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0. Introduction

A dynamical system which commutes with a compact abelian group
G induces a system on the G orbit space. We say that the former is a G
extension of the latter. For a fixed group G we consider the totality of all
group extensions of a dynamical system and show that ’most’ of the ex-
tensions enjoy dynamical properties possessed by the original system, if
by dynamical property we mean: ergodicity, weak-mixing, completely
positive entropy, minimality or unique ergodicity. The proofs depend on
propositions which assert that ’most’ cocycles are not coboundaries and
the qualification ’most’ varies with a metric topology appropriate to
the problem being discussed.

This paper is a continuation of the investigations begun in [1 ] con-
cerning the lifting of dynamical properties. In particular we mention
that the technique of perturbations discussed in [1] is broadened here
to allow perturbations by nonconstant maps. (The notion of G-stability
was further developed in [2].) Perturbations from a rather different point
of view were employed previously by Ellis in [3]. Our point of view,
like the results in [1 ], is more akin to Furstenberg’s [4]. We wish to
mention that this paper found its initial impulse from conversations with
H. Furstenberg and R. Ellis concerning an existence proof for minimal
non-ergodic dynamical systems. In addition to Ellis and Furstenberg,
we acknowledge the help and interest of J. Auslander and P. Walters.

Central to this paper is the proposition that under suitable conditions
’most’ cocycles of a dynamical system (with values in the circle group)
are not measurable coboundaries. The existence of measurable cocycles
which are not coboundaries for the special case of a flow on a compact
connected abelian group, is apparently known, and is useful in the con-
struction of simply invariant subspaces for unitary representations of
totally ordered discrete groups, cf. [5], [6]. Our existence proof has the
advantage of generality. Moreover, the cocycles we prove to exist, which
are not coboundaries, are continuous.
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1. Preliminaries

Throughout X will denote a compact metric G-space where G is a
compact abelian group, i.e., G acts continuously on X in the sense that
there is a continuous map G x X ~ X, (g, x) - gx where g(hx) = (gh)x
and ex = x for all x E X. Suppose T is a homeomorphism of X which
commutes with G. Then T induces a homeomorphism T’ on X’ = X/G,
(the G-orbit space). In the same way if T, is a flow (of homeomorphisms)
on X (where the map R X X - X, (t, x) - Ttx is continuous) which
commutes with G then T, induces a flow Tt on X’. We shall refer to T, T,
as G-extensions of T’, Tt’ . In most of our discussion there will be no loss
of generality in assuming that G acts freely in the sense that if gx = x
for some x then g = e. If G acts freely then a general G extension of T’

(or 7§’) given T (or Tt) takes the form T~ : x ~ ~(x)Tx where 0 : X ~ G
and ~(gx) = 0(x) for all g E G, x E X (or T~t : x ~ ~(x, t)Tt where
~ : X x R - G and ~(gx, t) = ~(x,t) for all g ~ G, x ~ X, t ~ R and

~(x, t + s) = ~(Ttx, s)~(x, t)). The maps 0 are called cocycles (with
respect to T or T,). In fact they are G invariant cocycles with values in G,
and they form a group under pointwise multiplication.

It is well-known that for T (or Tt) there always exists a normalised
Borel measure m on X such that mTB = mB, mgB = mB (mTB = mB,
mgB = mB). When speaking of a measure in this paper we shall assume
it is invariant in this sense. m’ will denote the measure induced by m on
X’. m’ is invariant for T’ (or T’t).
For definitions of, and criteria for, minimality, unique ergodicity and

weak-mixing, cf. [4], [1].
A function of type y where y E 6 (the character group of G) means a

function mapping X to K (the circle group of complex numbers of abso-
lute value 1) such that f (gx) = 03B3(g)f(x) for g E G, x ~ X.

(1.1) Minimality. If T’ (7§’) is minimal then T(Tt) is minimal if and only
if fT = f(fTt = f)where f is continuous of type y implies y = 1

(and then f is constant).

(1.2) Unique ergodicity. If T’ (7§’) is uniquely ergodic then T(T,) is
uniquely ergodic if and only if f T = f a.e. [m (fTt = f a.e. [m] for
each t) where f is a Borel function of type y implies y - 1 (and then
f is constant a.e.).

(1.3) Ergodicity. If T’ (7§ ’ ) is ergodic with respect to m’ then T (Tt) is
ergodic with respect to m if and only if f T = f a.e. [m (fTt = f
a.e. [m] for each t) where f is a Borel function of type y implies
y - 1 (and then f is constant a.e.).
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(1.4) Weak-mixing. If T’ (7§’) is weak-mixing with respect to m’ then
T(Tt) is weak-mixing with respect to m if and only if fT = e21tiaf
a.e. [m] (fTt = e203C0iat f a.e. [m] for each t) where a E R is constant
and where f is a Borel function of type y implies y = 1 (and then
f is constant a.e.).

In [7] the latter author showed that weak-mixing G extensions of
transformations with completely positive entropy have completely positive
entropy, when G is a torus. The corresponding statement for G compact
abelian follows from this fact. However, a significantly more general
result for G not necessarily abelian has been proved by K. Thomas [8].
Combining these facts with (1.4) we have:

(1.5) Completely positive entropy. If T’(7§’) has completely positive
entropy with respect to m’ then T(Tt) has completely positive
entropy with respect to m if and only if f T = e21tiaf a.e. [m]
(fTt = e203C0iat f a.e. [m] for each t) where a E R is constant and
where f is a Borel function of type y implies y - 1 (and then f is
constant a.e.).

REMARK. In the above statements, it can be shown that there is no loss
in generality if we consider only functions of type y with range y(G).

If H is a topological abelian group let Co(X, H) denote the group
(under pointwise multiplication) of G invariant continuous cocycles with
values in H, i.e.,

when we are considering a single homeomorphism;

when we are considering a flow Tt .
We shall be interested in the cases H = G or K. It is clear that G

invariant cocycles arise from cocycles defined on X’.
Let C03B3(X, K) = {f : f is continuous of type 03B3} where y E G and C(X, K)

= ~03B3~ C03B3(X, K). Obviously C(X, K) is a group under pointwise multi-
plication and Cy(X, K) =/y ’ Cl (X, K) if fy E C03B3(X, K). (For some
y E G it may happen that C03B3(X, K) is empty.) When we are considering
a single homeomorphism it is clear that C1(X, K) = Co (X, K) where 1

denotes the trivial character.
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The elements of Co (X, K) of the form fTIf (ftlf) (for f E C(X, K))
are called continuous coboundaries with values in K. Clearly the map

is a homomorphism.
Now suppose T, G(T,, G) preserve the normalised Borel measure m.

Let

when we consider a single homeomorphism and

when we consider a flow.

B(X, K) = ~03B3~ By(X, K) is a group under pointwise multiplication
and two elements of B(X, K) shall be identified if they differ only on a set
of measure zero.

The cocycles h defined above are unique if we assume the measure m

(or m’) is positive on non-empty open sets and this we shall always do.
The map p : f- h is then a homomorphism of B(X, K) to C0(X, K).
If JE B (X, K), pf is called a Borel coboundary.
The groups which play a special role in our investigations are Co (X, G),

Co (X, K), C(X, K), Cl (X, K), B(X, K), B1(X, K) and the latter five will
frequently be abbreviated to Co, C, Cl , B, Bl; C0(X, G) will not be
abbreviated. Notice that CI (X, K) ~ C0(X’, K) and B1(X, K) ~
Bo(X’, K) in obvious senses where G acts trivially on X’. Notice also
that Cl , B, contain the group of constant functions K and Co contains
K (for a single homeomorphism) or R (for a flow).
Along with the homomorphisms

we will wish to consider the homomorphisms p’ obtained by composing
p with the natural map ’ of C0(X, K) to C0(X, K)/K, or C0(X, K)jR.
Elements in the K cosets p’C (p’B) will be called weak continuous

(Borel) coboundaries. (Elements in the Â cosets of p’C(p’B) will be called
weak continuous (Borel) coboundaries.)
For each non-trivial character y E 6 we shall need to consider the

homomorphism y of Co(X, G) to Co(X, K) defined by  : ~ ~ y 03BF~ when
~ E C0(X, G). As before ’ will denote the composition of y with the
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natural map ’ from C0(X, K) to C0(X, K)/K or from C0(X, K) to
C0(X, K)jR. When we consider a single homeomorphism C0(X, G),
C0(X, K) shall be endowed with the uniform topologies induced by
metrics on G, K. When we consider a flow C0(X, G), Co (X, K) shall be
endowed with the compact-open topology for maps from X x R to G
or K. In either case C(X, K), C1(X, K) are given the uniform topology
induced by a metric on K. These topologies are all complete separable
metric. If d denotes such a metric on C0(X, K) we give a metric D for
B(X, K) (B, (X, K)) as follows:

It is an easy matter to check that D is a metric and B(X, K) is complete
in this metric. B(X, K) is, moreover, separable as can be seen by consider-
ing the set {(f, 03C1f):f ~ B} contained in L1(X) x C(X).

(1.6) In other words, the above topologies for Co(X, G), Co, C, Cl , B, B,
are complete separable metric.

(1.7) The homomorphisms p, p’ are clearly continuous since the topology
of the range space has been incorporated into the topology of the
domain space where necessary.

(1.8) If G is compact metric connected and abelian then for each

non-trivial y E G, : Co (X, G) ~ Co (X, K) and f : Co (X, G) -
Co(X, K)/K or Co(X, K)IÊ are continuous and open.

If G acts trivially on a space such as X’ then Co(X’, K) consists of all
continuous cocycles with values in K without reference to G, B1(X’, K)
consists of all Borel maps f from X’ to K such that pf E Co (X’, K) and
Cl (X’, K) consists of all continuous maps from X’ to K such that
03C1f ~ Co (X’, K). In other words, when G acts trivially Co, Bl, Cl can be
defined without reference to G, but reference to the homeomorphism
T’ or flow T,’, is, of course, still required.
We shall need the following theorems the proofs of which will be

deferred until later:

THEOREM 1. If T’ is a homeomorphism (Tt’ is a flow) on the compact
metric space X’, with at least one dense aperiodic orbit, then the set pC,
of continuous coboundaries is a set of first category in the group Co of
continuous cocycles.

THEOREM 2. If T’ is a homeomorphism (Tt’ is aflow) on the compact metric
space X’, preserving the normalised Borel measure m’ which is positive
on non-empty open sets and if T’ (Tt’) is ergodic, then the set pB, of Borel
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coboundaries is a set of first category in the group Co of continuous
cocycles.

The proof of Theorem 1 is particularly simple. The proof of Theorem
2 is harder than that of Theorem 1. However, both proofs are easier
than, and modifications of, the proof of the next theorem. They will
therefore be omitted.

THEOREM 3. If T’ is a non-trivial homeomorphism (Tt’ is a non-trivial
flow) on the compact metric space X’ preserving the normalised Borel
measure m’ which is positive on non-empty open sets and if T’(T,’) is weak-
mixing then the set {03C1f · k : :fEBI, k ~ K} (pf. 11 :fEBI’ ~ ~ ) of weak
Borel coboundaries is a set of first category in the group Co of continuous
cocycles.

The proof of this theorem will be presented later.

2. Main Theorems

With the aid of Theorems 1, 2, 3 we are now in a position to prove
results concerning the lifting of various dynamical properties. For a
stronger version of the following theorem cf. [3].

THEOREM 4. If T is a homeomorphism of the compact metric space
X (Tt is a flow on X) and if G is a compact connected abelian group acting
freely on X and commuting with T (Tt) then ’most’ extensions 0(x)Tx
(~(x, t)Ttx) of T’ (Tt’) areminimal if T’ (Tt’) is minimal, i.e., {~ E Co(X, G) :
0(x)Tx (O(x, t)Tt x) is not minimal} is of fzrst category in Co (X, G).

PROOF. If T’ is minimal then there is an aperiodic orbit unless X’ is
finite. If Tt’ is minimal then there is an aperiodic orbit unless X’ is a circle.
The latter cases are especially easy to deal with and will not be considered
here. We may therefore suppose that the hypothesis of Theorem 1 is

satisfied and p Cl is of first category in Co.
By (1.1), 0(x)Tx (O(x, t)Tt x) is not minimal, 0 E C(X, G), if and only

if there exists 1 ~ y E 6 and f continuous of type y such that f (~(x)Tx) =
f(x) (f(~(x, t)Tt x) = f(x)) and therefore ~ E p C(X, K). Since pC(X, K)
= ~03B3~ pfv - 03C1C1(X, K) for a choice of fy E C03B3(X, K) we have pC(X, K)
is of first category and 0 E U 1~03B3~-103C1C(X, K). The latter is a first
category set, however, since y is open when y :0 1. Hence the set of

~ E C(X, G) such that 0(x) Tx(~(x, t)Ttx) is minimal contains a dense
G" .

THEOREM 5. If T is a homeomorphism of the compact metric space X
(Tt is a flow on X) and if G is a compact connected abelian group acting
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freely on X and commuting with T (Tt) then ’most’ extensions ~(x)Tx
(~(x, t)Tt x) of T’ (Tt’) are uniquely ergodic or ergodic if T’ (T,’) is

uniquely ergodic or ergodic.

PROOF. By (1.2) and (1.3) ~(x)Tx, (~(x, t)Tt) is not uniquely ergodic,
(assuming T’ (Tt’) is uniquely ergodic) if and only if there is a Borel
function f of type y fl 1 such that f(~(x)Tx) = f(x) a.e. (f(~(x, t)Ttx) =
f(x) a.e. for each t), i.e., ~ E pB. The rest of the proof as for ergodicity,
imitates the proof of Theorem 4, except that Theorem 2 needs to be
invoked.

THEOREM 6. If T is a homeomorphism of the compact metric space X
(Tt is a flow on X) and if G is a compact connected abelian group acting
freely on X and commuting with T (Tt) then ’most’ extensions ~(x)Tx
(~(x, t)Tt x) of T’ (Tt’) are weak-mixing or have completely positive
entropy if T’ (T,’) is weak-mixing or has completely positive entropy and
is non-trivial.

PROOF. In view of (1.5) we need only show that ’most’ extensions of T
(7§’) are weak-mixing under the assumption that T’ (Tt’) is weak-mixing.
By (1.4), ~(x)Tx (~(x, t)Ttx) is not weak-mixing if and only if there is a
Borel function.f of type y Q 1 and k e K (~ E R, ~(t) = e203C0iat) such that

f(~(x)Tx) = k · f(x) a.e. (f(~(x, t)Ttx) = e21tiatf(x) a.e. for each t)
in which case k~~03C1B (~ · ~ ~ 03C1 B). Hence 0(x)Tx (4)(x, t)Tx) not
weak-mixing implies ~ ~ 03C1’B for some y Q 1. By Theorem 3 p’B =

~03B3~03C1’f03B3 · 03C1’B1 has first category in C0(X, K)IK (C0(X, K)/) where
fy E B03B3 is a selection. Hence 0 E ~1~03B3~ -103C1’B which is of first category.

REMARK. A topological analogue of the weak-mixing part of the above
theorem has been proved by R. Peleg [9]. Since topological weak-mixing
is substantially different from measure theoretic weak-mixing, there

seems to be no overlap between Peleg’s and our theorem.

3. Proof of Theorem 3

SINGLE HOMEOMORPHISM CASE.

Assuming T’ is a non-trivial weakly mixing homeomorphism of the
compact metric space X’ with T’invariant normalised Borel measure m’

(positive on non-empty open sets) we show that most continuous cocycles
are not weak Borel coboundaries, i.e., 03C1’B1 is of first category in

C0(X, K)/K where B, = {f:f is a Borel map from X to K and fT’/f = a.e.
a continuous function and Co (X, K) = {f:f is a continuous map from
X to K}. By non-trivial, in this context we mean any one of the equivalent
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conditions, X’ is not a single point, m’ is non-atomic. In any case T’ is
aperiodic.
B, is a separable, complete, metric group and p’ is a continuous

homomorphism. By the open mapping theorem for such groups (cf.
[10]) if 03C1’B1 is of second category in Co (X, K)/K then p’ maps B, openly
into 03C1’B1. By hypothesis

Hence to show that 03C1’B1 is of first category it will sufhce to show that
the inverse to p’ : Bi/K - 03C1(B1)· K/K is not continuous. To do this we
will construct functions f. E B1 such that fnT’/fn ~ 1 yet fn K  K.

In fact let fn(x) = exp 2nirn(x), where rn maps X’ continuously to R.
rn will be constructed so that |rn(T’ x) - rn(x)|  1/n ensuring that
fnT’jfn -+ 1 and Rn(03BB) = m’ {x E X’ : rn(x) ~ 03BB} ~ 03BB. From this we will

have

so that for no sequence k" ~ K can S Iknfn - 11 | ~ 0.
Since T’ is weak-mixing and non-trivial and hence aperiodic, there exists

for every positive integer n (cf. [11 ]) a measurable set A such that
T’iA n T’’A =0 for i ~ j, |i|, |j| ~ n and m’(~ni = -n TIÎA) &#x3E; 1-1/n.
Let F be a compact set such that F c A and m’(~ni = -n TIÎF) &#x3E; 1-1/n.
Now let U be an open set U ~ F such that T’i U ~ T’’ U = ~ for i ~ j,
H. IJ 1 ~ n. Obviously m’(Un- -" T’i U) &#x3E; 1-1/n.

Let hn(x) be continuous where 0 ~ hn(x) ~ 1 and hn(x) = 1 on F,

hn(x) = 0 on Uc. Let rn(x) = 03A3ni=-n hn(T’i x)(1- |i|)/n). By comparing
the distribution Rn(03BB) of rn(x) with the distribution function of

03A3ni=-n ~F(T’ix)(1-(|i|)/n), which converges to the uniform distribution
on [0, 1] it is not difhcult to see that Rn(03BB) ~ 03BB. Hence for fn(x) =
exp 2 03C0irn(x) we havefn(T’ x)jfn(x) -+ 1 and fnK ~ K.

FLOW CASE.

The proof is similar to the single homeomorphism case but a little
more involved. The assumption that Tt’ is weak-mixing and non-trivial
means that X’ is not a single point or m’ is non-atomic. Hence Tt’ is
aperiodic. Consequently (cf. [11 ]) for every 1 &#x3E; 0 the flow Tt’ can be
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represented as a flow built under a function with range lying in the
interval [r, 203C4]. Hence for every positive integer i = n there is a measur-
able set M such that Tt’M n TM = 4J for 0 ~ s, t ~ n, s ~ t where
{T’t x: x E M, 0 ~ t ~ n} is measurable and has measure greater than 1 2.
By approximating M by a compact set F’ we get 7§’F’ n T;F’ = 4J for
0 ~ s, t --g 03B8(n), s ~ t where {Tt’ x: x E F’, 0 ~ t ~ 03B8(n)} is compact and
has measure equal to 2 and n/2 ~ 03B8(n) ~ n. Put F = {T’tx: x E F’,
03B5 ~ t ~ 1 - s) so that F is compact and Tp F n T’qF = 4J for p =fi q,
p, q = 0, 1, ···, ~(n)-1 where 0(n) is the largest even integer not
exceeding 0(n). Choose an open set U ~ F such that Tp U n T’q U = ~
for p ~ q, p, q = 0, 1, ···, ~(n) - 1 and m’(U-F)  03B5/(~(n)). Let

hn(x) be a continuous function on X’ such that 0 ~ hn(x) ~ 1, hn(x) = 1
on F and h"(x) = 0 on Uc. Let rn(x) = 10(") hn(T’-ix)(1-(|i-m|)/m),
~(n) = 2m.
As before we have |rn(T’1x)-rn(x)| ~ 1/m = 2/(~(n)). Now define

sn(x) = 10 rn(T,x)ds so that

Hence |sn(T’t x) - sn(x)| ~ 0 in the compact open topology, and

fn(T’t x)/fn(x) ~ 1 in the compact open topology on C0(X, K), where
fn(x) = exp 203C0isn(x).

If x ~ T’pF, p ~ ~(n)-1, then {t~[0, 1]:T’t x ~ T’pF ~ T’p+1F} has
length greater than 1 - 28 and

for such t, i.e.,

If x ft ~~(n)p=-1 TPU then r"(x) = 0 and rn(Tt’x) = 0 for te [0, 1 ], i.e.,
sn(x) = 0.Hence|sn(x)-rn(x)| ~ 1/m+4sunlessxeA" = ~~(n)p=-1 T’p U-
~~(n)-1p=0 T’pF. The latter set has measure 2m’(U)+~(n)m(U-F) which
is less than 2m’(U)+03B5.

Now let 03B5 = 1/(~(n)) so that |sn(x)-rn(x)| ~ 2/(~(n))+4/(~(n)) =
6/(~(n)) for x ft An and m’An ~ 2m’(U)+1/(O(n)) ~ 2m’(F)+2/(~(n))
~ 1/(~(n))+2/(~(n)) = 3/(~(n)) since 4J(n)m’(F)  t. From this we see
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that the limiting distribution function of sne x) is the same as the limiting
distribution function of r n(x), which in turn is the same as the limiting
distribution function of 03A3~(n)i=0 ~F(T’-i x)(1- (11-ml)lm).
The latter is a function which is approximately uniformly distributed

on a set of measure 2. In any case it is not difhcult to see that the limiting
distribution function of sn(x) is S(À) = 1 2 + 03BB/2. Hence, if fn(x) =
exp 203C0isn(x) then Jfn(x) dm’ = 0 exp 203C0i03BB dSn(03BB) ~ 0 exp 2niÂ dS(À) =
2, where Sn(03BB) = m’{x: sn(x)  03BB}. Consequently for no sequence kn E K
can we have Jlknfn -11 ~ 0. In other words, fnTt/fn ~ 1 yet fnK * K, p’
is not open and therefore 03C1’B1 is of first category in Co.

4. One parameter flows on compact connected abelian groups

As we have pointed out before the proof of Theorem 2 proceeds in a
similar fashion to that of Theorem 3, with simplifications. We have
already referred to a special case of Theorem 2 which seems to be of
importance in the theory of representations of totally ordered discrete
groups. Perhaps we should point out that ergodicity in Theorem 2 may be
relaxed for the special cases which arise in this theory. Without giving
the proof, which relies substantially on the methods already presented,
we mention:

THEOREM 6. If X’ is a compact connected metric abelian group and if
et E X’ is a one-parameter subgroup such that et = e only if t = 0, then
the flow Tt’ x = et x has the property that ’most’ continuous cocycles with
values in K are not Borel coboundaries, nor even weak Borel coboundaries.

5. Group extensions of measure preserving transformations

In this section we shall consider single measure preserving transforma-
tions of a normalised measure space and dismiss further examination of

flows. On the other hand we shall be interested in group extensions by
compact metric abelian groups which are not necessarily connected.
Had we not insisted on the connectedness of the group in the previous
section we should have encountered difhculties arising from the limited
number of continuous extensions. This difficulty does not arise, however,
if we consider measurable extensions.

Let T be a measure preserving transformation of the normalised separ-
able measure space (X, B, m). In this context, the most convenient way
of saying that T is a G-extension of T’, where G is a compact abelian
metric group acting freely, is to postulate that X = X’ x G where X’ is the
measure space on which T’ acts and T(x’, g) = (T’x’, 0(x’)g) for some
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measurable map 0 : X’ ~ G. (m = m’ x dg where m’ is the normalised

measure on X’ and dg is Haar measure.)
We shall need the following versions of (1.3), (1.4), (1.5):

(5.1) If T’ is ergodic then T is ergodic if and only if the equation
f(T’x’) = 03B3~(x’)f(x’) a.e. (03B3 ~ 1) has no measurable solution f
with range in y(G).

(5.2) If T’ is weak-mixing then T is weak-mixing if and only if the

equation f(T’x) = k03B3~(x’)f(x’) a.e. (03B3 ~ 1) has no solution

(f, k) with f measurable and range contained in y(G), k e y(G).

(5.3) If T’ has completely positive entropy then T has completely positive
entropy if and only if the equation f(T’x) = k03B3(~(x’))f(x’) a.e.
(y Q 1) has no solution (f, k) with f measurable and range con-
tained in y(G), k e y(G).

A cocycle with values in the compact abelian group H is simply a
measurable map of X’ into H. If h is a cocycle with values in y(G), then
h is called a coboundary (with respect to T’) if there exists a measurable
map f from X’ to y(G) such that f(T’x’) = h(x’)f(x’) a.e., and a weak
coboundary if there exists a measurable map f from X’ to y(G) and a
constant k E y(G) such that f(T’x) = kh(x’)f(x’).

Let B(X’, 03B3(G)) [B(X’, G)] denote the group, under pointwise multipli-
cation, of cocycles with values in y(G) [G] where two cocycles are identi-
fied if they are equal a.e. Define for f, f’ e B(X’, y(G)) [B(X’, G)]

(D(f, f’) = 1 d(f(x’), f(x’)) dm where d is a metric on G.) With this
metric topology, B(X’, 03B3(G)) [B(X’, G)] is a complete separable metric
group and the maps,

and

are continuous. Moreover  and ’ are open.

THEOREM 7. Let T’ be an ergodic (weak-mixing) measure preserving
transformation of the non-atomic separable probability space (X’, B’, m’).
Then ’most’ cocycles with values in y(G) (03B3 ~ 1) are not coboundaries
(weak-coboundaries).



146

PROOF. This is similar to the proof of Theorem 3. Let us sketch the
proof for the ergodic case only as the proof for the weak-mixing case
involves only the kind of difficulties which were surmounted in Theorem
3. We have to show that pB(X’, 03B3(G)) is of first category in B(X’, y(G)).
The kernel of p consists of cocycles f such that fT’/f = 1. Since T’ is
ergodic the kernel of p consists of the constant maps from X’ to y(G).
Using the open mapping theorem again, we need only prove that the
inverse to the map

is not continuous.

Since (X’, B’, m’) is non-atomic and T’ is ergodic, T’ is aperiodic.
Therefore for each positive integer n there exists a measurable set M
such that M, T’-1 M, ···, T’ -"M are mutually disjoint and

Put Mn = M v T’-1 M ~ ··· ~ T’-03B8(n) M and let rn(x’) = aXMn(x’),
where 1 ~ exp 2nia is an element of y(G) independent of n and 0(n) 1 oo
is to be determined later. If fn(x’) = exp 2nirn(x’) then

i.e., fnT’/fn - 1 in the topology of B(X’, y(G)). However, fn03B3(G) ~ y(G)
in the topology of B(X’, y(G))/y(G) if 03B8(n)/n ~ t, for otherwise we should
have fn · kn ~ 1 for some sequence kn e y(G). But knfn dm = f kn exp
2niaxMn dm = kn[exp 203C0iam’(Mn) + (1-m’(Mn)] ~ 1 since m’(Mn) -+ t.

COROLLARY. Let T’ be an ergodic measure preserving transformation
of the non-atomic separable probability space (X’, B’, m’). Then ’most’
measurable sets A e B’ are not of the form B 0 T’-1B.

PROOF. In this statement we consider B’ as a complete separable
metric group with the metric d(B1, B2 ) = m’ (B10394 B2 ) and addition 0
and note that B(X’, Z2) is isomorphic to B’ as topological groups, where
Z2 = {1, -1}, via the isomorphism

Under this isomorphism the homomorphism p : f ~ fT’/f becomes
B ~ B 0394 T-1 B.
The following theorem follows from Theorem 7 in much the same way

that Theorems 5, 6 follow from Theorems 2, 3. Of course (5.1), (5.2) and
(5.3) are needed in place of (1.3), (1.4) and (1.5).
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THEOREM 8. Let T’ be an ergodic [weak-mixing] [completely positive
entropy] measure preserving transformation of the non-atomic separable
probability space (X’, B’, m’). Then for a dense Ga of 4J E B(X’, G),
where G is a compact metric abelian group, the transformation T(x’, g) =
(T’x’,4J(x’)g) is an ergodic [weak-mixing] [completely positive entropy] 
transformation of X’ x G.
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