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1. Introduction

The purpose of this note is to prove that every connected pseudocon-
cave complex Lie group is a complex torus. We outline the proof here,
leaving the details for later sections.

Let G be a connected pseudoconcave complex Lie group of dimension
n. The adjoint representation, Ad, maps G holomorphically into C"2. If
f is a function holomorphic on C"2 then f o Ad is a holomorphic function
on G. Every pseudoconcave complex manifold has only constant holo-
morphic functions. Thus, since the holomorphic functions on C"2 separa-
te points, Ad maps G onto the identity matrix. This implies that G is
abelian. Hence there is a discrete subgroup of C", r such that G is
biholomorphically isomorphic to C"/r. Since G has only constant

holomorphic functions, r has rank n over C. Thus we may assume that
r is generated as a Z-module by the R-linearly independent vectors
v1···, vm, e1,···, en , where ei is the i-th unit vector in C" and m ~ n.

If we take vectors v’ near enough to Vi then the vectors v’1, ···, v’m,
e1, ···, en will still be R-linearly independent. Let r’ be the group gener-
ated by these vectors and G’ = C"/r’. Lemma 7, which uses some ideas of
Morimoto [2], states that if m  n then we can find vectors v’i arbitrarily
close to vi so that there is a non-constant function which is holomorphic
on G’. But Lemma 8 states that if the vectors v’ are near enough to vi
then G’ is pseudoconcave. The only alternative is that m = n and there-
fore G is a complex torus.

2. Preliminary définitions and lemmata

For our purposes complex manifolds are assumed to be connected.
Let X be an n-dimensional complex manifold and Y an open subset of X.
Y is said to have smooth boundary if for every p E ô Y there is an open
neighborhood U = U (p) and a real-valued C~-function ~ with nowhere
vanishing gradient defined on U such that {u E U : ~(u)  0 = Y n U.
The analytic tangent plane to ô Y at p is the unique (n -1 )-dimensional
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complex vector space contained in the real tangent space at p. The Levi
form of 9 at p, Lp(~), is the hermitian form determined by the matrix
(~2~(p))/(~z03B1~03B2). The signature of Lp(~) restricted to the analytic tangent
plane at p is a biholomorphic invariant and is independent of the de-
fining function ~. We say ôY is pseudoconcave at p if Lp(~) has at least
one negative eigenvalue when restricted to the analytic tangent plane at p.

Let D = {z ~ C : |z| ~ 1}. A closed disc in X with center x is the
image of D under a biholomorphic mapping into X with x corresponding
to the origin. If ô Y is pseudoconcave at p then there is a closed disc
~ c Y with center p such that A n ô Y = {p}.

DEFINITION. Let X be a complex manifold of complex dimension ~ 2.
We say X is pseudoconcave if there is an open, non-empty, relatively
compact subset Y C X such that ô Y is smooth and everywhere pseudo-
concave.

LEMMA 1. Every function f holomorphic on a pseudoconcave manifold
X is constant.

PROOF. Let Y display the pseudoconcavity of X. Then if | takes its
maximum on Y at p E ôY. There is a closed disc A c Y with center at p
such that L1 n ô Y = {p}. f(4 is holomorphic on L1 and assumes its

maximum modulus at the center of d . Thus f|~ is constant. Therefore
|f| takes its maximum on Y at points of Y. Thus the restriction of f to
the connected component of Y containing 4 - ( p) is constant. Thus f
is constant.

Let G be an n-dimensional complex Lie group. For every x ~ G define
the holomorphic automorphism Ax on G by Ax(g) = xgx-l. The Lie
algebra of G, L(G), is defined to be the tangent space of G at the identity.
Thus, for every x ~ G, dAx : L(G) ~ L(G) is an automorphism of L(G).
We have, therefore, the holomorphic mapping Ad : G ~ Aut(L(G))
defined by Ad(x) = dAx. Since Aut(L(G)) c Cn2, Ad : G ~ Cn2.

LEMMA 2. Let G be an n-dimensional pseudoconcave complex Lie group.
There is a discrete subgroup of Cn of rank n over C, F, such that G is
biholomorphically isomorphic to CNIF.

PROOF. Every function f holomorphic on Cn2 gives us a function
f o Ad holomorphic on G. f o Ad is constant by Lemma 1. The holomorphic
functions on Cn2 separate points. Thus Ad[G] = {I}, where I is the
n x n identity matrix. Therefore G is abelian.
By standard results in Lie theory [1], G is bihomorphically isomorphic

to Cn/0393, where F is a discrete subgroup of Cn of rank l over C. After
making a C-linear change of coordinates in Cn we may assume that r
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is generated as a Z-module by the R-linearly independent vectors

v1, ···, vm, el’ ..., el, where ei is the i-th unit vector in en. Thus

G ~ Cl/0393 x Cn-l. By Lemma 1, 1 = n and thus F has rank n over C.

If r has rank n over C and is generated over Z by the R-linearly
independent vectors VI ..., v., e1, ··· en where ei is the i-th unit vector
in Cn, then we follow the notation of [2] by writing V = (Vj, vm),
r = r(V), and M*(n, m; C) as the set of such matrices V.
A proof of the following classical lemma can be found in [2].

LEMMA 3. Suppose V, V’ E M * (n, m; C). Then Cn/0393(V) and Cn/0393(V’)
are biholomorphically isomorphic if and only if there is a matrix B D E
GL(n + m, Z), with A an n x n matrix, such that (A + V’B)V = (C+ V’D).
Further, if only V’ (resp. V) is known to be in M*(n, m; C) and such a
matrix exists then v(resp. V’) E M*(n, m; C).

3. The main result

v E M * (n, m; C) is said to satisfy the Morimoto condition if there
exist non-zero vectors a E Zn and c E Z’ such that a V = c. The following
lemma is due to Morimoto [2], but the proof given here is somewhat
simpler.

LEMMA 4. Let G = Cn/0393(V), where V E M*(n, m; C) satisfies the

Morimoto condition. Then there exists V’ E M * (n, m; C) such that

V’ = p and G is biholomorphically isomorphic to cn/r(V’).
PROOF. Assume that we have constructed a matrix

such that BY - D is invertible and the last row of C - AV is identically
zero. Defining V’ = (C-AV)(BV - D)-1, we have (A + V’B) V =
C + V’D. Thus ,by Lemma 3, V’ ~ M (n, m; C) and Cn/0393(V’) ~ Cn/0393(V).
Since the last row of C - AV is identically zero, V’ = v,,). It remains
to construct such a matrix.

V satisfies the Morimoto condition. Thus there are nonzero vectors

a = (a1, ···, an) E Zn and c = (an+1, ··· an+m) E Zm such that aV = c.
We may assume by renumbering the vectors vi that a1 ~ 0 and that

gcd(al,-**,an+m) = 1. Set gcd(al,---,ak) = pk for k = 2,..., n+m
and pl - al. We can find relatively prime integers ak and Yk such

that pk-103B1k+ak03B3k = pk, k = z, ···, n + m. For j = 1,..., i-l and

i = 2, ···, n, the numbers 03B2ij ~ -aj03B3i/pi-1 are integers, since pi-1
divides al , a2, ···, ai-le Define Dk - det Mk, where
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Let ri = -03B3i/pi-1. Subtract the first row of Mk multiplied by ri from its
i-th row, i = 2, ···, k. The resulting matrix is triangular with determi-
nant

k = 2,..., m+n. Let M = B C), with A an n x n-matrix, be

Mn+m with first and n - th rows interchanged. Since pn+m = 1.

M ~ GL(n + m, Z).
Now

where ei is the i-th unit vector in Cm.
Thus

Using the same argument as in the case of Mk, we see that BV- D is
invertible. Since aV = c, the last row of C - A V is identically zero.

COROLLARY 5 If V E M * (n, m; C) and satisfies the Morimoto condition
then there is a non-constant function holomorphic on G = Cn/0393(V).

PROOF. By Lemma 4 there exists V’ = (V"0) such that G is biholo-
morphically isomorphic to Cn/0393(V’). But Cn/0393(V’) ~ Cn-1/0393(V") x C*.
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Since there are non-constant functions holomorphic on C*, there are
non-constant functions holomorphic on G.

COROLLARY 6. Let G be a pseudoconcave, complex Lie group. Then G
is biholomorphically isomorphic to Cn/0393(V) where V E M * (n, m; C) does
not satisfy the Morimoto condition.

PROOF. By Lemma 2 there exists V ~ M*(n, m; C) such that G is

biholomorphically isomorphic to Cn/0393(V). Suppose V satisfies the

Morimoto condition. Then, by Corollary 5, there is a non-constant

function holomorphic on G. But, by Lemma 1, every function holomor-
phic on a pseudoconcave manifold is constant. Thus V does not satisfy
the Morimoto condition.

For n x m-matrices Y and V’ we define d(V, V’) as the euclidean
distance between V and V’ induced from Cm". We topologize M * (n, m; C )
via the metric d. V is said to have rational coordinates if V = (03BD03B103B2) =
(x03B103B2 + iy03B103B2) with xrzp, y03B103B2 E Q. Define M*Q(n, m; C) as the set of matrices
in M*(n, m; C) with rational coordinates. M*Q(n, m; C) is dense in

M*(n, m; C).
LEMMA 7. Suppose m  n. Then the matrices in M*Q(n, m; C) satisfy

the Morimoto condition. These are therefore dense in M*(n, m; C).
PROOF. Suppose V ~ M*Q(n, m; C). Then V = X+ iY, where X = (x03B103B2),

Y = (y03B103B2) and x03B103B2, y03B103B2 E Q. Since m  n there exists a non-zero row

vector a E Qn such that aY = 0. Define c ~ aX ~ Qm. Thus aV = c.
By clearing denominators we may take a E Zn and c ~ Zm. Thus every
matrix Fe M*Q(n, m; C) satisfies the Morimoto condition.
The remaining step for the proof of the main theorem is to show that

pseudoconcavity is invariant under small changes of the group.

LEMMA 8. Suppose V° E M*(n, m; C) and GO = Cn/0393(V0) is a pseudo-
concave Lie group. There exists 8 &#x3E; 0 such that if V ~ M*(n, m; C) and
d(V, V’)  e then G = Cn/0393(V) is a pseudoconcave Lie group.

PROOF. For every V ~ M*(n, m; C) choose vm+1, ···, vn such that
{v1, ···, vm , vm+1, ···, vn, e1, ···, enl is a basis for R 2n. Define the real
linear maps Sv : R2n -+ R2" by vt - v0i and ei - ei for i = l, ’ ’ ’, n.
Thus Sv : Cn ~ Cn is a diffeomorphism such that Sv(V, En) = (VO, En).
Hence SV induces a diffeomorphism Tv : G ~ Go such that



114

is commutative, where 03C0V(resp. 03C0Vo) is the quotient map which divides
Cn by the group 0393(V) (resp. 0393(V0)).

If d(V, V0)  s and s is sufficiently small, then we may assume that
vm+1 = v0m+1, ···, vn = VnO. If ~~ is any norm on en, then there

exists a constant c &#x3E; 0 such that

for any z E C". This means that ~S-I~ ~ ce where 1 is the identity map
of C" onto itself.

Let 03A9 display the pseudoconcavity of G°. It is enough to show that
there exists 8 &#x3E; 0 such that T-1V[03A9] is a pseudoconcave, open subset of G
when d(V0, V)  03B5. Since oT00FF 1 [Q] is compact, it is enough to prove that
~T-1V[03A9] is pseudoconcave at each p ~ ~T-1V [03A9] when d(V0, V)  s(p).
Now 03C0V and xvo are locally biholomorphic. Hence we only need to prove
that ~(S-1V o 03C0-1V[03A9]) is pseudoconcave at some point q ~ 03C0-1v(p). We
may assume that q = 0, because translation acts biholomorphically on
G (resp. G0). Thus we have reduced the proof of this lemma to the
following:

LEMMA 9. Let Sv : en -+ Cn be the real linear transformation defined
above. Let U be a neighborhood of 0 and ~ a real valued C~-function
defined on U with nowhere vanishing gradient and ~(0) = 0. Assume that
0 is a pseudoconcave boundary point of U- = {u E U : ~(u)  01. Then
there exists 8 &#x3E; 0 such that d(V0, V)  8 implies that 0 is a pseudo-
concave boundary point of s00FF [U-].

PROOF. Set ( = Sz. By a suitable choice of the basis for coordinates
in Cn, we may assume that

Since the origin is a pseudoconcave boundary point of U-, we may as
well assume that Pl1  0.

Let ( = Sz be given by the equations

Because of the assumption dey, VO)  B, we must have aij - 03B4ij = 0(e)
and bij = 0(8), where bij = 0 if i ~ j and ôii = 1, as we have observed
before.

Substituting the’ by the above expressions, we obtain for the function
9 o ,S’Y that the analytic tangent plane to ~ o SV(z) = 0 at the origin is
given by the equations 
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Let L be the complex line defined by the equations of the analytic
tangent plane and {Z2 = ··· = zn-1 = 0}. On L we have (anl + bn 1 )zl +
(ann + bnn)zn = 0. Thus Zn = 0(03B5)z1 on L. Moreover the Levi form of
9 o ,S’Y at the origin restricted to L reduces to

Recall that 03B211  0. Hence if 8 is sufficiently small, the Levi form of
(p o Sy at the origin restricted to L has one negative eigenvalue.

THEOREM. Every pseudoconcave, complex Lie group Go is a complex
torus.

PROOF. We have already shown that there exists VO E M*(m,,n; C)
such that GO is biholomorphically isomorphic to Cn/0393(V0). By Lemma
8, there exists 8 &#x3E; 0 such that if d(V°, V)  8 then G = Cn/0393(V) is

pseudoconcave. If m &#x3E; n then, by Lemma 7, there exists V ~ M*(n, m; C)
satisfying d(V0, Y)  8 and the Morimoto condition. But, by Corollary
6, this is absurd. Thus m = n and G° is a complex torus.
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