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1. Introduction

In this paper, we treat arbitrary first-order differential equations
Q(z, y, y’) = 0, where Q(z, y, y’) = 03A3fkj(z)yk(y’)j is a polynomial in y
and y’ and where the coefficients fkj(z) are either (i) arbitrary entire func-
tions, or (ii) arbitrary analytic functions in a finite disk Izi  Ro. Our
main result (§3) provides a growth estimate for meromorphic solutions
(on the plane in case (i) and on Izi  Ro in case (ii)), of the equation
Q(z, y, y’) = 0. An important feature is that the estimate shows how the
growth of a solution is affected separately by the growth of the coefficients
of terms of maximum total degree in y and y’, and by the growth of the
other coefficients in the equation. The other quantities involved in the
growth estimate for solutions are (a) a minimum modulus estimate,
holding ’nearly everywhere’ (see § 2), for one certain coefficient (the
’leading’ coefficient) in the equation, and (b) the distribution of poles
of the solution. The fact that the distribution of poles must be involved
in the estimate for the growth of the solution, is indicated by the following
phenomenon: In the special case where all coefficients fkj(z) are entire
functions of finite order of growth, it follows from our main result here
that for any entire solution, or more generally, for any meromorphic
solution yo(z) whose sequence of poles has a finite exponent of conver-
gence, the estimate T(r, yo) = O(exp r’) holds for some constant A as
r ~ +00. However, it is shown in [3], that no such uniform growth
estimate exists for arbitrary meromorphic solutions of such equations,
since for any preassigned function 03A6(r) on (0, + oo ), one can construct
a meromorphic solution of such an equation, whose Nevanlinna charac-
teristic dominates 0 (r ) at a sequence of r tending to + oo.

Concerning the other quantity (a) involved in our growth estimate for
solutions, we note that the minimum modulus estimates in [8, p. 328] ]

1 This research was supported in part by the National Science Foundation (GP 19590).
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for entire functions of finite order, in [4, p. 97] for entire functions of
infinite order, and in [9, p. 12] for analytic functions of finite order in
the unit disk, all hold ’nearly everywhere’ in the sense of § 2.
The proof of our main result here utilizes the Nevanlinna theory of

meromorphic functions, and we emphasize that our main result will
provide a growth estimate for solutions of any first-order algebraic
differential equation provided that we possess growth estimates for the
coefficients, the ’nearly everywhere’ minimum modulus estimate for the
leading coefficient, and an estimate on the distribution of poles of the
solution. Thus, as very special cases, we obtain generalizations, to

broader classes of equations, of the well-known theorems of Valiron
([10; p. 41 ] and [11; p. 294]) which assert that when the coefficients of
S2 are polynomials, then all entire solutions and all analytic solutions in
the unit disk are of finite order of growth. We also obtain alternate proofs
of previous results (e. g. [1]) which were proved using the Valiron-Wiman
theory for the plane. However, the only special case that we explicitly
state as a corollary (§ 4), is an improvement of a previous result of the
author [2; p. 369). This result treated the case where the coefficients of the
terms of S2 having maximum total degree in y and y’ are polynomials,
while the other coefficients are arbitrary analytic functions of finite order
in the unit disk. It was shown in [2], using the Valiron-Wiman theory
for the unit disk [ 11; p. 299], that a meromorphic solution in the disk
of such an equation, could not be written as the quotient of two analytic
functions h/g, where h is of infinite order and g is of finite order in the
disk, and where a technical condition concerning the growth of h away
from the zeros of g is satisfied. (This technical condition was necessary
because the Valiron-Wiman theory for the disk provides information only
on a sequence of circles.) As a special case of our main result here, we show
(§ 4) that this technical condition can be eliminated completely. (We re-
mark here that equations of the type treated in § 4 and [2] can possess
meromorphic solutions of infinite order in the disk (e.g. (sin exp (1/
(1 - z)))-1)).

2. Notation

For 0  R ~ + oo, and a meromorphic function g(z) in |z|  R, we
will use the standard notation for the Nevanlinna functions m(r, g),
N(r, g) and T(r, g) (for r  R), introduced in [6, p.p. 6, 12]. We will
also use the notation n(r, g) for r  R, to denote the number of poles
(counting multiplicity) of g in |z| ~ r.
Following Hayman [5], we shall say that a certain property P(r ) holds

’n.e. in [0, R)’ (nearly everywhere in [0, R)) if either,
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(a) R  + oo and P(r ) holds for all r in [0, R) except a set E such that
JE drl(R - r)  +oo; or

(b) If R = + oo and P(r) holds for all r in [0, + ~) except a set E
such that SE dr  + 00.

3.

We now state our main result:

THEOREM. Let Q(z, y, y) = Efkj(z)y’(y’)j be a polynomial in y and
y’ whose coefficients hej(z) are analytic functions in izl  R, where
0  R ~ +00. Let p = max {k + j : fkj fl 0 1. Let M1(,) and M2(r) be
monotone nondecreasing functions on [0, R) such that the following
conditions hold n.e. in [0, R):

Let m = max {j : fp-j,j ~ 0} and let N(r ) be a monotone nonincreasing
function on [0, R) which satisfies N(r) &#x3E; 0 on [0, R) and for which the
following condition holds n.e. in [0, R):

Let yo(z) be a meromorphic function on Izl  R such that

and

Then:

(E) If R = + oo, then for any real number a &#x3E; 1, there exist positive
constants K and ro such that for all r &#x3E; ro, we have

(F) If R  + oo, there exist positive constants K and b, with b  1,
such that if s(r ) = R - b(R - r), then for all r in [0, R), we have,

PROOF. We begin the proof with the following lemma:

LEMMA A. Let I = {(k,j) : k + j  p and fkj ~ 0}, and set q = 1 +

(cardinality of I). Then n. e. in [0, R), the following holds:
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At any point zo on Izl = rfor which

we have

PROOF. We assert that the lemma is valid for all r in [0, R) for which
the relations (A)-(D) hold (which of course is n.e. in [0, R)). To see
this, let r be such a value, and let zo be a point on Izl = r for which (3)
holds. If |y0(z0)| ~ 1, then in view of (3), (A) and the fact that

M2(r)/N(r) ~ 1 (by (C) and (D)), we see that (4) holds, so we may
assume that,

We may also assume y0(z0) ~ 00 since otherwise both sides of (4)
are +00. Now by dividing the relation, 03A9(z0, y0(z0),y’0(z0)) = 0.
through by (y0(z0))p (where p is as defined in the statement of the

theorem), we can write this relation in the form,

where,

Hence from (6),

We now distinguish two cases.

CASE I. m = 0. Then ll(zo) = fp-m,m(z0), so by (D),

In view of (8) and (9), 1 must be non-empty and it is clearly impossible
that each term in the sum on the right side of (8) be  (1/q)|039B(z0)|. Hence
for some (k, j) in I (depending on zo, of course), we must have,

Since k + j ~ p - 1, it follows from (5) that |y0(z0)|-1 ~ |y0(z0)|k+j-p.
Hence in view of (9) and (B), we obtain,

Using the estimate for (1/N(r)) given by (3), and noting that j+1 ~ p
and that |y’0(z0)/y0(z0)| ~ 1 (since M2(r) ~ N(r) by (C) and (D)), we
easily obtain (4) in this case.
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CASE II. m &#x3E; 0. We may write,

where

Since j-m ~ -1, it easily follows from (C), (D) and (3), that

|03A8j(z0)| ~ (1/m+1)) for j  m. Hence from (12),

which in view of (D) and (3) (and the fact that m ~ 1 in this case), yields

Since M2(r) ~ 1, we see from (8) and (14) that I must be non-empty
and as in Case I, it is impossible that each term on the right side of (8)
be ~((1/q)|039B(z0)|. Hence for some (k,j) in I (depending on zo), we must
again have the relation (10). From this it follows using (B), (5) and
(14) (and the fact that j ~ k+j  p and |y’0(z0)/y0(z0)| ~ 1 by (3)) that
(4) holds in this case too, thus proving the lemma.

Continuing with the proof of the main result, we now define for
r E [0, R), the set

Let C, denote the complement of D, with respect to the circle Izl = r.
Now by lemma A, n.e. in [0, R) if z belongs to C, then (4) holds for z.
Since M2(r) ~ 1, we therefore obtain, n.e. in [0, R) for z E Cr,

Writing z = rei03B8, and letting Cr - {03B8 : 0 ~ 03B8 ~ 203C0 and rei03B8 E C,), we
clearly have from (16), that n.e. in [0, R),

Now by the Nevanlinna theory [7; p. 245, 246], there exists a constant
K1 &#x3E; 0 such that n.e. in [0, R),

where L(r) = log r if R = + ~, while L(r) = log ((R-r)-1), if

R  +00. Since T(r,y0) ~ + oo as r ~ R by assumption, clearly n.e.
in [0, R), we have,
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Now let Dr - {03B8 : 0 ~ 03B8 ~ 2n and reie E D,1. Adding

to both sides of (17), and noting that the left side then becomes T(r, yo),
and then using (18) and (19), we see that n.e. in [0, R), we have,

In the following lemma, we estimate the integrand appearing on the
right side of (20).
LEMMA B. There exist positive constants al, et2, 03B13, 03B14 and as such that

n.e. in [0, R), we have for z E Dr,

PROOF. Let 8 be a number in (0, R) such that y0(z) has no zeros or
poles for 0  |z| ~ 8. Set 03B12 = 2n(m + 1 ), 03B13 = (m + 1 )/8 and 03B14 = 2/e.
By Jensen’s formula [5; p. 166], there is a constant 03BB &#x3E; 0 such that for

0  r  R,

Set al = max {p(m+1), 03BB} and 03B15 = n(0, y0)+n(0, Ilyo). We assert that
for these choices of the constants, (21) is valid for all r in [8, R) for
which the relations (A)-(D) (and hence also Lemma A) hold. To prove
this, let r be such a value. We distinguish two cases.

CASE I. C, is not empty.
Let zo be an element of Dp, say Zo = rei03B80. Let el be the infimum of

the set of all 0 in [03B80, 03B80 + 203C0) for which ,eiO belongs to Cr , and let

zi = reiei. It easily follows from the definitions of Dr and C, that

and that for 03B80 ~ 03B8  01, reie belongs to Dr . Hence if we let r denote
the arc z = re-i~, -03B81 ~ cp ~ -03B80, then

Thus clearly y o has no zeros or poles on the arc T, and it easily follows
that y0 is analytic and nowhere zero on some simply-connected neighbor-
hood of r. Hence there exists an analytic branch g of log y o on this
neighborhood. Since g’ = yo/yo , we have,
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Taking the exponential of (25) and using (24), we obtain,

But by (23) and Lemma A (applied to zl), we have, (noting that
M2(r) ~ 1),

Using the inequality tp ~ exp(pt), it is clear from (26) and (27) that the
conclusion (21) holds for z = zo. Since zo was an arbitrary element of
Dr, we have the desired conclusion in Case I.

CASE II. C, is empty.
In this case, assume that (21) fails to hold for some point zo - rei03B80

in Dr . Now let z, = rei03B81 (where 00  01  03B80+203C0) be any point on
Iz | = r distinct from z0, and let 0393 be the are 03B6 = re-i~, -03B81 ~ ~ ~ -03B80.
Since all points on Izi = r belong to D, in Case II, (24) holds on r.
Hence yo is analytic and nowhere zero on r as in Case I, so there is a
branch g of log yo in a neighborhood of 0393. Thus (25) and hence (26) hold.
From the assumption that (21) fails to hold for zo, and the fact that
qM1(r) ~ 1 and OE2 = 203C0(m+1), it follows from (26) that,

Of course, by assumption, (28) also holds for z, = zo, so that (28) holds
for all points z1 on Izl = r. It follows that,

and that

Now since all points on |z| = r are points of D,, clearly yo has no
zeros or poles on Izl = r. Hence by the argument principle,

Since all points of |z| = r are in Dr, we thus have,

Now for 03B5 ~ t ~ r, we have n(t, y0)-n(0, y0) ~ n(r, yo) and (1/t) ~
(1/e). Hence it follows from the definition of N(r, yo) that
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Similarly, we have,

Now by (22) and (30), we have,

Using the estimates (33), (34) and (32) and the fact that 03BB ~ ÀM2(,)/
N(r) (by (C) and (D) of the hypothesis of the main theorem), we easily
obtain from (35) an inequality which is in direct contradiction to (29).
This contradiction proves the desired conclusion in Case II, and hence
the lemma is proved.

In view of (20), Lemma B and the definition of L(r ), we have shown
the following:

(a) If R = + ~, then there exists a positive constant K, such that
n.e. in [0, + ~), the inequality (1) holds with a = 1, and clearly both
sides of (1) are monotone nondecreasing on (0, + oo ).

(b) If R  + 00, then there exists a positive constant K, such that
n.e. in [0, R), the inequality (2) holds with s(r) = r, and clearly both
sides of (2) are monotone nondecreasing on [0, R).
Hence it is clear that the proof of the main result will be complete

when we establish the following lemma:

LEMMA C. (a) If R = + 00 and g(r) and h(r ) are monotone nondecreasing
functions on (0, + (~) such that n.e. in [0, + (~), g(r) ~ h(r ), then for
any real number a &#x3E; 1, there exists ro &#x3E; 0 such that g(r) :9 h(ar) for all
r &#x3E; r0.

(b) If R  + oo and g(r ) and h(r ) are monotone nondecreasing functions
on [0, R) such that n.e. in [0, R), g(r) ~ h(r), then there is a positive con-
stant b, with b  1, such that if s(r) = R-b(R-r) then g(r) ~ h(s(r»
for all r in [0, R).

PROOF. (a). By assumption, there is a set E with S, dr = 6  + co

such that for r E [0, + co) and r e E, we have g(r) ~ h(r ). For any
r &#x3E; 0, the linear measure of [r, r + 03C3 + 1] is 03C3 + 1 and hence this interval

cannot be contained in E. Thus there exists s in [r, r + 03C3 + 1] such that
s ~ E and hence g(s) ~ h(s). Thus we have g(r) ~ h(r + 03C3 + 1) by the
monotonicity of g and h. Hence if a &#x3E; 1 and we take ro to be a real
number which is greater than (u + 1)1(a - 1), we have g(r) ~ h(ar) for
r &#x3E; ro, proving Part (a).

(b). By assumption, there is a set E with E dr/(R-r) = (J  + oo

such that for r E [0, R) and r e E, we have g(r) ~ h(r ). Now if we set
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~(r) = (R - r)(1- e-(03C3+1), then for any r E [0, R), it is easily verified that
the interval Jr = [r, r+~(r)] lies in [0, R), and the integral 0Jrdt/
(R - t) = 03C3 + 1. Hence J, cannot be contained in E so there exists t
in [r, r+~(r)] such that g(t) ~ h(t). By the monotonicity of g and h,
we obtain g(r) ~ h(r + ~(r)). If we set b = e-(OO+ 1), then r+~(r) = s(r)
which proves Part (b). As remarked above, this establishes the main
theorem.

4.

COROLLARY. Let Q(z, y, y’) be a polynomial in y and y’ whose

coefficients of terms of maximum total degree in y and y’ are polynomials
while the other coefficients are analytic functions of finite order in the unit
disk. Then a meromorphic solution yo(z) in the unit disk, of the equation
Q(z, y, y’ ) = 0, whose sequence of poles has a finite convergence exponent
[9 ; p. 7], must be of finite order of growth in the disk. Hence a meromorphic
solution in the disk cannot be written as the quotient of analytic functions
h/g, where h is of infinite order and g is of finite order in the disk.

PROOF. To prove the first assertion, we note that if y o is of bounded
characteristic in 1 z |  1 then y o is of finite order [6; p. 140]. If T(r, y0) ~
+ oo as r -- 1, we can apply the previous theorem with R = 1, taking
M1(,) to be a function of the form exp((1-r)-0394) (where Li &#x3E; 0),
taking M2(r) to be a suitable constant function, and taking N(r) to
be a function of the form K1(1-r)d (see [2; p. 373]). If the poles of
y o have a finite convergence exponent, it follows from [6; p. 139] that
on [0, 1 ), N(r, y o ) and n (r, y o ) are each ~ K2(1- r)-03B1 for some K2 &#x3E; 0

and a &#x3E; 0. Since (in the notation of (2)), 1-s(r) = b(1-r), it follows
easily from (2) that for r E [0, 1 ), T(r,y0) ~ K3(1-r)-03BB where K3 &#x3E; 0

and 03BB &#x3E; 0 are fixed constants independent of r. Hence yo is of finite order
in the disk. To prove the second assertion, if yo - h/g where g is of
finite order in the disk, then by [6; p. 139], the sequence of poles of yo
has a finite convergence exponent. Hence by the first assertion yo is

of finite order and thus h = gy,. is of finite order also. This concludes

the proof.
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