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1. Introduction

The structure of the Lie algebra of all endomorphisms of a finite-
dimensional vector space is well known. The purpose of this paper is to

investigate the infinite-dimensional case, and in particular to find the
lattice of Lie ideals. Rosenberg [6] has carried out the analogous pro-
gramme for the infinite general linear group.

Notation for Lie algebras will follow that of [9, 10]. Let f be any field.
Let c be any infinite cardinal, with successor c+ . Let V be a vector space
over f of dimension c, and for any infinite cardinal d ~ c+ define E(c, d)
to be the set of all linear transformations a : V - V such that the image
of a has dimension  d. Then E(c, d) is an associative f-algebra. Under
commutation [03B1, 03B2] = 03B1/03B2 - 03B203B1 (03B1, 03B2 ~ E(c, d)) it becomes a Lie algebra
which we shall denote L (c, d).

Inside L (c, c + ) we let F = L (c, 0), T = the set of endomorphisms of
trace zero (in the sense of [9] p. 306), S = the set of scalar multiplications
v ~ vk (v E V, k E f). We shall prove:
THEOREM (A). Let L = L (c, c+). Then the ideals of L are precisely the

following:

The lattice of ideals has the form as shown on the next page.
Further, every subideal of L is an ideal, so that L lies in the class Z of [9].
An immediate corollary of theorem A is that L(c, c+) satisfies the

minimal condition for subideals, Min-si. We shall use this to show that
theorem 3.3 of [9] p. 305 is in a sense best possible.

Finally we apply our results to prove that any Lie algebra can be
embedded in a simple Lie algebra.
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1 am grateful to the referee for many helpful remarks which have
simplified and improved the exposition.

2. The endomorphism algebra

We attack the problem through the associative ideal structure of
E(c, d), which is easily determined. By Jacobson [5] p. 108 an associative
algebra A is simple if and only if it is simple considered as a ring. This
remark combines with a theorem of Herstein [3] (see also Baxter [1])
to yield:

LEMMA (1). If A is a simple associative f-algebra and [A, A] = A then
any proper Lie ideal of the Lie algebra associated with A is contained in
the centre of A, unless A is of dimension 4 over its centre which is a field of
characteristic 2.

In the sequel all algebras considered will be infinite-dimensional over
their centres, so the exceptional case never arises. By a slight extension of
Jacobson [5] p. 93 theorem 1 we have:

LEMMA (2). Let c, d be infinite cardinals with d ~ c+. Then any non-zero
associative ideal of E(c, d) is of the form E(c, e) where 0 ~ e ~ d.

COROLLARY. If c ~ d are infinite cardinals then

is a simple non-commutative associative algebra.

LEMMA (3). Let E = E(c, d) where No  d ~ c+. Then



81

PROOF. Let a E E. Decompose V into a direct sum

in such a way that dim Vi = dim im (a) for all i and that im(a) ~ W =
~i~Z Vi, For each i let ti : Vi ~ Ti+1 be an isomorphism. Let the auto-
morphism u : W ~ W be defined by u|vi = ti and let t : V ~ V be de-
fined by t|W = u and t(X) = {0}. We shall show that there exists b E E
such that

More precisely we show that there is a unique endomorphism b of V
satisfying (1) such that

and

(hence b E E).
We set ai = alvi and bi = b|vi. In view of (3) the restrictions of (1)

to X, to Vi-1 (i &#x3E; 0) and to Vi (i  0) are respectively equivalent to
the following équations :

and now the assertion is obvious since (5) and (6) constitute inductive
definitions for the b i .
Note that if d = No the lemma is false, for then [E, E] is the set of

trace zero maps which is smaller than E.

For any associative algebra A we let Z(A) denote the centre of A.
We then have:

LEMMA (4). If c ~ d are infinite cardinals, then

is trivial except when c = d. It then has dimension 1 and consists of scalar
multiplications (modulo E(c, d)).

This follows from :

LEMMA (5). If c ~ d are infinite cardinals and z E L(c, c+) satisfies

then z E L(c, d) + S.
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The proof of this lemma is more intricate than one might wish, and will
be postponed until later.

Putting together the results so far obtained we have:

LEMMA (6). If c ~ d are infinite cardinals then the Lie algebra

is simple unless c = d; when its only nontrivial proper ideal is the centre,
which has dimension 1 and consists of scalar multiplications (modulo
L(c, d)).
The next result is implicit in [9] (p. 310) :
LEMMA (7). Let L be a Lie algebra, 03C3 an ordinal, and (G03B1)03B1 ~ 03C3 an ascending

series of ideals such that for all oc  03C3

1) G« + l/Gex is simple non-abelian,
2) CL/G03B1(G03B1+1/G03B1) = G03B1/G03B1.

Then the only subideals of L are the Gex. Consequently L E Min-si n Z.

PROOF. Let M be a proper subideal of L and let a be the least ordinal
such that G03B1  M. It is easy to see that oc cannot be a limit ordinal, so
a = 03B2+1 for some /3. Thus (M+G03B2)/G03B2 is a subideal of L/Gp not con-
taining G03B2+1/G03B2. As the latter is a simple non-abelian ideal of L/Gp we
have

so by [9] lemma 4.6 p. 309 M centralises G03B2+1/G03B2, By part (2) of the
hypothesis M ~ G., whence M = Gp.

Obviously L E X, and L e Min-si since the ordinals are well-ordered.

Now we shall show that L(c, d) e Min-si n Z. The presence of trace
zero and scalar maps causes complications, so we study a suitable quotient
algebra. Let L = L(c, d), let F, S, T be as in theorem A, and put I =
F+ S. Then L* = L/I has an ascending series of ideals

for a suitable ordinal b; the Lâ being the ideals (L(c, e) + S)/I arranged in
ascending order.
Now I has a series O ~ T ~ F ~ I of ideals. But T is simple ([9]

lemma 4.1 p. 306) and F/T and IIF are 1-dimensional. Therefore I e
(Min-si)(F) (F) ~ Min-si, by [9] lemma 2.2 p. 303. By the same lemma,
in order to prove that L e Min-si, it suffices to show that L* e Min-si.

This will follow from lemma 7 provided we can prove that

which is equivalent to the statement of lemma 5.



83

We now come to the proof of lemma 5. To simplify the notation we
let L = L(c, c+), E = L(c, d), G = L(c, d+). To prove lemma 5 we must
show that if z ~ L and [z, G] ~ E+ ,S, then z ~ E+ S.

If Y is a vector space with basis (v03BB)03BB ~ 039B and a is an endomorphism of V,
we define a03B103B2(03B1, 03B2 E 039B) by:

LEMMA (8). If V is a vector space with basis (v03BB)03BB ~ 039B where A is infinite,
and if a is an endomorphism of V such that dim im(a) = e is infinite, then
the set

has cardinality |B| = e.

PROOF. Let W = ¿ÀeB v03BB. By definition dim (W) = IBI, and since
im(a) ~ W we have e ~ |B|. If m is a basis for im (a), then each i03BC
is a linear combination of finitely many v03BB (03BB E B). Therefore IBI :9
|Z  M| = 0 · e = e since e is infinite.
We now suppose that z is as above, and that is a vector space with

basis (v03BB)03BB~039B where |039B| = c.

LEMMA (9). There exists z’ such that z’03B103B1 = 0 (a E A), [z’, G] ~ E+ S,
and z-z’ E E+S’.

PROOF. Let M be the set of all pairs (M,  ) where M is a subset of A
and  is a well-ordering on M, such that if a E M then z. :0 z03B1+1,03B1+1

(where a + 1 is the successor to a in the ordering  ). Then vit is partially
ordered by y, where (Ml,  1)  (M2, 2) if and only if Ml is an

initial segment of M2. Clearly -4Y is not empty and satisfies the hypotheses
of Zorn’s lemma. Let (M,  ) be a maximal element of vit. Suppose for a
contradiction that |M| ~ d. Take an initial segment I of M with III = d,
and consider

where e03B103B2 (a, j8 E 039B) is the elementary transformation sending v03B1 to v03B2
and all other basis elements to zero. By hypothesis t E E+ S, yet

(where terms involving 03B1 - 1 for limit ordinals a are deemed to be zero).
Now the coefficient of e03B1, 03B1+1 is z03B103B1-z03B1+1,03B1+1 which is non-zero for d

values of a. By lemma 8 te E+ S’ which is a contradiction.
Thus after choosing fewer than d values of a all the remaining Zaa are

equal. Thus 03A3z03B103B1e03B103B1 ~ E+S. Define z’ = z - E zaaeaa.
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LEMMA (10). Suppose that z’ e E+ S. Then there exist subsets A, A’ of
A and a bijection 0 : A - A’ such that

PROOF. Let P be the collection of all triples (A, A’, 4» satisfying (1)
and (2). Partially order P by « where (A, A’, 4»« (B, B’, tp) if and
only if A ~ B, A’ ~ B’, and 03A8|A = ~. By Zorn’s lemma there is a maxi-
mal element (A, A’, 4» of P. For brevity let ~(03B1) = a’ (a E A). We claim
that lAI = d.

Suppose not. Then lAI = d’  d. Let

Since d is infinite we have |D|  d. By lemma 8 there must exist y’ e
(A ~ A’ ~ D) such that z’,, =1= 0 for some 03B3 ~ y’ (since z’ ~ E+ S). Then
y o (A u A’) since y’ e D. Therefore 03B3 ~ y’, y e (A u A’ ), y’ ~ (A ~ A’).
Define

Then (B, B’, 03A8) ~ P and is greater than (A, A’, 4», a contradiction.
Hence |A| ~ d as claimed.
We may now derive the final contradiction required to prove lemma 5.
Suppose for a contradiction that z’ e E+ S. Then there exists (A, A’, 4»

as in lemma 10. Define n : V ~ V by

By definition 7r e G. By hypothesis u = [z’, 03C0] ~ E+ S. But for a E A we
have

The coefficients of v03B1’ is

so that u03B103B1’ ~ 0 if a E A. Since 1 AI = d and 03B1 ~ a’ we have u o E+S, a
contradiction.
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Hence z’ e E+ S, whence z ~ E+ S, and lemma 5 is proved. By lemma 7
we have:

LEMMA (11).
1) L(c, c+) EMin-si,
2) Every subideal of L(c, c+) which contains F+S is of the form

L(c, d)+S.
LEMMA (12). L (c, c+) E Z.
PROOF. Suppose L = L(c, c+) has a proper ideal J of finite codimen-

sion. Now L has an ascending series, the finite-dimensional factors of
which are abelian, the rest simple. Hence L/J is soluble, so that [L, L]
 L, contrary to lemma 3. Therefore by theorem 3.1 of [9] p. 305 we
have L ~ Z.
We now proceed to the:

PROOF OF THEOREM (A).
All the subalgebras listed are ideals; the only case requiring comment

being (c). Since L = L(c, c+) has no ideals of finite codimension (proof
of lemma 12) the factor (F+S)/T is central (see [9] p. 305, proof of theo-
rem 3.1). Therefore any subspace X between T and F+S is an ideal.

Suppose now that 7 is an ideal of L. If I ~ F+S then by lemma 11
I is in the given list. Therefore we may assume I  F+ S. If I n T = {0}
then [I, T] = {0}. But it is easy to see that the only elements of L central-
ising every elementary transformation e03B103B2 (03B1 ~ fi) are the elements of S.
Hence I ~ S. Since dim S = 1 we have I = {0} or S. But T is simple
([9] lemma 4.1 p. 306) so if I ~ T ~ {0} then T ~ 1. Now I+F+S ~ L,
and by lemma 11 I+F+S = L(c, d)+S for some d. If d = No then
T ~ I  F+S, which is case (c) of the list. There remains the case

d &#x3E; bt 0. Then we have (I+F+S)/(T+S) = (L(c, d)+S)/(T+S) so that
(I+T+S)/(T+S) is of codimension ~ 1 in (L(c, d)+S)/(T+S) -
(L(c, d))/T which has no proper ideals of finite codimension by the
argument of lemma 12. Therefore I+T+S = L(c, d)+S. Now T ~ I
so we have I+S = L(c, d)+S. If I ~ L(c, d)+S and I ~ L(c, d) then
I n L(c, d) is of codimension 1 in L(c, d), contradicting lemma 3. Hence
I = L(c, d) or 1 = L(c, d)+S.
We have already remarked (in lemma 12) that L ~ Z; which completes

the proof of the theorem.

3. Applications

In [9] it is proved that any Lie algebra satisfying Min-si and having no
ideals of finite codimension has an ascending series of ideals whose factors
are either infinite-dimensional simple or 1-dimensional central. The re-
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sults of theorem A show that the 1-dimensional central factors cannot in

general be dispensed with. In [9] this question was left open. The algebras
L(c, d) also provide new examples of Lie algebras in Min-si n Z.

Following the general lines of Scott [7] ] p. 316 section 11.5.4 (for
groups) we can prove:
THEOREM (B). Any Lie algebra can be embedded in a simple Lie algebra.
PROOF. Let K be a Lie algebra over a field f. By Jacobson [4] p. 162 cor.

4 K has a faithful representation by endomorphisms of a vector space V
over f. By enlarging Vif necessary we may embed K in L(c+, c+) for some
infinite cardinal c. If we split V into c subspaces of dimension c+ and copy
the K-action on each of these we may assume that K is represented by
endomorphisms whose image has dimension ~ c. Then the composite
embedding

maps K into a simple Lie algebra.
One might ask about Lie analogies of other embedding theorems for

groups. For example, Dark [2] ] has proved that every group can be
embedded as a subnormal subgroup of a perfect group. Strangely, the
analogue of this is false for Lie algebras - an example may be found in
[8], p. 98
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