$
\begin{equation*}
\text { index } L=\text { index } \bar{\partial}=c(\xi)+1-g \tag{3}
\end{equation*}
$$

The first identity follows from general elliptic theory and the second one is the theorem of Riemann-Roch. $c(\xi)$ is the Chern class of ξ and g is the genus of M. (See Gunning [6] for the theory of compact Riemann surfaces used here.) In particular L can only by surjective if $c(\xi) \geqq g-1$. Using the similarity principle of Bers [2], we obtain for each $v \in \Gamma(M$, $\left.C^{\infty}\left(\kappa \xi^{-1}\right)\right),{ }^{t} L v=0, v \neq 0$, a non-zero holomorphic section v^{\prime} of some holomorphic line bundle $\kappa \cdot\left(\xi^{\prime}\right)^{-1}$ with $c\left(\xi^{\prime}\right)=c(\xi)$. From the results below it therefore follows that L is surjective if $c(\xi)>2(g-1)$. So there remains a gap between the necessary and sufficient condition for global solvability if $g \geqq 1, g-1 \leqq c(\xi) \leqq 2(g-1)$.

If L is complex linear then the reduction to $\bar{\partial}$ acting on ξ leads to a much more detailed description. In this case surjectivity is equivalent to the condition that $\kappa \cdot \xi^{-1} \cdot \zeta_{q}^{-n}$, considered as an element of the Jacobivariety $J(M)$ of M, does not belong to the set W^{n} defined by:

$$
\begin{align*}
W^{n} & =\emptyset \text { if } n<0, W^{0}=\{0\}, \text { and for } n \geqq 1: \\
W^{n} & =\left\{\zeta_{p_{1}} \cdot \zeta_{p_{2}} \cdots \zeta_{p_{n}} \cdot \zeta_{q}^{-n} \in J(M) ; p_{1}, \cdots, p_{n} \in M\right\} \tag{4}
\end{align*}
$$

Here $n=c\left(\kappa \cdot \xi^{-1}\right)=2(g-1)-c(\xi), \zeta_{p}$ is the point bundle of $p \in M$. The point $q \in M$ is arbitrary but fixed. The W^{n} are known in algebraic geometry as the varieties of special divisors of M. They are algebraic subvarieties of $J(M)$ of complex dimension n if $1 \leqq n \leqq g . W^{n}=J(M)$ for $n \geqq g$ because of Riemann-Roch.

In Section 1 we give an elementary proof of Theorem 1, followed by a discussion in more detail of the identification of the operator $\bar{\partial}+a$ acting on the holomorphic line bundle ξ_{0} (ξ_{0} fixed, a varying) with $\bar{\partial}$ acting on the holomorphic line bundle ξ depending on a. In Section 2 we discuss the relation between the surjectivity of $\bar{\partial}$ and the algebraic varieties W^{n} mentioned above. Although this is only a standard application of the classical theory of Riemann surfaces, we like to present this here as an example of an elliptic equation on a compact manifold with a rather intricate global solvability condition on the lower order term a. We conclude by mentioning what is known about the singularities of the varieties W^{n}.

I am indebted to Lars Hörmander for the suggestion that [5], Ch. 7 should be generalized to to operators on line bundles, and to Lipman Bers and Frans Oort for helping me with the literature.

1. Reduction to $\overline{\boldsymbol{\partial}}$ acting on a holomorphic line bundle

For arbitrary local trivializations of E and F over U, the principal symbol of L is a C^{∞} mapping: $(x, \xi) \mapsto A(x, \xi)$ from $T^{*}(U)$ to the space of real 2×2-matrices, the mapping is linear in ξ. Here the principal symbol is defined such that $L=A(x, \partial / \partial x)+$ zero order terms, on local coordinates.

Ellipticity means that $\operatorname{det} A(x, \xi) \neq 0$ for $\xi \neq 0$, so $\operatorname{det} A(x, \xi)$ is the principal symbol of a real second order elliptic operator P on U. According to a classical theorem on normal forms of such operators we can find local coordinates such that the second order part of P is equal to $c(x) \cdot \Delta$ for a smooth function $c(x) \neq 0$. Here $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}$ on \boldsymbol{R}^{2}. (See Courant and Hilbert [4], Ch. III, § 1.) So on these coordinates:

$$
\begin{equation*}
L u=A_{1}(x) \cdot \partial u / \partial x_{1}+A_{2}(x) \cdot \partial u / \partial x_{2}+B(x) \cdot u, \tag{1.1}
\end{equation*}
$$

where $A_{1}(x), A_{2}(x), B(x)$ are real 2×2-matrices depending smoothly on x, and $\operatorname{det}\left(A_{1}(x) \xi_{1}+A_{2}(x) \xi_{2}\right)=c(x) \cdot\left(\xi_{1}^{2}+\xi_{2}^{2}\right)$.

Now we retrivialize E and F, that is we write $u(x)=S(x) \cdot v(x)$, $f(x)=T(x) \cdot g(x)$ for some real 2×2-matrices $S(x), T(x)$ depending smoothly on x. Then $L u=f$ becomes

$$
\begin{equation*}
g=T^{-1} A_{1} S \partial v / \partial x_{1}+T^{-1} A_{2} S \partial v / \partial x_{2}+\text { zero order terms. } \tag{1.2}
\end{equation*}
$$

So we try to choose S, T such that $T^{-1} A_{1} S=\frac{1}{2} I, T^{-1} A_{2} S=\frac{1}{2} i$, here $i=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. This means that $T=\frac{1}{2} S^{-1} A_{1}^{-1}$ and

$$
\begin{equation*}
S^{-1} A_{1}(x)^{-1} A_{2}(x) S=i \tag{1.3}
\end{equation*}
$$

The equation (1.3) is solvable if and only if $A_{1}^{-1} A_{2}$ has eigenvalues $\pm i$. Now

$$
\operatorname{det}\left(A_{1}^{-1} A_{2}-\lambda I\right)=\operatorname{det} A_{1}^{-1} \cdot \operatorname{det}\left(A_{2}-\lambda A_{1}\right)=\operatorname{det} A_{1}^{-1} \cdot c(x) \cdot\left(1+\lambda^{2}\right)
$$

so for each $x \in U$ the equation (1.3) has a solution. The mapping $S \mapsto S i S^{-1}$ is a smooth fibration of $G L(2, R)$ over the manifold of real 2×2 matrices with eigenvalues $\pm i$, so the solution S can locally be chosen to depend smoothly on x.

We now have local coordinatizations and trivializations in which $L u=\partial u / \partial \bar{z}+a(z) \cdot u+b(z) \cdot \bar{u}, z=x_{1}+i x_{2}$. Here a, b are complex valued C^{∞} functions of z. Using Cauchy's integral formula we can find a local solution $c(z)$ to $\partial c / \partial \bar{z}=a$. Writing $u=e^{-c} \cdot v, f=e_{-}^{-c} \cdot g$ the equation $L u=f$ can be written in the form $\partial v / \partial \bar{z}+b \cdot e^{c-\bar{c}} \cdot \bar{v}=g$, which proves part a) of Theorem 1.

For part b) we remark that the equation

$$
\begin{equation*}
f=\frac{1}{2}\left(\partial u / \partial x_{1}+i \cdot \partial u / \partial x_{2}\right)+b \cdot \bar{u} \tag{1.4}
\end{equation*}
$$

in other local coordinatizations, resp. trivializations as in Theorem 1, a) has the form

$$
\begin{equation*}
g=\frac{1}{2}\left(\partial v / \partial y_{1}+i \cdot \partial v / \partial y_{2}\right)+c \cdot \bar{v} \tag{1.5}
\end{equation*}
$$

Here $y=y(x), u(x)=S(x) \cdot v(y(x)), f(x)=T(x) \cdot g(y(x))$. This leads to $T^{-1} \cdot\left(\partial / \partial x_{1}+i \cdot \partial / \partial x_{2}\right) y_{1} \cdot S=I, T^{-1} \cdot\left(\partial / \partial x_{1}+i \cdot \partial / \partial x_{2}\right) y_{2} \cdot S=i$, so both $T \circ S^{-1}=\left(\partial / \partial x_{1}+i \partial / \partial x_{2}\right) y_{1}$ and $T \circ S^{-1} S i S^{-1}=\left(\partial / \partial x_{1}+\right.$ $\left.i \partial / \partial x_{2}\right) y_{2}$ are multiplications with complex numbers. Therefore SiS^{-1} is a multiplication with a complex number which only can be $+i$ or $-i$.

If $S i S^{-1}=i$ then we obtain the Cauchy-Riemann equations for y_{1}, y_{2}. Moreover S and therefore also T can only be a multiplication with a complex number. Looking at the zero order terms we obtain that $T^{-1} \partial S / \partial \bar{z} \cdot v+T^{-1} \cdot b \cdot \bar{S} \cdot \bar{v}=c \cdot \bar{v}$ for all v, so $\partial S / \partial \bar{z}=0, c=T^{-1} \cdot b \cdot \bar{S}$. If finally $\operatorname{SiS}^{-1}=-i$ then $x \mapsto y(x)$ is anti-holomorphic and S, T are multiplications by complex numbers followed by complex conjugation. This proves b).

For the statement c) in Theorem 1 we observe that A_{1}, A_{2}, B in (1.1) are multiplications by complex numbers if L is complex linear and we choose τ^{E}, τ^{F} complex linear. The formula $S^{-1} A_{1}^{-1} A_{2} S=i$ then implies that $A_{1}^{-1} A_{2}= \pm i$. If $A_{1}^{-1} A_{2}=+i$ it follows that S and T are
multiplications by complex numbers. If $A_{1}^{-1} A_{2}=-i$ then the change of coordinates $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1},-x_{2}\right)$ leads to the above case.

We conclude this section by a discussion of the case that $L=\bar{\partial}+a$ acting on a fixed holomorphic line bundle ξ_{0} over the compact Riemann surface M, with varying $a \in \Gamma\left(M, C^{\infty}(\bar{\kappa})\right)$. Let $U_{\alpha}, \alpha \in A$ be a covering with contractible coordinate neighborhoods in M such that a is given by local sections $a_{\alpha} \in \Gamma\left(U_{\alpha}, C^{\infty}\right)$. Let $c_{\alpha} \in \Gamma\left(U_{\alpha}, C^{\infty}\right)$ be solutions of

$$
\begin{equation*}
2 \pi i \cdot \partial c_{\alpha} / \partial \bar{z}+a_{\alpha}=0 \tag{1.6}
\end{equation*}
$$

Then $c_{\beta}-c_{\alpha}$ is holomorphic in $U_{\alpha} \cap U_{\beta}$, so they define an element $\vartheta(a) \in H^{1}(M, \mathcal{O})$, which in fact is the element in $H^{1}(M, \mathcal{O})$ corresponding to $-(2 \pi i)^{-1} \cdot a$ under the canonical isomorphism

$$
\begin{equation*}
\Gamma\left(M, C^{\infty}(\bar{\kappa})\right) / \bar{\partial} \Gamma\left(M, C^{\infty}\right) \rightarrow H^{1}(M, \mathcal{O}) \tag{1.7}
\end{equation*}
$$

given by the fine resolution $0 \rightarrow \mathcal{O} \rightarrow C^{\infty} \xrightarrow{\bar{\Delta}} C^{\infty}(\bar{\kappa}) \rightarrow 0$ of the sheaf \mathcal{O}.
Writing $u_{\alpha}=e^{2 \pi i \cdot c_{\alpha}} \cdot v_{\alpha}, f_{\alpha}=e^{2 \pi i \cdot c_{\alpha}} \cdot g_{\alpha}$ the equation $\partial u_{\alpha} / \partial \bar{z}+$ $a_{\alpha} \cdot u_{\alpha}=f_{\alpha}$ is equivalent to $\partial v_{\alpha} / \partial \bar{z}=g_{\alpha}$. The transition formula for the v_{α} is given by $v_{\alpha}=e^{2 \pi i\left(c_{\beta}-c_{\alpha}\right)} \cdot \xi_{\alpha \beta}^{(0)} \cdot v_{\beta}$, if $u_{\alpha}=\xi_{\alpha \beta}^{(0)} \cdot u_{\beta}$, the

$$
\xi_{\alpha \beta}^{(0)} \in \Gamma\left(U_{\alpha} \cap U_{\beta}, \mathcal{O}\right)
$$

defining ξ_{0}. In other words, $(\bar{\partial}+a) u=f$ for sections u of ξ_{0} is equivalent to $\bar{\partial} v=g$ for sections v of $\xi=\xi(a)=e^{2 \pi i \vartheta(a)} \cdot \xi_{0}$.

In view of the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{1}(M, Z) \rightarrow H^{1}(M, \mathcal{O}) \xrightarrow{e^{2 \pi i}} H^{1}\left(M, \mathcal{O}^{*}\right) \xrightarrow{c} \underset{Z}{\boldsymbol{Z}} H^{2}(M, Z) \rightarrow 0 \tag{1.8}
\end{equation*}
$$

the Chern classes $c(\xi)$ and $c\left(\xi_{0}\right)$ of ξ and ξ_{0} are equal. Conversely every $\xi \in H^{1}\left(M, \mathcal{O}^{*}\right)$ with $c(\xi)=c\left(\xi_{0}\right)$ is equal to $\xi(a)$ for some $a \in \Gamma(M$, $\left.C^{\infty}(\bar{\kappa})\right)$. So the solvability properties of the operator $\bar{\partial}+a$ are completely determined by the element $\xi(a) \cdot \xi_{0}^{-1}$ in $J(M)=H^{1}(M, \mathcal{O}) / H^{1}(M, Z)$. The complex g-dimensional torus $J(M)$ is called the Jacobi variety of the compact Riemann surface M. Here g is the genus of M.
2. The surjectivity of $\bar{\partial}: \Gamma\left(M, C^{\infty}(\xi)\right) \rightarrow \Gamma\left(M, C^{\infty}(\bar{\kappa} \xi)\right)$

Because $0 \rightarrow \mathcal{O}(\xi) \rightarrow C^{\infty}(\xi) \xrightarrow{\bar{\rightharpoonup}} C^{\infty}(\bar{\kappa} \xi) \rightarrow 0$ is a fine resolution of the sheaf $\mathcal{O}(\xi)$, the surjectivity of $\bar{\partial}$ is equivalent to $H^{1}(M, \mathcal{O}(\xi))=0$, which in turn is equivalent to $\Gamma\left(M, \mathcal{O}\left(\kappa \xi^{-1}\right)\right)=0$ by Serre duality. Now for any $\zeta \in H^{1}\left(M, \mathcal{O}^{*}\right), \Gamma(M, \mathcal{O}(\zeta)) \neq 0$ if and only if ζ is trivial or a product of point bundles. Indeed, $\zeta=\zeta_{p}$ if and only if there exists a non-zero holomorphic section of ζ with precisely one zero at p. Because two
holomorphic line bundles ζ, ζ^{\prime} are equal if there exist non-zero meromorphic sections of ζ, resp. ζ^{\prime} with equal zeros and poles, the result follows immediately. Defining W^{n} as in (4), $n=c(\zeta)=$ the number of zeros minus the number of poles of meromorphic sections of ζ, we obtain that $\Gamma(M, \mathcal{O}(\zeta))=0$ if and only if $\zeta \cdot \zeta_{q}^{-n} \notin W^{n}$.

If γ is a curve from q to p then $h \mapsto \int_{\gamma} h, h \in \Gamma(M, \mathcal{O}(\kappa))$, is an element of $\Gamma(M, \mathcal{O}(\kappa))^{*} \cong H^{1}(M, \mathcal{O})$ (Serre duality), which according to Abel's theorem corresponds to $\zeta_{p} \zeta_{q}^{-1} \in J(M)$. Therefore $\Phi: p \mapsto \zeta_{p} \zeta_{q}^{-1}$ is an analytic mapping: $M \rightarrow J(M)$ with image $W^{1} . \Phi$ is injective, hence an analytic embedding of M into $J(M)$ if $g \geqq 1$ (the case $g=0$ is trivial). Because of Chow's lemma the image W^{1} is even an algebraic subvariety (without singularities) of the algebraic variety $J(M)$. So $W^{n}=W^{1}+$ $\cdots+W^{1}$ (n times) is also an algebraic subvariety of $J(M)$. Because of Riemann-Roch, $\operatorname{dim} \Gamma(M, \mathcal{O}(\zeta))>0$ if $c(\zeta) \geqq g$, hence $W^{n}=J(M)$ for $n \geqq g$. Since $\operatorname{dim}_{\boldsymbol{C}} W^{n+1} \leqq \operatorname{dim}_{\boldsymbol{C}} W^{n}+1$ it follows that $\operatorname{dim}_{\boldsymbol{C}} W^{n}=n$ for $1 \leqq n \leqq g$.

The possible singularities of W^{n} for $2 \leqq n \leqq g-1$ are studied quite extensively in algebraic geometry. Define

$$
\begin{equation*}
G_{n}^{r}=\left\{\zeta_{p_{1}} \cdots \zeta_{p_{n}} \cdot \zeta_{q}^{-n} \in W^{n} ; \operatorname{dim} \Gamma\left(M, \mathcal{O}\left(\zeta_{p_{1}} \cdots \zeta_{p_{n}}\right)\right) \geqq r+1\right\} \tag{2.1}
\end{equation*}
$$

Alternative description: the mapping $\left(p_{1}, \cdots, p_{n}\right) \mapsto \zeta_{p_{1}} \cdots \zeta_{p_{n}} \cdot \zeta_{q}^{-n}$: $M^{n} \rightarrow J(M)$ factors through the symmetric product of n copies of M, denoted by $M^{(n)}$, thus leading to a mapping $\Phi^{(n)}: M^{(n)} \rightarrow J(M)$. The variety $M^{(n)}$ has no singularities (cf. Andreotti [1]) and the mapping $\Phi^{(n)}$ is analytic. Then $\operatorname{dim} \Gamma\left(M, \mathcal{O}\left(\zeta_{p_{1}} \cdots \zeta_{p_{n}}\right)\right)=r+1$ if and only if the rank of the differential of $\Phi^{(n)}$ at $\left(p_{1}, \cdots, p_{n}\right)$ is equal to $n-r$ (see Gunning [6], Lemma 17).

Now Weil [14] showed that G_{n}^{1} is equal to the set of singularities of W^{n} for all $n \leqq g-1$. In general G_{n}^{r+1} is contained in the set of singularities of G_{n}^{r} (Mayer [12]), but Martens [11] has given examples of singularities of G_{g-1}^{1} not coming from G_{g-1}^{2}. Martens [10] also proved that

$$
\begin{equation*}
d=(r+1)(n-r)-r g \leqq \operatorname{dim} G_{n}^{r} \leqq n-2 r \text { if } 2 \leqq n \leqq g-1 \tag{2.2}
\end{equation*}
$$

Kleiman and Laksov [8] proved that $G_{n}^{r} \neq \emptyset$ if the number d in the left hand side of (2.2) is non-negative. Finally we mention the work of Kempf [7] containing an infinitesimal study of the singularities of the W^{n}.

REFERENCES

A. Andreotti

[1] On a theorem of Torelli, Am. J. Math. 80 (1958), 801-828.

L. Bers

[2] Article in: Contributions to the Theory of Partial Differential Equations, Princeton 1954.
T. Carleman
[3] Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables, C. R. Acad. Sc. 197 (1933) 471-474.
R. Courant and D. Hilbert
[4] Methods of Mathematical Physics, vol. II, Interscience, New York, 1962.
J. J. Duistermaat and L. Hörmander
[5] Fourier Integral Operators II, Acta Math., 128 (1972), 183-269.
R. C. Gunning
[6] Lectures on Riemann Surfaces, Princeton, 1966.
G. Kempf
[7] The singularities of certain varieties in the Jacobian of a curve, preprint.
S. L. Kleiman and D. Laksov
[8] On the existence of special divisors, preprint.
B. Malgrange
[9] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. de l'Inst. Fourier 6 (1955) 271-355.
H. H. Martens
[10] On the varieties of special divisors on a curve, Journal f.d. reine u. angew. Math., 227 (1967), 111-120.
H. H. Martens
[11] II, same journal, 233 (1968), 89-100.
A. L. Mayer
[12] Special divisors and the Jacobian variety, Math. Ann. 153 (1964), 163-167.
I. N. Vekua
[13] Generalized Analytic Functions, Pergamon Press, Oxford-London-New YorkParis, 1962.
A. Weil
[14] Zum Beweis des Torellischen Satzes, Nachr. der Akad. der Wiss. in Göttingen 2 (1957), 33-53.
(Oblatum 14-I-1972)
Mathematical Institute of the University of Nijmegen
Toernooiveld
Nijmegen, Holland

