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1. Introduction

In Efimov’s article [1 ] cohomology properties of a surface s immersed
in Euclidean 3-space are related to existence and classification of in-
finitesimal isometric deformations of S. He defines the intermediate

flexibility of S with respect to a subgroup F of the 1-dimensional homol-
ogy group H of S; it becomes an isometric embedding invariant based on
topological properties of S by means of the Rham cohomology.
So far, however, this relation between the classical rigidity problems

and algebraic topology has remained of a hypothetical nature, since no
surface having intermediate flexibility with respect to a non-trivial sub-
group was known.

We exhibit here the first examples of truly intermediate flexibility. In
addition we give a necessary and sufficient condition for surfaces in a
certain class to admit intermediate flexibility.

Beside the obvious generalization, new phenomena of intermediate
flexibility appear in higher dimensions; they will be discussed elsewhere.

2. Notations

We denote by 03C4 the class of surfaces of revolution in E 3 homeomorphic
to a torus with arbitrary smooth Jordan curves as meridians. More
precisely:

DEFINITION 1. Let e1, e2, e3 denote a fixed orthonormal system of
vectors in E 3. A surface S belongs to the class i if its position vector is
representable as

where r(v) and h(v) are two functions of class C’ defining by
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a simple closed meridian curve M which does not intersect the x3-axis
and for which the variable v plays the part of the arc length. Hence r(v)
and h(v) are periodic of period L (perimeter of Af) and satisfy r(v) &#x3E; 0

and

accents denoting derivatives with respect to v.
In the following we consider vector fields y, z, s of E 3 defined on S

only, and refer for motivation to [1 ].
Under an infinitesimal isometric deformation of first order every pencil

of line-elements on S is moved as a rigid body. If the point x is thereby
transformed into

(where B is a parameter whose powers exceeding one are neglected), the
deformation field z satisfies the local orthogonality condition

and can be represented as

with

Here square brackets denote the vector product, s is the ’translation
field’, and y the ’rotation field’ of the deformation.
Assuming the field z to be only locally defined (i.e., admitting ’multi-

valued’ fields z) we generalize (3) by
DEFINITION 2. A rotation field on S is a C2-vector field y of E3 defined

on S such that [y, dx] is a closed (vector) differential.
In terms of the local coordinates (u, v) on ,S’ the components of y are

twice continuously differentiable functions, periodic in u of period 2n
and periodic in v of period L.
Every constant field y = y. is trivially a rotation field.

DEFINITION 3. The surface S is non-rigid with respect to the subgroup
F of the 1-dimensional homology group H over the reals if

a) there exists a non-trivial rotation field y such that the periods

vanish for all closed curves C whose homology classes belong to F, and
b) there is no non-trivial rotation field having this property for a

subgroup of H containing F.
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If F = H this concept corresponds to projective or strong flexibility;
for F = 0 we have affine or weak flexibility. If there is a non-trivial sub-
group F with this property we speak of intermediate flexibility.

3. The rotation fields

Let y = 03A33i=1 y;e; be an arbitrary rotation field on S ~ 03C4. The local

exactness of [y, dx] is expressed by the integrability condition

Introducing the auxiliary functions

we find that condition (4) is equivalent to the following system of partial
differential equations:

Taking into account (1) we obtain as further consequences:

Under our assumptions the functions and Z can be expanded in
absolutely and uniformly convergent Fourier series with respect to u:
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where the coefficients ak, bk, ck, dk are C’ functions of v with period L.
Substituting (10) and (11) into (8) and integrating we obtain:

(This expresses the condition that U is periodic in u. )
Then the Fourier expansion of U assumes the form

where Uo(v) is a function of period L.
Substituting these expansions in (5) to (9) leads to

PROPOSITION 1. The most general rotation field on the surface SE! has
the form

where U, v, Z are determined by (10), (11), and (13), and the coefficients
are periodic solutions of the following system of first order linear homoge-
neous differential equations:

For k = 0 the above relations must be replaced by

Note that the two pairs of functions (ak, Ck) and (bk, dk) satisfy for
k = 1, 2, ... the same conditions.

LEMMA. For every rotation field y on every surface S E 03C4 we have

PROOF. From equations (20) and (21) we deduce
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with A and C constants.

Since c0(v) is periodic with period L we have c0(0) = c0(L) = C;
hence

By the Jordan-Brouwer Theorem the region m enclosed by the

meridian M has positive measure (also denoted by m). Furthermore
the function r - ’ assumes a positive minimum p on the compact set ffi.

We conclude by Stokes’ theorem:

Combining (22) and (23) we obtain A = 0, ao - 0, Co = constant.
Taking into account (14) we get

Since h(v) assumes an extremum there exists some D with h’(v) = 0.
By (1) we have r’(v) = ± 1. Substituting (24) into (16) we find

hence D = 0 and c1(v) ~ 0.
Similarly d1 ~ 0. Q.E.D.
As a consequence of this lemma and of the equations (16) and (17)

we note the following relations which will be needed in § 5:

4. The periods of [y, dx]

DEFINITION 4. As representatives of a homology basis for a surface
S ~ 03C4 we choose the following cycles:

(a circle of latitude),
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(a meridian).
Correspondingly we denote the periods of the vector differential

[y, dx ] by

THEOREM 1. For every rotation field y on every surface ,S’ E r the period
Pl vanishes.

PROOF. Taking into account the orthogonality relations of the trig-
onometric functions and the lemma of § 3 we compute

The surface S C1 ~ Si is homeomorphic to a cylinder, and theorem
1 entails that every closed differential [ y, dx] on SI is exact.
This means:

THEOREM 2. If a surface o f class r is cut along a curve homologous to
a circle of latitude we obtain a projectively flexible surface.
Turning to P2 we obtain

PROPOSITION 2. For every rotation field on every surface of class r we
have

Thus P2 depends only on the lowest Fourier coefficients.

PROOF. From (14) and the periodicity of the functions r(v) and c,(v)
we deduce the following integral relations:

Together with Lemma 1 they imply (after some computations) the
desired result. Q.E.D.
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The vector P2 has the following geometric interpretation. Using (3)
we find

where z, and Z2 are the values of the deformation field on opposite sides
of a cut in S homologous to Cl. For the relative shift between these
opposite sides under the deformation (2) we obtain

Since this is independent of (u, v) we see that after the deformation of
S, is carried out the two sides of our cut are separated by a gap ’of
constant width’, i.e., they can be made to coincide again by a translation
through 03B5P2.

5. A criterion for intermediate flexibility

DEFINITION 5. Let F denote the subgroup of the 1-dimensional homol-
ogy group of a surface S e r generated by the homology class containing
the cycle Cl .

THEOREM 3. A surface S E i has intermediate flexibility with respect to
the group F if and only if its meridian contains a segment of non-zerolength perpendicular to the axis of revolution. 
PROOF. Denote by3Q the subset of the closed interval [0, L] consisting

of those reals v satisfying h’(v) = 0. Denote by C9f its complement
witb respect to [0, L]; furthermore let B be the subset of those. v E [0, L]
where b’1(v) = 0.
The relation (26) then translates into the inclusion CH c B, valid

for every rotation field on S.

a) If H does not contain. an interval then CH and therefore B are
dense in [0, L]. The continuity of b’1 implies b’ - 0 and b 1 = constant
everywhere. Similarly we obtain from (25) that a, = constant, and from
(18) tbat Uo - 0. Proposition 2 then implies P2 = 0. By de Rham’s
theorem the vanishing of P1 and P2 means that [ y, dx] is exact; hence S
has no intermediate flexibility.

b) Conversely, let H contain a non-zero interval P. For v e fi we
have either r’(v) = 1 or r’(v) = - 1. We can satisfy (18) by constructing
a function Uo E C2 vanishing on CI and such that
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Letting co - ak = bk = ck = dk ~ 0 for k = 1, 2, ... then defines the
non-trivial rotation field

where P2 ¥= 0 according to Proposition 2. Thus S has intermediate

flexibility with respect to F. Q.E.D.
If the meridian M contains a single straight segment perpendicular to

the axis, P2 has the direction of the axis for every rotation field y. For
M containing more than one segment, P2 can assume any direction and
magnitude by suitable choice of y.

COROLLARY. A surface in class i with an analytic meridian does not have
intermediate flexibility.

6. Application to Liebmann surfaces

DEFINITION 6. A Liebmann surface is a surface of revoluticn whose
meridian contains an outer convex arc (i.e. convex away from the axis
of revolution) with tangents perpendicular to the axis of revolution at
the endpoints.

It is known [2] that every deformation field on a Liebman surface
has the ’Euler form’

with a a nd b constant vectors. Thus for globally defined deformation
fields the corresponding rotation fields are trivial. Combining this result
with our Theorem 3 we can drop the requirement that z be globally
defined as follows:

THEOREM 4. Let S be a Liebman surface of classr whose meridian does
not contain a segment perpendicular to the axis of revolution. Then S
admits only trivial rotation fields.

REFERENCES

N. W. EFIMOV

[1] Flächenverbiegung im Grossen, Berlin 1957.

T. RADO

[2] The mathematical theory of rigid surfaces, Lecture notes, University of North
Carolina, 1954.

(Oblatum 25.1.71) Department of Mathematics
University of Ottawa
Ottawa, Canada


