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The theory of uniform distribution of sequences in compact Hausdorff
spaces was developed by Hlawka [8 ], [9]. The notion of uniform distrib-
utivity of such sequences is defined relative to a given nonnegative
regular normed Borel measure y on the space. In many papers on the
subject matter, the compact Hausdorff space was supposed to satisfy the
second axiom of countability. Naturally, this offers advantages, especially
when proving metric results ([2], [8], [11]). Furthermore, the existence
problem for uniformly distributed sequences in those spaces can be
easily settled. In fact, if X is a compact Hausdorff space with countable
base, then, in a natural sense, almost all sequences in X are uniformly
distributed with respect to the measure 03BC([8]). Nevertheless, a satis-

factory theory of uniform distribution can also be developed to a certain
extent for arbitrary compact Hausdorff spaces ([2]). But, strangely
enough, nobody seems to have touched the existence problem in this
general setting. The strongest constructive result still appears to be the
one by Hedrlin [4] ] who showed that uniformly distributed sequences
exist in every compact metric space, by using an explicit construction.

In this paper, we propose to study an arbitrary compact Hausdorff
space X together with a (not necessarily regular) nonnegative normed
Borel measure y on X. We characterize all measures y for which there

exist uniformly distributed sequences. By using the general theory of
weak convergence of measures as developed by Varadarajan [14] ] and
Topsoe [13], the methods of the present paper yield similar results for
completely regular spaces withr-smooth probability measures.

1 have not succeeded to prove a corresponding result for well distributed
sequences, but at least a metric result can be given in this case (see
Theorem 3). We show that, in a natural sense, almost no sequence is well
distributed in X with respect to a regular y. This metric theorem was given
by Helmberg and Paalman-de Miranda [6 for compact Hausdorff spaces
with countable base. For such spaces, the existence of well distributed

sequences was shown by Baayen and Hedrlin [1 ]. No general existence
theorem for well distributed sequences is yet known.
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Let X be a compact Hausdorff space. Let M+(X) be the set of all
nonnegative normed Borel measures on X, let R(X) be the set of all
signed regular Borel measures on X, and let R+(X) = M+(X) n -4(X).
We first extend some well-known definitions to our general case.

DEFINITION 1. Let y e M+(X). A subset M of X is called a 9-continuity
set if its boundary is a p-null set.

DEFINITION 2. Let y E M+(X), and let co = (xn), n = 1, 2, ..., be a
sequence in X. For a subset M of X and a positive integer N, we define
the counting function A(M; N; co) by A(M; N; 03C9) = 03A3Nn=1 CM(Xn) where
cm denotes the characteristic function of M. The sequence (xn) is called
M-uniformly distributed in X if

holds for every 03BC-continuity set M in X.

REMARK. If 03BC e R+(X), then (xn) is 03BC-uniformly distributed in X if
and only if limN~~ 1/N03A3Nn-1f(xn) = xf d03BC holds for every real-valued
(complex-valued) continuous function f on X. This follows as in Helm-
berg [5], and could also be inferred from the Portmanteau Theorem
[13, p. 40].
Although we do not have a notion of support for nonregular ,u, the

following definition is still meaningful. For a general concept of support
see Topsoe [13, p. XIII].

DEFINITION 3. The measure 03BC ~ M+(X) is called a measure of finite
support if there exists a finite subset E of X with 03BC(E) = 1. Let F(X)
be the set of all measures of finite support on X.

COROLLARY 1. If 03BC ~ F (X), then there exist , finitely many points
x1, · · ·, xk in X such that 03BC({xi}) = Ài &#x3E; 0 for all i, 1 ~ i ~ k, and

03A3ki=1 Ài = 1. The points x1, · · ·, xk are uniquely determined by J.l, and we
put supp 03BC = {x1, · · ·, xk}.
We have now al1 the concepts and the terminology available to

enunciate our main result.

THEOREM 1. Let 03BC ~ M+(X). There exist 03BC-uniformly distributed

sequences in X if and only if there exists a sequence (03BCj), j = 1, 2, ..., in

F(X) such that

for every 03BC-continuity set M in X.
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Before we set out to prove this theorem, we draw some interesting
conclusions. First of all, let us note that, by Corollary 1, every v E F(X)
is a convex linear combination of point measures. In particular, every
v ~ F(X) is regular. If p e R+(X), then condition (1) just means that
the sequence (03BCj) converges weakly to p ([13, p. 40]). Furnished with
the topology of weak convergence, 9(X) is a topological linear space.
We can then reformulate Theorem 1 as follows.

COROLLARY 2. Let R+(X) satisfy the first axiom of countability, and let
li ~ R+(X). There exist 03BC-uniformly distributed sequences in X if and only
if p lies in the closed convex hull in -q(X) of the set of normed point
measures.

lt is an important result in the theory of weak convergence in R(X)
that the closed convex hull in R(X) of the set ofnormed point measures
is, in fact, all of R+(X) ([3, Ch. III, § 2, no. 4, Cor. 3], [13, p. 48]).
Therefore we get:

THEOREM 2. Let R+(X) satisfy the first axiom of countability. Then
for every 1À ~R+ (X) there exist y-uniformly distributed sequences.

REMARK. Theorem 2 generalizes the result of Hedrlin [4], since for
compact metric X the space R+(X) is metrizable ([14, Theorem 13]).
The basic idea in the sufhciency part of the proof of Theorem 1 is the

construction of sequences in X which are ’very well’ distributed with
respect to the measures 03BCj E F(X), j = 1, 2, ’ ’ ’. Those sequences will
allow us to explicitly construct y-uniformly distributed sequences in X.

LEMMA 1. For y E F(X), there exists a positive constant C(03BC) and a
sequence co = (yn) in X such that

for all N ~ 1 and for all subsets M of X. In particular,

will do, where k = card (supp f.l).
PROOF. Let supp p = {x1, · · ·, xk}. It will sufhce to show that there

exists a sequence co = (yn) in supp y such that

for all i, 1 ~ i ~ k, and for all N ~ 1. For then, the inequality (2) can be
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shown as follows. For any subset M of X, we have A(M; N; Q)) =
A(M n supp p; N; 03C9) and 03BC(M) = 03BC(M n supp 03BC), therefore it suffices
to consider a set M c suppy. Moreover, for such a set M we have

A(supp 03BCBM; N; co) = N-A(M; N; co) and 03BC(supp 03BCBM) = 1- Il(M),
hence we need only look at those sets M with card M ~ [k/2]. But
then

and we are done.

To prove (3), we proceed by induction on card (supp Il). If card

(supp 03BC) = 1, then y is the normed point measure at xl ~ X, and the
constant sequence m = (Yn) with yn = xl for all n ~ 1 will do. Assum-

ing the proposition to be true for all v e F(X) with card (supp v) = k,
we take 03BC ~ F(X) with 03BC({xi}) = 03BBi &#x3E; 0 for 1 ~ i ~ k+ 1 and

03A3k+1i=1 03BBi = 1. We define a measure v E 5(X) with supp v = {x1, · · ·
· · ·, xk}, namely v({xi}) = 03BBi/(03BB1 + · · · +03BBk) for 1 ~ i ~ k. There exists
a sequence 03B6 = (Zn) in supp v with

for all i, 1 ~ i ~ k, and all N ~ 1. Now we define the sequence cv = (yn)
in the following way: yn = z. if n = [m/(03BB1 + · · · + 03BBk)] for some m ~ 1

(m is unique because of 03BB1 + · · · + 03BBk  1), Yn = xk+1 otherwise.
In order to show (3), we consider first a point xi with 1 ~ i  k. Then

A({xi}; N; cv) will be equal to the number of positive integers m such that
[m/(03BB1 + · · · +03BBk)] ~ N and z. = Xi’ Therefore A({xi}; N; 03C9) = A({xi};
L; 03BE) where L = [(N+1)(03BB1 + · · · + 03BBk)] - 03B5 and s = 1 or 0 according as
(N+ 1)(03BB1 + · · · + 03BBk) is an integer or is not an integer. We get

Discussing the two possibilities for B separately, it follows easily that the
absolute value occurring in the last expression is at most 1/N..

It remains to consider the point xk + 1. Since A({xk+1}; N; cv) = N- L
where L is defined as above, we have
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as above.

As the attentive reader will have observed, we did not attempt to find
the best possible value for C(03BC). The above lemma is of the same type as
a result of Meijer [12, Theorem 1 ] who showed the existence of ’very well’
distributed sequences in a different setting.

PROOF oF THEOREM 1. Suppose there exists a y-uniformly distributed
sequence W = (xn) in X. Let a,,, denote the normed point measure at the
point x E X. Then the sequence (03BCj) in F(X) defined by Ilj = 1/j Ej= 1 ex.
satisfies the condition (1).

Conversely, suppose the condition of the theorem is satisfied by the
sequence (03BCj) in F(X). We want to construct a y-uniformly distributed
sequence in X. By Lemma 1, for each 03BCj there exists a positive constant
C(03BCj) = Cj and a sequence COi = (Xjn), n = 1, 2, ···, such that (2)
holds. For each j ~ 1, choose a positive integer rj with rj ~ j(C1 + C2 +
... + Cj+1). As a matter of convenience, put ro = 0. We define a se-
quence 03C9 = (xn) in X in the following way. Every positive integer n has
a unique representation of the form n = r0 + r1 + ··· + rj-1 + s with
j ~ 1 and 0  s ~ rj; we set xn = Xjs’ Take an integer N &#x3E; rl ; N can

be written as N = r1 + r2 + ··· +rk + s with 0  s ~ rk+1. For a Il-

continuity set M in X, we get A(M; N; cv) = 03A3kj=1 A(M; rj; 03C9j) +
A (M; s; 03C9k+1). Therefore

If N ~ oo, then k - oo, and the first term in the above sum tends to zero.

Moreover, by (1) and by Cauchy’s Theorem, the second term tends to
zero. The proof is complete.
We shall now prove the metric result for y-well distributed sequences
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which we announced above. Since we will suppose 03BC e R+ (X), the known
definition of p-well distributivity in a compact Hausdorff space, as given
by Baayen and Helmberg [2], can be employed. The sequence (xn) in
X is called 03BC-well distributed in X if, for every 03BC-continuity set M in X, we
have limN~~ 1/N 03A3Nn=1 cM(xn+h) = /leM) uniformly in h = 0, 1, 2, · · ·.
By an argument which was first used by Hlawka [10, Satz 2], we can
easily infer from this definition the following interesting property of
03BC-well distributed sequences.

LEMMA 2. If (xn) is 03BC-well distributed in X, then for every /l-continuity
set M with 03BC(M) &#x3E; 0 there exists a positive integer No = N0(M) such
that at least one of any No consecutive elements from (xn) lies in M.

Let X 00 be the cartesian product of countably many copies of X, i.e.
X~ = 03A0~i=1 Xi with Xi = X for all i ~ 1. Let /loo be the completion of the
product measure on Xoo induced by J.l. We note that a sequence (xn) in
X can be viewed as a point in X~, and a family of sequences in X can be
viewed as a subset of X 00’ Let M’ stand for the complement of M in X.

THEOREM 3. Let 03BC ~ R+(X), and 03BC not a point measure. Then the
family W of all 03BC-well distributed sequences in X, viewed as a subset of
X~, satifies 03BC~(W) = 0.

PROOF. As in the proof of Theorem 2 in [6], there exists a 03BC-continuity
set M in X with 0  03BC(M)  1. For N ~ 1, let WN be the family of all
03BC-well distributed sequences in X for which at least one of any N consecu-
tive elements lies in M. By Lemma 2, we have iY = ~~N =1 WN. Thus
it suSices to show that 03BC~(WN) = 0 for all N ? 1. For given N ~ 1, let
XN be the cartesian product of N copies of X, and let 03BCN be the product
measure on XN . Define FN to be the set consisting of all points of XN
for which at least one coordinate belongs to M, i.e. FN = XN "’Df= 1 Mi’
with Mi = M for all i. We note that 03BCN(FN) = 1-(1-03B1)N, where
03B1 = 03BC(M). · For k ~ 0, put F(k)N = {(x1, x2, · · ·) ~ X~/(xjN+1, · · ·, &#x3E;

’ ’ ’ ’ , xjN+N) e FN for 0 ~ j ~ k}. If follows from the definition of WN
that WN ~ ~~k=0 F(k)N. Now 03BC~(F(k)N) = (1-(1-03B1)N)k+1, and so 1-
(1- ex)N  1 implies 03BC~(~~k=0 F(k)N) = 0. Thus, a fortiori, 03BC~(WN) = 0.

REMARK. If 03BC is the normed point measure at some point x0 ~ X,
then Theorem 3 is not true. The constant sequence Xo, x o , ’ ’ ’ is 03BC-well
distributed in X and corresponds to a point in Xoo having 03BC~-measure
equal to one.
As a conclusion, 1 would like to pose the following problem which

was not settled in this paper. It follows from both the zero-one law of

Visser [15] and of Hewitt and Savage [7] that the family of 03BC-uniformly
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distributed sequences in X, viewed as a subset of X~, has either 03BC~-

measure zero or one, if it is /loo -measurable at all. Characterize the

measures 03BC ~ M+(X), or at least those in R+(X), for which this /loo-
measure is equal to one!
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